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Abstract: The growing global population causes more anthropogenic carbon dioxide (CO2) emissions
and raises the need for forest products, which in turn causes deforestation and elevated CO2 levels. A
rise in the concentration of carbon dioxide in the atmosphere is the major reason for global warming.
Carbon dioxide concentrations must be reduced soon to achieve the mitigation of climate change.
Forest management programs accommodate a way to manage atmospheric CO2 levels. For this
purpose, we considered a nonlinear fractional model to analyze the impact of forest management
policies on mitigating atmospheric CO2 concentration. In this investigation, fractional differential
equations were solved by utilizing the Atangana Baleanu Caputo derivative operator. It captures
memory effects and shows resilience and efficiency in collecting system dynamics with less processing
power. This model consists of four compartments, the concentration of carbon dioxide C(t), human
population N(t), forest biomass B(t), and forest management programs P(t) at any time t. The
existence and uniqueness of the solution for the fractional model are shown. Physical properties of the
solution, non-negativity, and boundedness are also proven. The equilibrium points of the model were
computed and further analyzed for local and global asymptotic stability. For the numerical solution
of the suggested model, the Atangana-Toufik numerical scheme was employed. The acquired results
validate analytical results and show the significance of arbitrary order δ. The effect of deforestation
activities and forest management strategies were also analyzed on the dynamics of atmospheric carbon
dioxide and forest biomass under the suggested technique. The illustrated results describe that the
concentration of CO2 can be minimized if deforestation activities are controlled and proper forest
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management policies are developed and implemented. Furthermore, it is determined that switching to
low-carbon energy sources, and developing and implementing more effective mitigation measures will
result in a decrease in the mitigation of CO2.

Keywords: climate change mitigation; forest management programs; Atangana-Baleanu derivative;
global stability; numerical simulations
Mathematics Subject Classification: 47H10, 76B15

1. Introduction

Carbon dioxide concentrations in the environment have risen rapidly during the last several years.
Global warming is primarily caused by excessive carbon dioxide levels, which have detrimental effects
on air quality and human health. Climate change has several harmful consequences for people and
ecosystems, such as melting glaciers and icecaps, tidal waves, floods, and siltation; increased chances
of annihilation of endangered species of animals and plants; alterations in rainfall patterns modifying
the global supply of water and food; a rise in food-borne, water-borne, and vector-borne diseases; and
a bump in high-temperature diseases [1, 2]. The atmospheric CO2 concentration surpassed 418 ppm
in 2022, nearly 49% higher than the value of 280 ppm at the start of the industrial age [3]. One of
several primary human-caused origins of carbon dioxide emissions is deforestation. Deforestation has
resulted in the loss of almost 420 million ha of forests globally since 1990, with an average pace of 10
million ha year−1 between 2015 and 2020 [4].

Many nations worldwide have implemented reforestation and afforestation plans to compensate for
the loss of forests driven by deforestation. It was predicted that 27 million acres of new trees would
be planted in 2015, an increase of 1.57% yearly [5]. Large-scale plantations are necessary to reduce
elevated CO2 concentration in the air; however, reforestation is not possible on the needed scale due to
a variety of demographic and economic factors [6]. Nations in this sort of situation are implementing
sustainable forestry strategies that enhance forest biomass and minimize deforestation rates, helping to
reduce CO2 emissions in the atmosphere. Since being the first tropical nation to successfully control
deforestation, Costa Rica increased its forest area from 24.4% in 1985 to more than 50% by 2011. This
was accomplished via the use of forest management strategies [7].

Innovative methods of managing forests are being developed due to global concerns over forest
degradation. One of several growth strategies is to enhance the amount of high biomass in the forest
and diminish the atmospheric CO2 level using genetically modified plants with longer roots, rapid
growth rates, and biomass production [8, 9]. Genetically manipulated eucalyptus plants have been
shown to grow quicker and soak up more CO2, leading to increased forest biomass output per unit area
in Brazil [10]. Another technique that is frequently employed in modern times to boost productivity
and forest cover is agroforestry. To increase production and the sustainability of the ecosystem,
agroforestry defines the system of land use that incorporates trees into agricultural landscapes and
farms [11]. Agroforestry is a crucial component of the broader regional plan for managing forests and
reducing climate crises. Indian agroforestry can sequester 25 tonnes of carbon on average per hectare,
according to estimates [12,13]. Forests provide a significant source of income, firewood for heating and
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cooking, and other necessities for people in rural communities. The population’s reliance on forestry
resources is frequently brought on by the absence of alternatives or the incapacity of the inhabitants to
pay for them [14]. Some initiatives offering rural residents government subsidies for their way of life,
such as biogas and fuel-efficient stoves, as well as fiber and tin, successfully reduce deforestation rates
by promoting alternatives to forest resources [15].

Multiple approaches to mitigating climate change have been designed in the past few years, with a
particular emphasis on reducing atmospheric CO2 emissions from forest degradation and deforestation.
Reducing emissions from deforestation and degradation plus (REDD+) system, initiated by the
United Nations Framework Convention on Climate Change (UNFCCC) Conference of the Parties,
is one of the primary worldwide initiatives in this field. With sustainable forest management, the
REDD+ mechanism seeks to direct and financially support actions that minimize deforestation and
boost carbon stocks already present in the forest [16, 17]. It has been determined that a REDD+

program implemented at the state scale can considerably lower carbon emissions and forest cover loss.
According to research, the Norway-Guyana REDD+ initiative prevented 12.8 million metric tons of
CO2 emissions and reduced tree cover loss by 35% between 2010 and 2015 [18]. Therefore, the actions
involved in forest management play a vital role in lowering the pace of deforestation and increasing
the biomass of the forest.

Recently, several mathematical models have been put out to investigate the behavior of different
aspects of the human population [19–25]. The authors in [26] investigated the stability criteria
of a mathematical model for the equilibrium points. It was revealed that the equilibrium between
biomass and carbon dioxide becomes unstable, leading to a rise in atmospheric CO2 at highly elevated
deforestation rates. The authors in [27] used a mathematical model to determine how the population,
biomass, and atmospheric CO2 interacted. They concluded that the rate of deforestation has adversely
affected the system’s dynamics. Research on how different plant capacities to absorb CO2 affect
atmospheric CO2 level is given in [28]. To investigate the impact of population on the dynamics
of CO2, the authors in [29] designed a dynamic model. According to their research, the pressure of
population growth increases the rate of forest biomass loss, which raises the equilibrium level of CO2.
To preserve forest biomass, several researchers have proposed nonlinear mathematical models [30–32].
Depending on these studies, it is possible to preserve forest biomass using technical means such as
the cultivation of genetically modified plants and by offering financial incentives to the population,
which would eventually result in a decline in the pace of deforestation. These investigations, however,
need to examine the consequences of forest management on CO2 concentration. In this manuscript,
we formulate a novel fractional mathematical model to explore the influence of forest management
strategies on the emission of CO2. According to our assumptions, sustainable management strategies
aim to reduce deforestation by offering financial incentives and encouraging individuals to use different
resources. These efforts aim to lower deforestation rates and enhance forest biomass via afforestation
and the planting of genetically modified plants. The models stated above rely on classical derivatives
and frequently fail to adequately represent the complexities of systems that exhibit unusual spreading
and non-exponential response.

