As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.
Citation: Risong Li, Tianxiu Lu, Xiaofang Yang, Yongxi Jiang. Sensitivity for topologically double ergodic dynamical systems[J]. AIMS Mathematics, 2021, 6(10): 10495-10505. doi: 10.3934/math.2021609
As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.
[1] |
J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, On Devaney's definition of chaos, Am. Math. Mon., 99 (1992), 332–334. doi: 10.1080/00029890.1992.11995856
![]() |
[2] |
E. Glasner, B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067–1075. doi: 10.1088/0951-7715/6/6/014
![]() |
[3] |
C. Abraham, G. Biau, B. Cadre, Chaotic properties of mapping on a probbility space, J. Math. Anal. Appl., 266 (2002), 420–431. doi: 10.1006/jmaa.2001.7754
![]() |
[4] |
L. He, X. Yan, L. Wang, Weak-mixing implies sensitive dependence, J. Math. Anal. Appl., 299 (2004), 300–304. doi: 10.1016/j.jmaa.2004.06.066
![]() |
[5] |
R. Li, T. Lu, A. Waseem, Sensitivity and transitivity of systems satisfying the large deviations theorem in a sequence, Int. J. Bifurcation Chaos., 29 (2019), 1950125. doi: 10.1142/S0218127419501256
![]() |
[6] |
T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115–2126. doi: 10.1088/0951-7715/20/9/006
![]() |
[7] |
W. Huang, J. Li, X. Ye, X. Zhou, Positive topological entropy and $\triangle$-weakly mixing sets, Adv. Math., 306 (2017), 653–683. doi: 10.1016/j.aim.2016.10.029
![]() |
[8] |
X. Wu, S. D. Liang, X. Ma, T. X. Lu, The mean sensitivity and mean equicontinuity in uniform spaces, Int. J. Bifurcation Chaos., 30 (2020), 2050122. doi: 10.1142/S0218127420501229
![]() |
[9] |
H. Liu, E. Shi, G. Liao, Sensitivity of set-valuted discrete systems, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 6122–6125. doi: 10.1016/j.na.2009.06.003
![]() |
[10] | S. A. Eisa, P. Stechlinski, Sensitivity analysis of nonsmooth power control systems with an example of wind turbines, Commun. Nonlinear Sci. Numer. Simul., 95 (2020), 105633. |
[11] | G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor, Sensor. Actuat. B: Chem., 80 (2001), 125–131. |
[12] | M. A. Midoun, X. Wang, M. Z. Talhaoui, A sensitive dynamic mutual encryption system based on a new 1D chaotic map, Opt. Lasers Eng., 139 (2020), 106485. |
[13] |
C. Caginalp, A dynamical systems approach to cryptocurrency stability, AIMS Math., 4 (2019), 1065–1077. doi: 10.3934/math.2019.4.1065
![]() |
[14] | B. Chaboki, A. Shakiba, An image encryption algorithm with a novel chaotic coupled mapped lattice and chaotic image scrambling technique, J. Electr. Eng. Comput. Sci., 21 (2021), 1103–1124. |
[15] | G. Beer, Topologies on closed and closed convex sets, Kluwer Academic Publishers, 1993. |
[16] |
E. Michael, Topologies on spaces of subsets, Trans. Am. Math. Soc., 71 (1951), 152–182. doi: 10.1090/S0002-9947-1951-0042109-4
![]() |
[17] |
J. Banks, Chaos for induced hyperspace maps, Chaos, Solitons Fractals, 25 (2005), 681–685. doi: 10.1016/j.chaos.2004.11.089
![]() |
[18] |
R. Gu, Kato's chaos in set valued discrete systems, Chaos, Solitons Fractals, 31 (2007), 765–771. doi: 10.1016/j.chaos.2005.10.041
![]() |
[19] |
Z. Yin, Y. Chen, Q. Xiang, Dynamics of operator-weighted shifts, Int. J. Bifurcation Chaos, 29 (2019), 1950110. doi: 10.1142/S0218127419501104
![]() |
[20] |
H. Wang, F. C. Lei, L. D. Wang, DC3 and Li-Yorke chaos, Appl. Math. Lett., 31 (2014), 29–33. doi: 10.1016/j.aml.2014.01.004
![]() |
[21] |
R. Hunter, B. E. Raines, Omega chaos and the specification property, J. Math. Anal. Appl., 448 (2017), 908–913. doi: 10.1016/j.jmaa.2016.11.037
![]() |
[22] |
D. Kwietniak, P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos, Solitons Fractals, 33 (2007), 76–86. doi: 10.1016/j.chaos.2005.12.033
![]() |
[23] |
Y. Wang, G. Wei, W. H. Campbell, Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems, Topol. Appl., 156 (2009), 803–811. doi: 10.1016/j.topol.2008.10.014
![]() |
[24] | R. Li, Y. Shi, Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces, Abstr. Appl. Anal., (2014), 769523. |
[25] | R. Yang, Topological ergodicity and topological double ergodicity, Acta Math. Sin., 46 (2003), 555–560. |
[26] | R. S. Li, Topological ergodicity, transitivity and chaos of the set-valued maps, J. Nanjing Univ. Math. Biquarterly, 25 (2008), 114–121. |
[27] |
R. S. Li, A note on stronger forms of sensitivity for dynamical systems, Chaos, Solitons Fractals, 45 (2012), 753–758. doi: 10.1016/j.chaos.2012.02.003
![]() |
[28] | P. Walter, An introduction to ergodic theory, New York: Spring-Verlag, 1982. |
[29] |
W. Bauer, K. Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math., 79 (1975), 81–92. doi: 10.1007/BF01585664
![]() |
[30] |
V. Strassen, The existence of probability measures with given marginals, Ann. Math. Stat., 36 (1965), 423–439. doi: 10.1214/aoms/1177700153
![]() |
[31] | K. R. Parthasarathy, Probability measures on metric spaces, AMS Chelsea Publishing, 1967. |
[32] |
R. Li, A note on shadowing with chain transitivity, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2815–2823. doi: 10.1016/j.cnsns.2011.11.015
![]() |
[33] |
X. Wu, R. Li, Y. Zhang, The multi-$\mathcal{F}$-sensitivity and $(\mathcal{F}_{1}, \mathcal{F}_{2})$-sensitivity for product systems, J. Nonlinear Sci. Appl., 9 (2016), 4364–4370. doi: 10.22436/jnsa.009.06.76
![]() |
[34] |
X. Wu, J. Wang, G. Chen, $\mathcal{F}$-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., 429 (2015), 16–26. doi: 10.1016/j.jmaa.2015.04.009
![]() |