In this paper, we prove Hamilton type gradient estimates for positive solutions to a general type of nonlinear parabolic equation concerning $ V $-Laplacian:
$ (\Delta_{V}-q(x, t)-\partial_{t})u(x, t) = A(u(x, t)) $
on complete Riemannian manifold (with fixed metric). When $ V = 0 $ and the metric evolves under the geometric flow, we also derive some Hamilton type gradient estimates. Finally, as applications, we obtain some Liouville type theorems of some specific parabolic equations.
Citation: Fanqi Zeng. Hamilton type gradient estimates for a general type of nonlinear parabolic equations on Riemannian manifolds[J]. AIMS Mathematics, 2021, 6(10): 10506-10522. doi: 10.3934/math.2021610
In this paper, we prove Hamilton type gradient estimates for positive solutions to a general type of nonlinear parabolic equation concerning $ V $-Laplacian:
$ (\Delta_{V}-q(x, t)-\partial_{t})u(x, t) = A(u(x, t)) $
on complete Riemannian manifold (with fixed metric). When $ V = 0 $ and the metric evolves under the geometric flow, we also derive some Hamilton type gradient estimates. Finally, as applications, we obtain some Liouville type theorems of some specific parabolic equations.
[1] | A. Abolarinwa, Harnack estimates for heat equations with potentials on evolving manifolds, Mediterr. J. Math., 13 (2016), 3185–3204. doi: 10.1007/s00009-016-0679-7 |
[2] | M. Bailesteanu, X. D. Cao, A. Pulemotov, Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal., 258 (2010), 3517–3542. doi: 10.1016/j.jfa.2009.12.003 |
[3] | S. Y. Cheng, S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Commun. Pur. Appl. Math., 28 (1975), 333–354. doi: 10.1002/cpa.3160280303 |
[4] | Q. Chen, H. B. Qiu, Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the $V$-Laplacian, Ann. Glob. Anal. Geom., 50 (2016), 47–64. doi: 10.1007/s10455-016-9501-9 |
[5] | Q. Chen, J. Jost, G. F. Wang, A maximum principle for generalizations of harmonic maps in Hermitian, affine, Weyl, and Finsler geometry, J. Geom. Anal., 25 (2015), 2407–2426. doi: 10.1007/s12220-014-9519-9 |
[6] | Q. Chen, J. Jost, H. B. Qiu, Existence and Liouville theorems for $V$-harmonic maps from complete manifolds, Ann. Glob. Anal. Geom., 42 (2012), 565–584. doi: 10.1007/s10455-012-9327-z |
[7] | Q. Chen, G. W. Zhao, Li-Yau type and Souplet-Zhang type gradient estimates of a parabolic equation for the $V$-Laplacian, J. Math. Anal. Appl., 463 (2018), 744–759. doi: 10.1016/j.jmaa.2018.03.049 |
[8] | E. Davies, Heat kernels and spectral theory, Cambridge: Cambridge University Press, 1989. |
[9] | M. Grayson, R. S. Hamilton, The formation of singularities in the harmonic map heat flow, Commun. Anal. Geom., 4 (1996), 525–546. doi: 10.4310/CAG.1996.v4.n4.a1 |
[10] | R. Hamilton, A matrix Harnack estimate for the heat equation, Commun. Anal. Geom., 1 (1993), 113–126. doi: 10.4310/CAG.1993.v1.n1.a6 |
[11] | G. Y. Huang, Z. J. Huang, H. Z. Li, Gradient estimates for the porous medium equations on Riemannian manifolds, J. Geom. Anal., 23 (2013), 1851–1875. doi: 10.1007/s12220-012-9310-8 |
[12] | G. Y. Huang, Z. J. Huang, H. Z. Li, Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Ann. Glob. Anal. Geom., 43 (2013), 209–232. doi: 10.1007/s10455-012-9342-0 |
[13] | G. Y. Huang, Z. Li, Liouville type theorems of a nonlinear elliptic equation for the $V$-Laplacian, Anal. Math. Phys., 8 (2018), 123–134. doi: 10.1007/s13324-017-0168-6 |
[14] | X. R. Jiang, Gradient estimate for a nonlinear heat equation on Riemannian manifolds, Proc. Amer. Math. Soc., 144 (2016), 3635–3642. doi: 10.1090/proc/12995 |
[15] | B. Kotschwar, Hamilton's gradient estimate for a nonlinear parabolic equation on Riemannian manifolds, Proc. Amer. Math. Soc., 135 (2007), 3013–3019. doi: 10.1090/S0002-9939-07-08837-5 |
[16] | P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201. doi: 10.1007/BF02399203 |
[17] | P. Li, Lecture notes on geometric analysis, Korea: Seoul National University, 1993. |
[18] | J. Y. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., 100 (1991), 233–256. doi: 10.1016/0022-1236(91)90110-Q |
[19] | J. F. Li, X. J. Xu, Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation, Adv. Math., 226 (2011), 4456–4491. doi: 10.1016/j.aim.2010.12.009 |
[20] | Y. Li, Li-Yau-Hamilton estimates and Bakry-Émery-Ricci curvature, Nonlinear Anal.-Theor., 113 (2015), 1–32. doi: 10.1016/j.na.2014.09.014 |
[21] | J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow, Pac. J. Math., 253 (2011), 489–510. doi: 10.2140/pjm.2011.253.489 |
[22] | P. Souplet, Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, B. Lond. Math. Soc., 38 (2006), 1045–1053. doi: 10.1112/S0024609306018947 |
[23] | J. Y. Wu, Elliptic gradient estimates for a weighted heat equation and applications, Math. Z., 280 (2015), 451–468. doi: 10.1007/s00209-015-1432-9 |
[24] | C. J. Yu, F. F. Zhao, Sharp Li-Yau-type gradient estimates on hyperbolic spaces, J. Geom. Anal., 30 (2020), 54–68. doi: 10.1007/s12220-018-00133-8 |
[25] | S. T. Yau, Harmonic functions on complete Riemannian manifolds, Commun. Pur. Appl. Math., 28 (1975), 201–228. doi: 10.1002/cpa.3160280203 |
[26] | F. Yang, L. D. Zhang, Local elliptic gradient estimates for a nonlinear parabolic equation under the Ricci flow, J. Math. Anal. Appl., 477 (2019), 1182–1194. doi: 10.1016/j.jmaa.2019.05.006 |
[27] | F. Q. Zeng, Gradient estimates of a nonlinear elliptic equation for the $V$-Laplacian, B. Korean Math. Soc., 56 (2019), 853–865. |
[28] | F. Q. Zeng, Q. He, Gradient estimates for a nonlinear heat equation under the Finsler-Ricci flow, Math. Slovaca, 69 (2019), 409–424. doi: 10.1515/ms-2017-0233 |
[29] | L. D. Zhang, Gradient estimates and Harnack inequalities for a Yamabe-type parabolic equation under the Yamabe flow, Sci. China Math., 64 (2021), 1201–1230. doi: 10.1007/s11425-019-1596-3 |
[30] | Q. S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math. Res. Notices, 2006 (2006), O92314. |
[31] | G. W. Zhao, Gradient estimates and Harnack inequalities of a parabolic equation under geometric flow, J. Math. Anal. Appl., 483 (2020), 123631. doi: 10.1016/j.jmaa.2019.123631 |
[32] | G. W. Zhao, Gradient estimates of a nonlinear elliptic equation for the $V$-Laplacian, Arch. Math., 114 (2020), 457–469. doi: 10.1007/s00013-019-01419-1 |