Modern research has highlighted the potential of using fractional differential equations to represent
a variety of events across various disciplines, especially epidemiology [33–37]. The calculus of
arbitrary-order derivatives and integrals is studied in the domain of mathematical analysis known as
fractional calculus. The vital feature of utilizing fractional derivatives to describe mathematical models
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is that they have the quality of being nonlocal. The m-th derivative of a function Φ(ε) at ε is just a local
characteristic when m is an integer. The fractional derivative of Φ(ε) at ε = a depends on all values of
Φ(ε), including those farthest from a. Fractional-order derivatives incorporate derivatives and integrals
of arbitrary orders; the current and past states determine the future predicament. Memory’s inherited
qualities and potency are key aspects across many biological systems. A dynamic model can assist in
expressing these aspects using fractional-order derivatives in modeling [38].

The most famous operators are the Caputo fractional derivatives and integrals, which are
traditionally employed for simulating several real-life problems. Additionally, there is a close
connection between the Riemann-Lioville derivative operator and the Caputo fractional derivative.
These operators could yield better findings when used to examine the structure of models. However, the
singularity of the kernels of these operators [39, 40] is the primary problem. To better comprehend the
dynamics of models, researchers have emphasized the need for fractional operators with nonsingular
kernels. Many researchers were successful in providing fractional operators with nonsingular kernels
to this point, such as the Caputo-Fabrizio fractional derivative [41]. Recently, Atangana and Baleanu
introduced a brand-new derivative with a single-parameter Mittag-Leffer (ML) kernel, which is the
Atangana-Baleanu (ABC) operator [42]. One of its major achievements is that this operator has a non-
local and non-singular kernel. It is advantageous for professionals who work in the dynamic simulation
of real-life problems. Various conventional and fractional derivatives were taken into consideration
when performing numerical computations in [43–47]. To approximate the ABC fractional derivative,
the authors carried out an examination and numerical simulation of a model [45]. They applied a
two-step family of Adams-Bash-Forth methodology.

To overcome these limitations, a unique use of the ABC fractional derivative operator is presented
in this study. In contrast to earlier research, which mostly dealt with traditional fractional derivatives,
this work makes use of the unique benefits of the ABC operator to improve complex system modeling.
This paper’s key contribution is its demonstration of how fractional derivatives of ABC can enhance the
stability and precision of solutions to fractional differential equations. We demonstrate the superiority
of the ABC operator over conventional techniques in terms of solution fidelity and computing economy
through several in-depth evaluations and simulations. The suggested method has been widely used in
many real-world problems due to its non singular and non-local properties [48, 49], and has already
been compared and proved to be superior to the method in the literature. To the best of our knowledge,
this method has not yet been applied to problems related to climate change and sustainability. Thus,
this study introduces a new methodology that not only links theoretical developments with real-world
applications but also establishes new standards for precision and effectiveness in complex system
modeling. Here is a list of the contributions of this research work:

• A novel mathematical fractional model for the dynamics of CO2 concentration in the atmosphere
is addressed and analyzed using the Atangana-Baleanu derivative.
• Non negativity of the solutions is proven, and the conditions for the existence and uniqueness of

the solution of the considered system are established.
• The proposed fractional model is solved numerically using the Atangana-Toufik scheme.
• The effects of the fractional ABC derivative on the dynamics of the proposed model are discussed.
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1.1. Preliminary definitions

In this section, we recall some fundamental definitions from fractional calculus and a well-known
theorem that will be used in the following sections.

Definition 1.1. Suppose that Λ is an open subset of R, and ω ∈ [1,∞), the Sobolev space Hω(Λ) is
stated [35, 45] as:

Hω(Λ) =

{
℘ ∈ L2(Λ) : Dδ℘ ∈ L2,∀ |δ| ≤ |ω|

}
. (1.1)

Definition 1.2. The ABC fractional operator in the Caputo sense [35,45] is defined for a differentiable
function ℘ : [a, b]→ N, which is defined on [a, b] such that ℘ ∈ H1(a, b), b > a, and δ ∈ (0, 1] as:

ABC
a Dδ

t℘(t) =
ℵ(δ)
1 − δ

∫ t

a
℘̇($)Eδ

[
− δ

(t −$)δ

1 − δ

]
d$, (1.2)

where Eδ is a ML function of one parameter, and given by

Eδ(z) =

∞∑
m=0

zm

Γ(δm + 1)
, (1.3)

where ℵ(δ) > 0, is a normalized function, and ℵ(0) = ℵ(1) = 1.

Definition 1.3. [45] The associated ABC fractional integral with a non-local kernel is expressed as

ABC
a Iδt ℘(t) =

1 − δ
ℵ(δ)

℘(t) +
δ

ℵ(δ)Γ(δ)

∫ t

a
℘($)(t −$)δ−1d$. (1.4)

Theorem 1.4. [35] The fractional-order differential equation

ABC
a Dδ

t℘(t) = G(t), (1.5)

has the following unique solution

℘(t) = ℘(a) +
1 − δ
ℵ(δ)

G(t) +
δ

ℵ(δ)Γ(δ)

∫ t

a
G($)(t −$)δ−1d$. (1.6)

The remaining paper is organized as follows: Section 2 formulates the fractional model and its
associated characteristics. In Section 3, the equilibrium states of the proposed fractional model
are calculated. Section 4 examines the stability of the equilibrium points of the suggested model.
Numerical analysis and simulations are carried out in Section 5. Finally, Section 6 is devoted to the
conclusion.

2. Model formulation

The growing study of climate change demands a thorough comprehension of greenhouse gas
dynamics. The CO2 gas is one of the main greenhouse gases causing global warming. Precisely
estimating the gas’ concentration and how it impacts the environment is essential in order to forecast
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future climate circumstances and develop practical mitigation plans. The complex mechanisms
controlling CO2 emissions are well represented by the integer-order model, which offers a stable
framework. By integrating these processes into a logical system of differential equations, the model
allows accurate simulations of time-varying CO2 levels. For researchers and public officials to
evaluate the effects of different emission reduction programs and to create well-informed environmental
policies, this forecasting endurance is crucial.

In this study, we consider a geographical region where a growing human population affects the
forest cover. Sustainable forest strategies are implemented to decrease deforestation and enhance forest
biomass. As it acts as one of the fundamental CO2 sinks, the conservation, and depletion of forest
biomass will change the concentration of CO2. To describe the model, we assumed four different state
variables: the concentration of CO2 in the atmosphere C(t) at any time t, the human populationN(t) at
any time t, the biomass of the forest B(t) at any time t, and the number of forest management programs
P(t) at any time t.

The differential equation below describes how the concentration of carbon dioxide in the atmosphere
changes over time:

dC
dt

= Q + λN − αC − λ1BC, ∀t ≥ 0, (2.1)

here, the natural emission rate of CO2 from processes including respiration, biological decomposition,
and volcanic activity, all of which continuously contribute CO2 to the atmosphere, is represented
by the term Q. The concept of λN , which stands for emission rate coefficient and scales with the
human population or activities that cause CO2 emissions (such as burning fossil fuels and industrial
operations), describes emissions of CO2 that are caused by humans. The term −αC refers to the amount
of CO2 absorbed by natural sinks other than forest biomass, such as soil and seas; this absorption
is proportionate to the amount of CO2, or C, that is currently present in the atmosphere. Last, the
absorption of CO2 by forest biomass is denoted by the term −λ1BC, where B is the quantity of forest
biomass and λ1 is the rate of uptake coefficient. This uptake depends on both the amount of CO2 and
the quantity of forest biomass.

