Research article Special Issues

Sensitivity analysis and design optimization of 3T rotating thermoelastic structures using IGBEM

  • Received: 20 June 2022 Revised: 08 August 2022 Accepted: 16 August 2022 Published: 08 September 2022
  • MSC : 35Qxx, 65Zxx

  • In this study, the isogeometric boundary element method (IGBEM) based on non-uniform rational basis spline (NURBS) is used to perform shape design sensitivity and optimization of rotating three-temperature (3T) thermoelastic structures. During the optimization process, the shape design sensitivity within the IGBEM formulation was derived to include precise geometries and greater continuities. It was found through the application of the IGBEM that the shape design velocity has a significant effect on accuracy of the obtained shape design sensitivity. As a result, the developed shape design sensitivity analysis (SDSA) technique based on the considered IGBEM formulation outperforms the computational solution based on the traditional SDSA method. The isogeometric shape sensitivity and optimal design for a complicated three-temperature thermoelastic problem in rotating structures are investigated. The impact of rotation on the thermal stress sensitivity, optimal three-temperature, optimal displacement and optimal three temperature thermal stress distributions are established. It is shown that the SDSA derived using IGBEM is efficient and applicable for most three-temperature thermoelastic optimization problems.

    Citation: Mohamed Abdelsabour Fahmy, Mohammed O. Alsulami, Ahmed E. Abouelregal. Sensitivity analysis and design optimization of 3T rotating thermoelastic structures using IGBEM[J]. AIMS Mathematics, 2022, 7(11): 19902-19921. doi: 10.3934/math.20221090

    Related Papers:

  • In this study, the isogeometric boundary element method (IGBEM) based on non-uniform rational basis spline (NURBS) is used to perform shape design sensitivity and optimization of rotating three-temperature (3T) thermoelastic structures. During the optimization process, the shape design sensitivity within the IGBEM formulation was derived to include precise geometries and greater continuities. It was found through the application of the IGBEM that the shape design velocity has a significant effect on accuracy of the obtained shape design sensitivity. As a result, the developed shape design sensitivity analysis (SDSA) technique based on the considered IGBEM formulation outperforms the computational solution based on the traditional SDSA method. The isogeometric shape sensitivity and optimal design for a complicated three-temperature thermoelastic problem in rotating structures are investigated. The impact of rotation on the thermal stress sensitivity, optimal three-temperature, optimal displacement and optimal three temperature thermal stress distributions are established. It is shown that the SDSA derived using IGBEM is efficient and applicable for most three-temperature thermoelastic optimization problems.



