We concern with the extinction behavior of the solution for a parabolic $ p $-Laplacian equation with gradient source and singular potential. By energy estimate approach, Hardy-Littlewood-Sobolev inequality, a series of ordinary differential inequalities, and super-solution and sub-solution methods, we obtain the conditions on the occurrence of the extinction phenomenon of the weak solution.
Citation: Dengming Liu, Luo Yang. Extinction behavior for a parabolic $ p $-Laplacian equation with gradient source and singular potential[J]. AIMS Mathematics, 2022, 7(1): 915-924. doi: 10.3934/math.2022054
We concern with the extinction behavior of the solution for a parabolic $ p $-Laplacian equation with gradient source and singular potential. By energy estimate approach, Hardy-Littlewood-Sobolev inequality, a series of ordinary differential inequalities, and super-solution and sub-solution methods, we obtain the conditions on the occurrence of the extinction phenomenon of the weak solution.
[1] | M. Badiale, G. Tarantello, A Sobolev-hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Rational Mech. Anal., 163 (2002), 259–293. doi: 10.1007/s002050200201. doi: 10.1007/s002050200201 |
[2] | Z. Chaouai, A. E. Hachimi, Qualitative properties of weak solutions for $p$-Laplacian equations with nonlocal source and gradient absorption, B. Korean Math. Soc., 57 (2020), 1003–1031. doi: 10.4134/BKMS.b190720. doi: 10.4134/BKMS.b190720 |
[3] | X. M. Deng, J. Zhou, Global existence, extinction, and non-extinction of solutions to a fast diffusion $p$-Laplcae evolution equation with singular potential, J. Dyn. Control Syst., 26 (2020), 509–523. doi: 10.1007/s10883-019-09462-5. doi: 10.1007/s10883-019-09462-5 |
[4] | J. S. Guo, B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Cont. Dyn. Syst., 20 (2008), 927–937. doi: 10.3934/dcds.2008.20.927. doi: 10.3934/dcds.2008.20.927 |
[5] | R. G. Iagar, Ph. Laurençot, Positivity, decay, and extinction for a singular diffusion equation with gradient absorption, J. Funct. Anal., 262 (2012), 3186–3239. doi: 10.1016/j.jfa.2012.01.013. doi: 10.1016/j.jfa.2012.01.013 |
[6] | D. M. Liu, C. L. Mu, Cauchy problem for a doubly degenerate parabolic equation with inhomogeneous source and measure data, Differ. Integral Equ., 27 (2014), 1001–1012. |
[7] | D. M. Liu, C. L. Mu, Extinction for a quasilinear parabolic equation with a nonlinear gradient source, Taiwan. J. Math., 18 (2014), 1329–1343. doi: 10.11650/tjm.18.2014.3863. doi: 10.11650/tjm.18.2014.3863 |
[8] | D. M. Liu, C. L. Mu, Extinction for a quasilinear parabolic equation with a nonlinear gradient source and absorption, J. Appl. Anal. Comput., 5 (2015), 114–137. doi: 10.11948/2015010. doi: 10.11948/2015010 |
[9] | D. M. Liu, C. L. Mu, Critical extinction exponent for a doubly degenerate non-divergent parabolic equation with a gradient source, Appl. Anal., 97 (2018), 2132–2141. doi: 10.1080/00036811.2017.1359557. doi: 10.1080/00036811.2017.1359557 |
[10] | D. M. Liu, C. Y. Liu, Global existence and extinction singularity for a fast diffusive polytropic filtration equation with variable coefficient, Math. Probl. Eng., 2021 (2021), 5577777. doi: 10.1155/2021/5577777. doi: 10.1155/2021/5577777 |
[11] | D. M. Liu, L. Yang, Extinction phenomenon and decay estimate for a quasilinear parabolic equation with a nonlinear source, Adv. Math. Phys., 2021 (2021), 5569043. doi: 10.1155/2021/5569043. doi: 10.1155/2021/5569043 |
[12] | W. J. Liu, B. Wu, A note on extinction for fast diffusive $p$-Laplacian with sources, Math. Method. Appl. Sci., 31 (2008), 1383–1386. doi: 10.1002/mma.976. doi: 10.1002/mma.976 |
[13] | P. Quittner, P. Souplet, Superlinear parabolic problems: Blow-up, global existence and steady states, Springer Science & Business Media, 2007. doi: 10.1007/978-3-7643-8442-5. |
[14] | P. Souplet, J. L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem, Discrete Cont. Dyn. Syst., 14 (2006), 221–234. doi: 10.3934/dcds.2006.14.221. doi: 10.3934/dcds.2006.14.221 |
[15] | Z. Tan, Non-Newton filtration equation with special medium void, Acta Math. Sci., 24 (2004), 118–128. doi: 10.1016/S0252-9602(17)30367-3. doi: 10.1016/S0252-9602(17)30367-3 |
[16] | Y. Tian, C. L. Mu, Extinction and non-extinction for a $p$-Laplacian equation with nonlinear source, Nonlinear Anal., 69 (2008), 2422–2431. doi: 10.1016/j.na.2007.08.021. doi: 10.1016/j.na.2007.08.021 |
[17] | J. L. Vázquez, The porous medium equation: Mathematical theory, New York: Oxford University Press, 2007. doi: 10.1093/acprof:oso/9780198569039.001.0001. |
[18] | M. X. Wang, Nonlinear elliptic equations, Beijing: Science Press, 2010. |
[19] | Z. Q. Wu, J. N. Zhao, J. X. Yin, H. L. Li, Nonlinear diffusion equations, New Jersey: World Scientific Publishing, 2001. doi: 10.1142/9789812799791. |
[20] | Z. C. Zhang, Gradient blowup rate for a viscous Hamilton-Jacobi equation with degenerate diffusion, Arch. Math., 100 (2013), 361–367. doi: 10.1007/s00013-013-0505-4. doi: 10.1007/s00013-013-0505-4 |
[21] | Z. C. Zhang, Y. Li, Blowup and existence of global solutions to nonlinear parabolic equations with degenerate diffusion, Electron. J. Differ. Eq., 2013 (2013), 264. |
[22] | J. Zhou, A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void, Appl. Math. Lett., 30 (2014), 6–11. doi: 10.1016/j.aml.2013.12.003. doi: 10.1016/j.aml.2013.12.003 |
[23] | J. Zhou, Global existence and blow-up of solutions for a non-Newton polytropic filtration system with special volumetric moisture content, Comput. Math. Appl., 71 (2016), 1163–1172. doi: 10.1016/j.camwa.2016.01.029. doi: 10.1016/j.camwa.2016.01.029 |