Given that population expansion is dependent on forest resources and causes deforestation it is
assumed that both the population and biomass of the forest would expand logistically. A rise in
biomass, on the other hand, promotes population expansion. The efficiency of forest management
programs decreases with intensity, while they do prevent deforestation and increase forest biomass.
A decrease in population is also a result of the negative climatic effects brought on by elevated
atmospheric CO2. With the consequences of deforestation, the management of forests, and CO2-
induced climate change taken into account, these dynamics are reflected in the following differential
equations that describe population and forest biomass as:

dN
dt

= sN
(
1 −
N

L

)
+ ξNB − θCN , ∀t ≥ 0, (2.2)

dB
dt

= µB

(
1 −
B

M

)
−

(
φ −

φ1P

k1 + P

)
NB +

η1BP

l1 + P
, ∀t ≥ 0. (2.3)

We assumed that the rate at which forest management initiatives are carried out is proportionate to the
gap between the carrying capacity of the forest and its present biomass density. Let ν and ν0 denote the
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implementation and declination rates of the forest management initiatives, respectively. The following
is a description of the dynamics of the forest management programs:

dP
dt

= ν (M − B) − ν0P, ∀t ≥ 0. (2.4)

Therefore, the following model incorporates the dynamic nature of the problem:
dC
dt = Q + λN − αC − λ1BC,
dN
dt = sN

(
1 − NL

)
+ ξNB − θCN ,

dB
dt = µB

(
1 − BM

)
−

(
φ − φ1P

k1+P

)
NB +

η1BP

l1+P
,

dP
dt = ν (M − B) − ν0P,

(2.5)

with the following initial conditions:

C(0) = C0 > 0, N(0) = N0 ≥ 0, B(0) = B0 ≥ 0, and P(0) = P0 ≥ 0.

It is assumed that all the involved parameters and initial data of the model are non-negative. The model
parameters used in this model are defined and interpreted in Table 1. Generally, fractional models
of real-life phenomena are known to express the memory effect quite effectively; the system (2.6) is
considered using the ABC fractional derivative. By applying the ABC fractional derivative of order
δ ∈ (0, 1] of the ML kernel, the system is given as:

ABC
0 Dδ

tC(t) = Q + λN − αC − λ1BC, ∀t ≥ 0,
ABC
0 Dδ

tN(t) = sN
(
1 − NL

)
+ ξNB − θCN , ∀t ≥ 0,

ABC
0 Dδ

tB(t) = µB
(
1 − BM

)
−

(
φ − φ1P

k1+P

)
NB +

η1BP

l1+P
, ∀t ≥ 0,

ABC
0 Dδ

tP(t) = ν (M − B) − ν0P, ∀t ≥ 0,

(2.6)

and the following short form can be used to express it as:

ABC
0 Dδ

t℘(t) = G (t, ℘(t)) , 0 < t < T < +∞, (2.7)

with the initial condition

℘(0) = ℘0, (2.8)

where ℘ : [0,+∞)→ R4 and G : R4 → R4 are vector-valued functions such that

℘(t) =


C(t)
N(t)
B(t)
P(t)

 , ℘(0) =


C(0)
N(0)
B(0)
P(0)

 ,
and

G (℘(t)) =


G1

G2

G3

G4

 =


Q + λN − αC − λ1BC

sN
(
1 − NL

)
+ ξNB − θCN

µB
(
1 − BM

)
−

(
φ − φ1P

k1+P

)
NB +

η1BP

l1+P

ν (M − B) − ν0P

 ,
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respectively. Clearly, G j; j = 1, 2, 3, 4, are functions of t, C, N , B, and P.

Table 1. Model parameters and their interpretation [46].

Description Parameter
Natural CO2 emission rate Q
Coefficient of anthropogenic CO2 emission rate λ

CO2 absorption rate coefficients of forest biomass from the environment λ1

Natural drains except forest biomass α

Population’s intrinsic rate of growth s
Population’s carrying capacity L
Population growth rate coefficient induced by forest biomass ξ

Population decline rate coefficient due to increased CO2 concentration θ

Population’s intrinsic rate of forest biomass µ

Carrying capacity of forest biomass M
Half-saturation constant (a measure of forest management activities that have
decreased the deforestation rate)

k1

Optimum effectiveness of forest management measures to minimize the rate of
deforestation

φ1

Half-saturation constant (a measure of forest management activities that have
increased the forest biomass)

l1

Optimum effectiveness of forest management measures to increase the forest
biomass

η1

Coefficient of implementation of forest management measures ν

Forest management measures declination rate coefficient ν0

Deforestation rate coefficient φ

2.1. Fundamentals of the model

In this part, we use nonnegative initial information to define the range of solutions to the non-linear
system. Our fundamental aim is to present that the observed feasible region in R4

+ is positively invariant
about the suggested model.

2.1.1. Invariant region

Theorem 2.1. [46] The set

Ω =

{
(C,N ,B,P) ∈ R4

+ : 0 < C ≤ Cm; 0 ≤ N ≤ Nm; 0 ≤ B ≤ M; 0 ≤ P ≤ Pm

}
, (2.9)

is positively invariant for the fractional model (2.6), where Cm =
Q+λNm

α
, Nm = L +

ξLM
s , and Pm = νM

ν0
.

2.2. Non-negativity and boundedness of the solutions

Under this section, we explore the physical characteristics of solutions, i.e., non negativity and
boundedness of solutions to the presented model. Here, we establish the necessary and sufficient
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criteria for the existence of positive solutions. Our objective is to demonstrate the qualitative behavior
of solutions. Therefore, we suppose that for any initial conditions for the system, C(0) = C0, N(0) =

N0, B(0) = B0, and P(0) = P0 ∈ Ω, then there is a unique solution for any time t. Let us now define
positivity criteria.

Theorem 2.2. [50] Assume that the initial condition{
C(0),N(0),B(0),P(0)

}
∈ Ω,

then, the solutions exist, and they are all positive for all t ≥ 0.

Proof. Let’s begin with the C(t) class. We define the following norm:

‖ψ‖∞ = sup
t∈[0,T ]

|ψ|.

First equation of the system (2.6) is given by

ABC
0 Dδ

tC(t) = Q + λN − αC − λ1BC, ∀t ≥ 0,
≥ − (α + λ1B)C, ∀t ≥ 0,

≥ −

(
α + λ1 sup

t∈[0,T ]
|B|

)
C, ∀t ≥ 0,

≥ − (α + λ1‖B‖∞)C, ∀t ≥ 0.

Then, we get

C(t) ≥ C0Eδ

(
−

δ(α + λ1‖B‖∞)tδ

ℵ(δ) − (1 − δ)(α + λ1‖B‖∞)

)
, ∀t ≥ 0. (2.10)

Second equation of the system (2.6) is given by

ABC
0 Dδ

tN(t) = sN
(
1 −
N

L

)
+ ξNB − θCN , ∀t ≥ 0,

≥ −

(
−s

(
1 −

1
L

)
− ξB + θC

)
N , ∀t ≥ 0,

≥ −

(
−s

(
1 −

1
L

)
− ξ sup

t∈[0,T ]
|B| + θ sup

t∈[0,T ]
|C|

)
N , ∀t ≥ 0,

≥ −

(
−s

(
1 −

1
L

)
− ξ‖B‖∞ + θ‖C‖∞

)
N , ∀t ≥ 0.

Then, we have

N(t) ≥ N0Eδ

−
δ

[
− s

(
1 − 1

L

)
− ξ‖B‖∞ + θ‖C‖∞

]
tδ

ℵ(δ) − (1 − δ)
[
− s

(
1 − 1

L

)
− ξ‖B‖∞ + θ‖C‖∞

]
 , ∀t ≥ 0. (2.11)
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Third equation of the system (2.6) is given as

ABC
0 Dδ

tB(t) = µB

(
1 −
B

M

)
−

(
φ −

φ1P

k1 + P

)
NB +

η1BP

l1 + P
, ∀t ≥ 0,

≥ −

(
−µ

(
1 −

1
M

)
+

(
φ −

φ1P

k1 + P

)
N −

η1P

l1 + P

)
B, ∀t ≥ 0,

≥ −

(
−µ

(
1 −

1
M

)
+

(
φ −

φ1 supt∈[0,T ] |P|

k1 + supt∈[0,T ] |P|

)
sup

t∈[0,T ]
|N| −

η1 supt∈[0,T ] |P|

l1 + supt∈[0,T ] |P|

)
B, ∀t ≥ 0,

≥ −

(
−µ

(
1 −

1
M

)
+

(
φ −

φ1‖P‖∞

k1 + ‖P‖∞

)
‖N‖∞ −

η1‖P‖∞

l1 + ‖P‖∞

)
B, ∀t ≥ 0.

Then, we get

B(t) ≥ B0Eδ

−
δ

[
− µ

(
1 − 1

M

)
+

(
φ − φ1‖P‖∞

k1+‖P‖∞

)
‖N‖∞ −

η1‖P‖∞
l1+‖P‖∞

]
tδ

ℵ(δ) − (1 − δ)
[
− µ

(
1 − 1

M

)
+

(
φ − φ1‖P‖∞

k1+‖P‖∞

)
‖N‖∞ −

η1‖P‖∞
l1+‖P‖∞

]
 ,∀t ≥ 0. (2.12)

Fourth equation of the system (2.6) is written as

ABC
0 Dδ

tP(t) = ν (M − B) − ν0P, ∀t ≥ 0,
≥ − (ν0)P, ∀t ≥ 0.

Then, we have

P(t) ≥ P0Eδ

(
−

δ(ν0)tδ

ℵ(δ) − (1 − δ)(ν0)

)
, ∀t ≥ 0. (2.13)

Thus the suggested model has non-negative solutions ∀t ≥ 0. �

Theorem 2.3. [51] Along with the initial conditions, the solution of the fractional model considered
in (2.6) is unique and bounded in R4

+.

Proof. We obtained the following equations:

ABC
0 Dδ

tC(t)|C=0 = Q + λN ≥ 0,
ABC
0 Dδ

tN(t)|N=0 = 0,
ABC
0 Dδ

tB(t)|B=0 = 0,
ABC
0 Dδ

tP(t)|P=0 = ν (M − B) ≥ 0.

If (C(0),N(0),B(0),P(0)) ∈ R4
+, it is practically unattainable to move out of R4

+. Since the domain
is positively invariant, any non negative vector field goes into R4

+. For the suggested system, this
guarantees a positive and bounded solution. �

AIMS Mathematics Volume 9, Issue 8, 22712–22742.



22722

2.3. Existence and uniqueness of solution

In this part, we employ theorems to show the existence and uniqueness of the solution for the
suggested model (2.6).

Theorem 2.4. [47] Suppose that we have eight positive constants ρ̂1, ρ̂2, ρ̂3, ρ̂4, and ρ̄1, ρ̄2, ρ̄3, ρ̄4,
then the following two conditions hold:

(1)

|G1(C, t) −G1(C1, t)|2 ≤ ρ̂1|C − C1|
2,

|G2(N , t) −G2(N1, t)|2 ≤ ρ̂2|N − N1|
2,

|G3(B, t) −G3(B1, t)|2 ≤ ρ̂3|B − B1|
2,

|G4(P, t) −G4(P1, t)|2 ≤ ρ̂4|P − P1|
2.

(2)

|G1(C, t)|2 ≤ ρ̄1

(
1 + |C|2

)
,

|G2(N , t)|2 ≤ ρ̄2

(
1 + |N|2

)
,

|G3(B, t)|2 ≤ ρ̄3

(
1 + |B|2

)
,

|G4(P, t)|2 ≤ ρ̄4

(
1 + |P|2

)
.

Proof. The system (2.6) has a unique solution if the stated requirements are fulfilled. Let us begin with
the first equation of the system G1(C, t). Then, we will try to prove the first condition for the following
equation:

|G1(C, t) −G1(C1, t)|2 ≤ ρ̂1|C − C1|
2.

Define the following norm as:

‖ψ‖2∞ = sup
t∈[0,T ]

|ψ|2.

Let us consider C, C1 ∈ R
2 and t ∈ [0,T ],

|G1(C, t) −G1(C1, t)|2 = |(α + λ1B) (C − C1)|2

≤

{
2α2 + 2λ2

1|B|
2
}
|C − C1|

2

≤

{
2α2 + 2λ2

1 sup
t∈[0,T ]

|B|2
}
|C − C1|

2

≤

{
2α2 + 2λ2

1‖B‖
2
∞

}
|C − C1|

2

≤ ρ̂1|C − C1|
2,

where
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ρ̂1 =

{
2α2 + 2λ2

1‖B‖
2
∞

}
.

For N , N1 ∈ R
2 and t ∈ [0,T ],

|G2(N , t) −G2(N1, t)|2 =

∣∣∣∣∣∣
{

s
(
1 −

1
L

)
+ ξB − θC

}
(N −N1)

∣∣∣∣∣∣2
≤

{
3s2

(
1 −

1
L

)2

+ 3ξ2|B|2 + 3θ2|C|2
}
|N − N1|

2

≤

{
3s2

(
1 −

1
L

)2

+ 3ξ2 sup
t∈[0,T ]

|B|2 + 3θ2 sup
t∈[0,T ]

|C|2
}
|N − N1|

2

≤

{
3s2

(
1 −

1
L

)2

+ 3ξ2‖B‖2∞ + 3θ2‖C‖2∞

}
|N − N1|

2

≤ ρ̂2|N − N1|
2,

where

ρ̂2 =

{
3s2

(
1 −

1
L

)2

+ 3ξ2‖B‖2∞ + 3θ2‖C‖2∞

}
.

For B, B1 ∈ R
2 and t ∈ [0,T ],

|G3(B, t) −G3(B1, t)|2 =

∣∣∣∣∣∣
{
µ

(
1 −

1
M

)
−

(
φ −

φ1P

k1 + P

)
N +

η1P

l1 + P

}
(B − B1)

∣∣∣∣∣∣2
≤

{
4µ2

(
1 −

1
M

)2

+ 4φ2|N|2 +
4φ2

1|P|
2|N|2

k2
1 + |P|2

+
η2

1|P|
2

l2
1 + |P|2

}
|B − B1|

2

≤

{
4µ2

(
1 −

1
M

)2

+ 4φ2 sup
t∈[0,T ]

|N|2 +
4φ2

1 supt∈[0,T ] |P|
2 supt∈[0,T ] |N|

2

k2
1 + supt∈[0,T ] |P|

2

+
η2

1 supt∈[0,T ] |P|
2

l2
1 + supt∈[0,T ] |P|

2

}
|B − B1|

2

≤

{
4µ2

(
1 −

1
M

)2

+ 4φ2‖N‖2∞ +
4φ2

1‖P‖
2
∞‖N‖

2
∞

k2
1 + ‖P‖2∞

+
η2

1‖P‖
2
∞

l2
1 + ‖P‖2∞

}
|B − B1|

2

≤ρ̂3|B − B1|
2,

where

ρ̂3 =

{
4µ2

(
1 −

1
M

)2

+ 4φ2‖N‖2∞ +
4φ2

1‖P‖
2
∞‖N‖

2
∞

k2
1 + ‖P‖2∞

+
η2

1‖P‖
2
∞

l2
1 + ‖P‖2∞

}
.
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For P, P1 ∈ R
2 and t ∈ [0,T ],

|G4(P, t) −G4(P1, t)|2 = |−ν0(P − P1)|2

≤ ν2
0 |P − P1|

2

≤ ρ̂4|P − P1|
2,

where

ρ̂4 = {ν2
0}.

Finally, we able to establish the given condition (1).
Now, we will prove the second criterion for the proposed system. ∀(C, t) ∈ R2× [t0,T ], then we will

show that

|G1(C, t)|2 = |Q + λN − αC − λ1BC|
2

≤ 4Q2 + 4λ2|N|2 + 4α2|C|2 + 4λ2
1|B|

2|C|2

≤ 4Q2 + 4λ2|N|2 +
(
4α2 + 4λ2

1|B|
2
)
|C|2

≤ 4Q2 + 4λ2 sup
t∈[0,T ]

|N|2 +

(
4α2 + 4λ2

1 sup
t∈[0,T ]

|B|2
)
|C|2

≤

(
4Q2 + 4λ2 sup

t∈[0,T ]
|N|2

) 1 +

 4α2 + 4λ2
1 supt∈[0,T ] |B|

2

4Q2 + 4λ2 supt∈[0,T ] |N|
2

 |C|2
≤

(
4Q2 + 4λ2‖N‖2∞

) (
1 +

(
4α2 + 4λ2

1‖B‖
2
∞

4Q2 + 4λ2‖N‖2∞

)
|C|2

)
≤ ρ̄1

(
1 + |C|2

)
,

where

ρ̄1 = 4Q2 + 4λ2‖N‖2∞,

and with under condition

4α2 + 4λ2
1‖B‖

2
∞

4Q2 + 4λ2‖N‖2∞
< 1.

Now ∀(N , t) ∈ R2 × [t0,T ], then we will show that

|G2(N , t)|2 =

∣∣∣∣∣∣sN
(
1 −
N

L

)
+ ξNB − θCN

∣∣∣∣∣∣2
≤ 3s2|N|2

(
1 −

1
L

)2

+ 3ξ2|N|2|B|2 + 3θ2|C|2|N|2

≤
(
3s2 + 3ξ2

)
+

3s2
(
1 −

1
L

)2

+ 3ξ2|B|2 + 3θ2|C|2

 |N|2
≤

(
3s2 + 3ξ2

) 1 +

3s2
(
1 − 1

L

)2
+ 3ξ2 supt∈[0,T ] |B|

2 + 3θ2 supt∈[0,T ] |C|
2

3s2 + 3ξ2

 |N|2

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≤
(
3s2 + 3ξ2

) 1 +

3s2
(
1 − 1

L

)2
+ 3ξ2‖B‖2∞ + 3θ2‖C‖2∞

3s2 + 3ξ2

 |N|2


≤ ρ̄2

(
1 + |N|2

)
,

where

ρ̄2 = 3s2 + 3ξ2,

and with under condition

3s2
(
1 − 1

L

)2
+ 3ξ2‖B‖2∞ + 3θ2‖C‖2∞

3s2 + 3ξ2 < 1.

Now ∀(B, t) ∈ R2 × [t0,T ], then we will show that

|G3(B, t)|2 =

∣∣∣∣∣∣µB
(
1 −
B

M

)
−

(
φ −

φ1P

k1 + P

)
NB+

η1BP

l1 + P

∣∣∣∣∣∣2
≤ 4µ2|B|2

(
1 −

1
M

)2

+ 4φ2|N|2|B|2 +
4φ2

1|P|
2|N|2|B|2

(k1 + |P|)2 +
4η2

1|B|
2|P|2

(l1 + |P|)2

≤ (4µ2 + 4φ2) +

4µ2
(
1 −

1
M

)2

+ 4φ2|N|2 +
4φ2

1|P|
2|N|2

(k1 + |P|)2 +
4η2

1|P|
2

(l1 + |P|)2

 |B|2,
≤ (4µ2 + 4φ2),

1 +


4µ2

(
1 − 1

M

)2
+ 4φ2 supt∈[0,T ] |N|

2 +
4φ2

1 supt∈[0,T ] |P|
2 supt∈[0,T ] |N|

2

(k1+supt∈[0,T ] |P|)2 +
4η2

1 supt∈[0,T ] |P|
2

(l1+supt∈[0,T ] |P|)2

4µ2 + 4φ2

 |B|2


≤ (4µ2 + 4φ2)

1 +


4µ2

(
1 − 1

M

)2
+ 4φ2‖N‖2∞ +

4φ2
1‖P‖

2
∞‖N‖

2
∞

(k1+‖P‖2∞)2 +
4η2

1‖P‖
2
∞

(l1+‖P‖2∞)2

4µ2 + 4φ2

 |B|2


≤ ρ̄3

(
1 + |B|2

)
,

where

ρ̄3 = 4µ2 + 4φ2,

and with under condition

4µ2
(
1 − 1

M

)2
+ 4φ2‖N‖2∞ +

4φ2
1‖P‖

2
∞‖N‖

2
∞

(k1+‖P‖2∞)2 +
4η2

1‖P‖
2
∞

(l1+‖P‖2∞)2

4µ2 + 4φ2 < 1.

∀(P, t) ∈ R2 × [t0,T ], then we will show that

|G4(P, t)|2 = |ν (M − B) − ν0P|
2
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≤ 3ν2M2 + 3ν2|B|2 + 3ν2
0|P|

2

≤

(
3ν2M2 + 3ν2 sup

t∈[0,T ]
|B|2

) (
1 +

(
3ν2

0

3ν2M2 + 3ν2 supt∈[0,T ] |B|
2

)
|P|2

)
≤

(
3ν2M2 + 3ν2‖B‖2∞

) (
1 +

(
3ν2

0

3ν2M2 + 3ν2‖B‖2∞

)
|P|2

)
≤ ρ̄4

(
1 + |P|2

)
,

where

ρ̄4 = 3ν2M2 + 3ν2‖B‖2∞,

and with under condition

3ν2
0

3ν2M2 + 3ν2‖B‖2∞
< 1,

which completes the proof. �

3. Equilibrium points of the system

To determine the equilibrium points of the system (2.6), assume that the rate of change with regard
to time is zero, then we obtain

0 = Q + λN − αC − λ1BC,

0 = sN
(
1 −
N

L

)
+ ξNB − θCN ,

0 = µB

(
1 −
B

M

)
−

(
φ −

φ1P

k1 + P

)
NB +

η1BP

l1 + P
,

0 = ν (M − B) − ν0P.

By solving the above system, we get the following four steady states denoted by E1, E2, E3, and E∗:
(1) E1

(
Q
α
, 0, 0, νM

ν0

)
always exists.

(2) E2

(
Q

α+λ1 M , 0,M, 0
)

always exists.
(3) E3 (C3,N3, 0,P3) exists, if the following condition is fulfilled:

s −
θQ
α

> 0,

where C3 =
s(Q+λL)
sα+θλL , N3 =

L(sα−θQ)
sα+θλL , P3 = νM

ν0
.

(4) E∗ (C∗,N∗,B∗,P∗) exists, if the following conditions are fulfilled:

µ −

(
φ −

φ1νM
k1ν0 + νM

) ( sα − θQ
sα + θλL

)
L +

η1νM
31ν0 + νM

> 0, (3.1)

s −
θQ

α + λ1M
+ ξM > 0. (3.2)
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4. Stability analysis

A theoretical discussion on the local and global asymptotic stabilities at the equilibria of a fractional
model (2.6) is presented in this section.

4.1. Local asymptotic stability

Theorem 4.1. 1) The equilibrium point E1 is always unstable.
2) The equilibrium point E2 is unstable whenever E∗ exists.
3) The equilibrium point E3 is unstable whenever E∗ exists.
4) The equilibrium point E∗ is locally asymptotically stable if and only if the given condition is

satisfied:

∆3 (∆1∆2 − ∆3) − ∆2
1∆4 > 0. (4.1)

Proof. For the proposed fractional system (2.6), the Jacobian matrix Ĵ is evaluated as:

Ĵ =


−α − λ1B λ −λ1C 0
−θN s

(
1 − 2N

L

)
+ ξB − θC ξN 0

0 −B
(
φ − φ1P

k1+P

)
µ
(
1 − 2B

M

)
− N

(
φ − φ1P

k1+P

)
+

η1P

l1+P

φ1k1NB

(k1+P)2 +
η1l1B

(l1+P)2

0 0 −ν −ν0

 .
Let ĴE1 , ĴE2 , ĴE3 , and ĴE∗ represent the Jacobian matrices of the considered fractional model at E1, E2,
E3, and E∗, respectively. Then

1) The characteristics equation of the ĴE1 is given by |ĴE1 − λ̂I| = 0, where I is the unit matrix. This
characteristics equation gives the eigenvalues of ĴE1 , which are

λ̂1 = −ν0, λ̂2 = −α, λ̂3 = u +
η1νM

l1ν0 + νM
, λ̂4 = s −

Q
α
. (4.2)

From Eq (4.2), λ̂3 > 0, as all the involved parameters are positive; therefore, E1 is always unstable.
2) The characteristics equation of the ĴE2 is given by |ĴE2 − λ̂I| = 0. This characteristics equation

gives the eigenvalues of ĴE2 , which are

λ̂1 = −(α + λ1M), λ̂2 = s −
θQ

α + λ1M
+ ξM, (4.3)

and λ̂3, λ̂4 are complex with negative real part.
Since, λ̂1 < 0, as α, λ1, and M are positive. From Eq (4.3), λ̂2 = s + ξM − θQ

α+λ1 M > 0, if
condition (3.2) is satisfied. Hence, E2 is unstable whenever E∗ exists.

3) The characteristics equation of the ĴE3 is given by |ĴE3 − λ̂I| = 0. Then, ĴE3 has the following
eigenvalues:

λ̂1 = −ν0, λ̂2 = µ − N3

(
φ −

φ1P3

k1 + P3

)
+

η1P3

l1 + P3
, (4.4)
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and λ̂3, λ̂4 are roots of the following equation

ψ2 +

(
α +

sN3

L

)
ψ +

αsN3

L
+ λθN3 = 0,

which are complex with negative real part.
From Eq (4.4), λ̂2 = µ − N

(
φ − φ1P

k1+P

)
+

η1P

l1+P
> 0, if condition (3.1) is satisfied. Therefore, the

considered system at E3 is unstable whenever E∗ exists.
4) The characteristics polynomial of the ĴE∗ is given by |ĴE∗ − λ̂I| = 0, and can be written as:

ψ4 + ∆1ψ
3 + ∆2ψ

2 + ∆3ψ + ∆4 = 0, (4.5)

where

∆1 = (α + λ1B∗) +
sN∗
L

+
µB∗
M

+ ν0 > 0,

∆2 = ν0 (α + λ1B∗) + (α + λ1B∗ + ν0)
(

sN∗
L

+
µB∗
M

)
+

sN∗
L

+
µB∗
M

+ξ

(
φ −

φ1P∗

k1 + P∗

)
N∗B∗ + θλN∗ + ν

(
φ1k1N∗B∗

(k1 + P∗)2 +
η1l1B∗

(l1 + P∗)2

)
> 0,

∆3 = ν0 (α + λ1B∗)
(

sN∗
L

+
µB∗
M

)
+ (α + λ1B∗ + ν0)

sN∗
L

µB∗
M

+ ν

(
α + λ1B∗ +

sN∗
L

) (
φ1k1N∗B∗

(k1 + P∗)2 +
η1l1B∗

(l1 + P∗)2

)
+ξ

(
φ −

φ1P∗

k1 + P∗

)
N∗B∗ (α + λ1B∗ + ν0) + λ1θ

(
φ −

φ1P∗

k1 + P∗

)
N∗C∗B∗

+θλN∗

(
µB∗
M

+ ν0

)
> 0,

∆4 = ν0 (α + λ1B∗)
{

sN∗
L

µB∗
M

+ ξ

(
φ −

φ1P∗

k1 + P∗

)
N∗B∗

}
+ν (αλ1B∗)

sN∗
L

(
φ1k1N∗B∗

(k1 + P∗)2 +
η1l1B∗

(l1 + P∗)2

)
+ λ1ν0θ

(
φ −

φ1P∗

k1 + P∗

)
N∗C∗B∗

+θλN∗

{
ν0
µB∗
M

+ ν

(
φ1k1N∗B∗

(k1 + P∗)2 +
η1l1B∗

(l1 + P∗)2

) }
> 0.

On inspection, it is seen that all ∆ j
′s > 0, j = 1, 2, 3, 4. Following the Routh-Hurwitz rule, if the

condition (4.1) is achieved, all the solutions of Eq (4.5) will be found in the negative half of the
plane, which gives that all of the eigenvalues are negative. Therefore, the equilibrium point E∗ is
locally asymptotically stable.

�
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4.2. Global asymptotic stability

Theorem 4.2. If the equilibrium E∗ of the presented fractional model (2.6) exists, then it is globally
asymptotically stable in Ω, assuming the following conditions are fulfilled:

λ2
1C

2
m < (α + λ1B∗)

ξλµ

Mθ
(
φ − φ1P∗

k1+P∗

) , (4.6)

max
{

φ2
1N

2
m

(k1 + P∗)2 ,
η2

1

(l1 + P∗)2

}
<

µ2
1ν

2
0

9M2ν2 . (4.7)

Proof. To show the global asymptotic stability of the E∗, we define the following Lyapunov function:

U∗ =
(C − C∗)2

2
+ σ1

(
N −N∗ − N∗ ln

N

N∗

)
+ σ2

(
B − B∗ − B∗ ln

B

B∗

)
+
σ3

2
(P − P∗)2 , (4.8)

where σ1, σ2, and σ3 are positive constants that will be opted later.
Applying the ABC derivative with respect to t on Eq (4.8), we have

ABC
0 Dδ

t U∗ = − (α + λ1B∗) (C − C∗)2
−
σ1s
L

(N −N∗)2
−
σ2µ

M
(B − B∗)2

− σ3ν0 (P − P∗)2

+ (λ − σ1θ) (C − C∗) (N −N∗) − λ1C (C − C∗) (B − B∗)

+

{
σ1ξ −

(
φ −

φ1P∗

k1 + P∗

)
σ2

}
(B − B∗) (N −N∗) − σ3ν (B − B∗) (P − P∗)

+
σ2φ1k1N

(k1 + P)(k1 + P∗)
(B − B∗) (P − P∗) +

σ2η1l1

(l1 + P)(l1 + P∗)
(B − B∗) (P − P∗) .

Choosing σ1 = λ
θ
, σ2 = σ1

ξ(
φ−

φ1P∗
k1+P∗

) =
ξλ

θ
(
φ−

φ1P∗
k1+P∗

) , we have

ABC
0 Dδ

t U∗ = − (α + λ1B∗) (C − C∗)2
−

sλ
θL

(N −N∗)2
−

µξλ

Mθ
(
φ − φ1P∗

k1+P∗

) (B − B∗)2

−σ3ν0 (P − P∗)2
− λ1C (C − C∗) (B − B∗) − σ3ν (B − B∗) (P − P∗)

+
ξλ

θ
(
φ − φ1P∗

k1+P∗

) φ1k1N

(k1 + P)(k1 + P∗)
(B − B∗) (P − P∗)

+
ξλ

θ
(
φ − φ1P∗

k1+P∗

) η1l1

(l1 + P)(l1 + P∗)
(B − B∗) (P − P∗) .

Therefore, ABC
0 Dδ

t U∗ is negative definite in Ω if the following conditions are hold:

λ2
1C

2
m < (α + λ1B∗)

µξλ

Mθ
(
φ − φ1P∗

k1+P∗

) , (4.9)

σ3 <
ν0µξλ

3Mθν2
(
φ − φ1P∗

k1+P∗

) , (4.10)

σ3 >
3Mξλφ2

1N
2
m

µν0θ (k1 + P∗)2
(
φ − φ1P∗

k1+P∗

) , (4.11)
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σ3 >
3Mξλη2

1

µν0θ (l1 + P∗)2
(
φ − φ1P∗

k1+P∗

) . (4.12)

From inequalities (4.9)–(4.12), and stated condition (4.7) holds, then we can choose σ3 > 0. Therefore,
the conditions (4.6) and (4.7) are achieved, and ABC

0 Dδ
t U∗ is negative definite, which implies that E∗ is

globally asymptotically stable in Ω. �

5. Numerical analysis

In this segment, we apply a well-known numerical scheme known as the Atangana-Toufik
scheme [35, 43, 48, 49] to find the numerical results of the proposed model for different values of
δ. Parameter values used in the simulation are provided in Table 2.

Table 2. Numeric values and their units.

Parameter Value Units Source
Q 1 ppm month−1 [46]
λ 0.05 ppm [46]
λ1 0.0001 (ton month)−1 [46]
α 0.003 (month)−1 [46]
s 0.01 month−1 [46]
L 1000 Person [46]
ξ 0.0000002 (ton month)−1 [46]
θ 0.00001 (ppm month)−1 [46]
µ 0.2 month−1 [46]
M 2000 ton [46]
k1 100 Million dollar [46]
φ1 0.00007 (person month)−1 [46]
l1 50 Million dollar [46]
η1 0.01 month−1 [46]
ν 0.01 Million dollar (ton

month)−1
[46]

ν0 0.1 month−1 [46]
φ 0.0003 (person month)−1 [46]

5.1. Atangana-Toufik scheme

For the solution of a fractional model, we construct a numerical scheme using the Atangana-Toufik
scheme. With this goal, we will consider that we get the following results from the system (2.6):

C(t) − C(0) =
1 − δ
ℵ(δ)

G1 (t,C(t)) +
δ

ℵ(δ)Γ(δ)

∫ t

0
G1(τ,C(τ))(t − τ)δ−1dτ, (5.1)

N(t) − N(0) =
1 − δ
ℵ(δ)

G2 (t,N(t)) +
δ

ℵ(δ)Γ(δ)

∫ t

0
G2(τ,N(τ))(t − τ)δ−1dτ, (5.2)
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B(t) − B(0) =
1 − δ
ℵ(δ)

G3 (t,B(t)) +
δ

ℵ(δ)Γ(δ)

∫ t

0
G3(τ,B(τ))(t − τ)δ−1dτ, (5.3)

P(t) − P(0) =
1 − δ
ℵ(δ)

G4 (t,P(t)) +
δ

ℵ(δ)Γ(δ)

∫ t

0
G4(τ,P(τ))(t − τ)δ−1dτ. (5.4)

For a given point t = tm+1, m = 0, 1, 2 . . . , then Eqs (5.1)–(5.4) are written as

C(tm+1) − C(0) =
1 − δ
ℵ(δ)

G1 (tm,C(tm)) +
δ

ℵ(δ)Γ(δ)

∫ tk+1

tk
G1(τ,C(τ))(tm+1 − τ)δ−1dτ,

N(tm+1) − N(0) =
1 − δ
ℵ(δ)

G2 (tm,N(tm)) +
δ

ℵ(δ)Γ(δ)

∫ tk+1

tk
G2(τ,N(τ))(tm+1 − τ)δ−1dτ,

B(tm+1) − B(0) =
1 − δ
ℵ(δ)

G3 (tm,B(tm)) +
δ

ℵ(δ)Γ(δ)

∫ tk+1

tk
G3(τ,B(τ))(tm+1 − τ)δ−1dτ,

P(tm+1) − P(0) =
1 − δ
ℵ(δ)

G4 (tm,P(tm)) +
δ

ℵ(δ)Γ(δ)

∫ tk+1

tk
G4(τ,P(τ))(tm+1 − τ)δ−1dτ.

Also, we have

C(tm+1) − C(0) =
1 − δ
ℵ(δ)

G1 (tm,C(tm)) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

∫ tk+1

tk
G1(τ,C(τ))(tm+1 − τ)δ−1dτ, (5.5)

N(tm+1) − N(0) =
1 − δ
ℵ(δ)

G2 (tm,N(tm)) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

∫ tk+1

tk
G2(τ,N(τ))(tm+1 − τ)δ−1dτ, (5.6)

B(tm+1) − B(0) =
1 − δ
ℵ(δ)

G3 (tm,B(tm)) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

∫ tk+1

tk
G3(τ,B(τ))(tm+1 − τ)δ−1dτ, (5.7)

P(tm+1) − P(0) =
1 − δ
ℵ(δ)

G4 (tm,P(tm)) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

∫ tk+1

tk
G4(τ,P(τ))(tm+1 − τ)δ−1dτ. (5.8)

The function G j(τ, ℘(τ)) can be approximated applying two-step Lagrange polynomial interpolation
in the interval [tk, tk+1] as follows:

Zk(τ) =
τ − tk−1

tk − tk−1
G j(tk, ℘(tk)) −

τ − tk

tk − tk−1
G j(tk−1, ℘(tk−1))

'
G j(tk, ℘(tk))

h
(τ − tk−1) −

G j(tk−1, ℘(tk−1))
h

(τ − tk), j = 1, 2, 3, 4.

Therefore, the previous approximation can be added to Eqs (5.5)–(5.8) to give

Cm+1 = C0 +
1 − δ
ℵ(δ)

G1 (tm,Cm) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

G1(tk,C(tk))
h

∫ tk+1

tk
(τ − tk−1)(tm+1 − τ)δ−1dτ

−
G1(tk−1,C(tk−1))

h

∫ tk+1

tk
(τ − tk)(tm+1 − τ)δ−1dτ,

Nm+1 = N0 +
1 − δ
ℵ(δ)

G2 (tm,Nm) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

G2(tk,N(tk))
h

∫ tk+1

tk
(τ − tk−1)(tm+1 − τ)δ−1dτ
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−
G2(tk−1,N(tk−1))

h

∫ tk+1

tk
(τ − tk)(tm+1 − τ)δ−1dτ,

Bm+1 = B0 +
1 − δ
ℵ(δ)

G3 (tm,Bm) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

G3(tk,B(tk))
h

∫ tk+1

tk
(τ − tk−1)(tm+1 − τ)δ−1dτ

−
G3(tk−1,B(tk−1))

h

∫ tk+1

tk
(τ − tk)(tm+1 − τ)δ−1dτ,

Pm+1 = P0 +
1 − δ
ℵ(δ)

G4 (tm,Pm) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

G4(tk,P(tk))
h

∫ tk+1

tk
(τ − tk−1)(tm+1 − τ)δ−1dτ

−
G4(tk−1,P(tk−1))

h

∫ tk+1

tk
(τ − tk)(tm+1 − τ)δ−1dτ, (5.9)

where

Ψk−1 =

∫ tk+1

tk
(τ − tk−1)(tm+1 − τ)δ−1dτ

=
hδ+1

δ(δ + 1)

[
(m + 1 − k)δ (m − k + 2 + δ) − (m − k)δ (m − k + 2 + 2δ)

]
,

and

Ψk =

∫ tk+1

tk
(τ − tk)(tm+1 − τ)δ−1dτ

=
hδ+1

δ(δ + 1)

[
(m + 1 − k)δ+1

− (m − k)δ (m − k + 1 + δ)
]
.

Substituting the above integrals into Eqs (5.5)–(5.8), we have the following iterative schemes for the
model equations:

Cm+1 =C0 +
1 − δ
ℵ(δ)

G1 (tm,Cm) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

[
hδG1(tk,Ck)

Γ(δ + 2)
((m + 1 − k)δ (m − k + 2 + δ) − (m − k)δ

(m − k + 2 + 2δ)) −
hδG1(tk−1,Ck−1)

Γ(δ + 2)

(
(m + 1 − k)δ+1

− (m − k)δ (m − k + 1 + δ)
) ]
,

Nm+1 =N0 +
1 − δ
ℵ(δ)

G2 (tm,Nm) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

[
hδG2(tk,Nk)

Γ(δ + 2)
((m + 1 − k)δ (m − k + 2 + δ) − (m − k)δ

(m − k + 2 + 2δ)) −
hδG2(tk−1,Nk−1)

Γ(δ + 2)

(
(m + 1 − k)δ+1

− (m − k)δ (m − k + 1 + δ)
) ]
,

Bm+1 =B0 +
1 − δ
ℵ(δ)

G3 (tm,Bm) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

[
hδG3(tk,Bk)

Γ(δ + 2)
((m + 1 − k)δ (m − k + 2 + δ) − (m − k)δ

(m − k + 2 + 2δ)) −
hδG3(tk−1,Bk−1)

Γ(δ + 2)

(
(m + 1 − k)δ+1

− (m − k)δ (m − k + 1 + δ)
) ]
,

AIMS Mathematics Volume 9, Issue 8, 22712–22742.



22733

Pm+1 =P0 +
1 − δ
ℵ(δ)

G4 (tm,Pm) +
δ

ℵ(δ)Γ(δ)

m∑
k=0

[
hδG4(tk,Pk)

Γ(δ + 2)
((m + 1 − k)δ (m − k + 2 + δ) − (m − k)δ

(m − k + 2 + 2δ)) −
hδG4(tk−1,Pk−1)

Γ(δ + 2)

(
(m + 1 − k)δ+1

− (m − k)δ (m − k + 1 + δ)
) ]
.

Figures 1–4 depict the behavior of all the compartments within the system when the fractional
parameter is changed from 0.80 to 1.00. This study sheds light on the advantages of applying the ABC
fractional derivative operator by demonstrating the fractional parameter’s substantial influence on the
dynamics of the system.

Figure 1. Behavior of atmospheric carbon dioxide C(t).

Figure 2. Behavior of human population N(t).
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Figure 3. Behavior of forest biomass B(t).

Figure 4. Behavior of forest management programs P(t).

5.2. Simulations

Numerical simulations are carried out for the parameter values listed in Table 2 to examine the
consequences of forest management policies and deforestation on the dynamics of atmospheric CO2.
Thus, we set the natural CO2 emission rate, Q = 1 ppm month−1. Since the population’s carrying
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capacity is L = 1000 persons, we set the population growth rate coefficient induced by forest biomass,
ξ, to be 0.0000002 (ton month)−1. For the simulations, the following initial conditions are considered:
C(0) = 300, N(0) = 500, B(0) = 500, and P(0) = 100 by setting φ = 0.0003 (person month)−1,
µ = 0.2 month−1, and θ = 0.00001 (ppm month)−1.

Figure 1 shows that there is a discernible shift in the response of CO2 concentration when the
fractional parameter increases from 0.80 to 1.00. The behavior of atmospheric carbon dioxide is
reduced with smaller fractional levels. It is evident from Figure 2 that higher values in the fractional
parameter lead to a rise in the human population. Figure 3 illustrates an inverse connection between a
fractional parameter and the human population. There is a noticeable tendency at lower fractional
orders that progressively decreases as the parameter rises. This implies that more complicated,
real-world dynamics that are not as well characterized by integer-order derivatives are captured by
fractional-order derivatives. Figure 4 illustrates how fractional parameters affect forest management
initiatives and exhibit behavior that is comparable to Figure 1. The behavior is more consistent with
integer-order derivatives as the parameter gets closer to 1.00, indicating that it is converging to the right
steady-state [46]. As seen in these diagrams, the fractional derivative has a significant impact on the
concentration of CO2 throughout time. The simulations performed using fractional derivatives produce
the reported gap due to the memory effect, which is missing in the classic integer-order derivative.
Future CO2 dynamics will be influenced by memory effects on previous data, making it easier to
control them.

Figures 5 and 6 show how deforestation and forest management strategies affect atmospheric CO2

dynamics. These statistics emphasize how important it is to implement effective mitigation techniques
and switch to low-carbon energy sources to lower atmospheric CO2 levels.

The relationship between deforestation activities and rising CO2 concentrations in the atmosphere
is seen in Figure 5. The findings show that regions with considerable deforestation have greater CO2

concentrations. This is explained by the fact that less forest cover means less carbon being sequestered.
As essential carbon sinks, forests take up carbon dioxide from the atmosphere. Deforestation, which
removes trees from the forest, causes the atmosphere to re-release stored carbon, intensifying the
greenhouse effect and accelerating global warming. The results of using different forest management
strategies targeted at reducing CO2 emissions are shown in Figure 6. The picture shows how CO2 levels
gradually drop over time in areas with strict forest management strategies. Reforestation, afforestation,
and sustainable logging techniques are examples of effective policies that guarantee the maintenance
and improvement of forest carbon sinks. By improving tree’s capacity to store carbon, these methods
can lower the atmospheric concentration of CO2 globally.
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Figure 5. Effect of deforestation rate on the concentration of carbon dioxide C(t) and forest
biomass B(t), setting δ = 0.90.
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Figure 6. Effect of forest management measures on the concentration of carbon dioxide C(t)
and forest biomass B(t), setting δ = 0.90.

6. Conclusions

The present study developed a fractional-order model to analyze the dynamics of novel atmospheric
CO2 gas through forest management programs. The Atangana-Baleanu derivative operator and
generalized Mittag-Leffler function were employed to develop this novel fractional model. Carbon
dioxide, the leading greenhouse gas, was mitigated in the atmosphere using sustainable forest
management. Our study aimed to examine the memory effect and the impact of forest management
initiatives on stabilizing elevated CO2 levels in the atmosphere. The existence and uniqueness of
the solution for the proposed model were proven using theorems. Steady states were computed and
investigated for stability analysis. The equilibrium point E∗ of the model is locally and globally
asymptotically stable in the region Ω using the Lyapunov function theory. The Atangana-Toufik
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scheme was utilized to find the approximate solution to the proposed model. The results obtained are
represented graphically and are consistent with the system. Simulations were conducted for different
values of fractional order δ, revealing that the fractional order significantly impacts the concentration
of CO2. Analysis of deforestation and forest management programs indicates, that to enhance forest
cover and reduce atmospheric CO2 levels, it is more advantageous to implement forest management
strategies that reduce the rate of deforestation and increase the growth rate of forest biomass at
low implementation costs. A constraint of this research is the assumption of uniformity in forest
management methodologies, which does not accurately represent actual diversity in the field. In the
future, we will take into account different forest kinds and management techniques. We will also add
climate change aspects to the model, which might improve its forecasting power.
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