    加载中


    [1] Y. Tanigawa, Some basic thermoelastic problems for nonhomogeneous structural materials, Appl. Mech. Rev., 48 (1995), 287–300. https://doi.org/10.1115/1.3005103 doi: 10.1115/1.3005103
    [2] T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194 (2005), 4135–4195. https://doi.org/10.1016/j.cma.2004.10.008 doi: 10.1016/j.cma.2004.10.008
    [3] Y. J. Wang, D. J. Benson, Multi-patch nonsingular isogeometric boundary element analysis in 3D, Comput. Methods Appl. Mech. Eng., 293 (2015), 71–91. https://doi.org/10.1016/j.cma.2015.03.016 doi: 10.1016/j.cma.2015.03.016
    [4] Y. Bazilevs, V. M. Calo, Y. Zhang, T. J. Hughes, Isogeometric fluid–structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38 (2006), 310–322. https://doi.org/10.1007/s00466-006-0084-3 doi: 10.1007/s00466-006-0084-3
    [5] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, T. J. R. Hughes, Robustness of isogeometric structural discretizations under severe mesh distortion, Comput. Methods Appl. Mech. Eng., 199 (2010), 357–373. https://doi.org/10.1016/j.cma.2009.01.022 doi: 10.1016/j.cma.2009.01.022
    [6] S. Cho, S. H. Ha, Isogeometric shape design optimization: Exact geometry and enhanced sensitivity, Struct. Multidisc. Optim., 38 (2009), 53–70. https://doi.org/10.1007/s00158-008-0266-z doi: 10.1007/s00158-008-0266-z
    [7] C. Wang, T. Yu, G. Shao, T. T. Nguyen, T. Q. Bui, Shape optimization of structures with cutouts by an efficient approach based on XIGA and chaotic particle swarm optimization, Eur. J. Mech.-A/Solids, 74 (2019), 176–187. https://doi.org/10.1016/j.euromechsol.2018.11.009 doi: 10.1016/j.euromechsol.2018.11.009
    [8] M. Dittmann, M. Franke, I. Temizer, C. Hesch, Isogeometric analysis and thermo- mechanical mortar contact problems, Comput. Methods Appl. Mech. Eng., 274 (2014), 192–212. https://doi.org/10.1016/j.cma.2014.02.012 doi: 10.1016/j.cma.2014.02.012
    [9] A. H. Taheri, B. Hassani, N. Z. Moghaddam, Thermo-elastic optimization of material distribution of functionally graded structures by an isogeometrical approach, Int. J. Solids Struct., 51 (2014), 416–429. https://doi.org/10.1016/j.ijsolstr.2013.10.014 doi: 10.1016/j.ijsolstr.2013.10.014
    [10] C. Wang, T. Yu, J. L. Curiel-Sosa, N. Xie, T. Q. Bui, Adaptive chaotic particle swarm algorithm for isogeometric multi-objective size optimization of FG plates, Struct. Multidisc. Optim., 60 (2019), 757–778. https://doi.org/10.1007/s00158-019-02238-2 doi: 10.1007/s00158-019-02238-2
    [11] A. H. D. Cheng, D. T. Cheng, Heritage and early history of the boundary element method, Eng. Anal. Bound. Elem., 29 (2005), 268–302. https://doi.org/10.1016/j.enganabound.2004.12.001 doi: 10.1016/j.enganabound.2004.12.001
    [12] L. Coox, O. Atak, D. Vandepitte, W. Desmet, An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains, Comput. Methods Appl. Mech. Eng., 316 (2017), 186–208. https://doi.org/10.1016/j.cma.2016.05.039 doi: 10.1016/j.cma.2016.05.039
    [13] M. A. Fahmy, A novel BEM for modeling and simulation of 3T nonlinear generalized anisotropic micropolar-thermoelasticity theory with memory dependent derivative, CMES-Comput. Model. Eng. Sci., 126 (2021), 175–199. https://doi.org/10.32604/cmes.2021.012218 doi: 10.32604/cmes.2021.012218
    [14] M. A. Fahmy, A new boundary element formulation for modeling and simulation of three-temperature distributions in carbon nanotube fiber reinforced composites with inclusions, Math. Methods Appl. Sci., 1 (2021), 1–16. https://doi.org/10.1002/mma.7312 doi: 10.1002/mma.7312
    [15] M. A. Fahmy, Boundary element algorithm for nonlinear modeling and simulation of three temperature anisotropic generalized micropolar piezothermoelasticity with memory-dependent derivative, Int. J. Appl. Mech., 12 (2020), 2050027. https://doi.org/10.1142/S1758825120500271 doi: 10.1142/S1758825120500271
    [16] M. A. Fahmy, S. Shaw, S. Mondal, A. E. Abouelregal, K. Lotfy, I. A. Kudinov, et al., Boundary element modeling for simulation and optimization of three-temperature anisotropic micropolar magneto-thermoviscoelastic problems in porous smart structures using NURBS and genetic algorithm, Int. J. Thermophys., 42 (2021), 29. https://doi.org/10.1007/s10765-020-02777-7 doi: 10.1007/s10765-020-02777-7
    [17] M. A. Fahmy, Boundary element modeling of 3T nonlinear transient magneto-thermoviscoelastic wave propagation problems in anisotropic circular cylindrical shells, Compos. Struct., 277 (2021), 114655. https://doi.org/10.1016/j.compstruct.2021.114655 doi: 10.1016/j.compstruct.2021.114655
    [18] M. A. Fahmy, A computational model for nonlinear biomechanics problems of FGA biological soft tissues, Appl. Sci., 12 (2022), 7174. https://doi.org/10.3390/app12147174 doi: 10.3390/app12147174
    [19] M. A. Fahmy, M. O. Alsulami, Boundary element and sensitivity analysis of anisotropic thermoelastic metal and alloy discs with holes, Materials, 15 (2022), 1828. https://doi.org/10.3390/ma15051828 doi: 10.3390/ma15051828
    [20] M. A. Fahmy, 3D boundary element model for ultrasonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates, Fractal Fract., 6 (2022), 247. https://doi.org/10.3390/fractalfract6050247 doi: 10.3390/fractalfract6050247
    [21] M. A. Fahmy, A new BEM modeling algorithm for size-dependent thermopiezoelectric problems in smart nanostructures, CMC, 69 (2021), 931–944. https://doi.org/10.32604/cmc.2021.018191 doi: 10.32604/cmc.2021.018191
    [22] M. A. Fahmy, Implicit–explicit time integration DRBEM for generalized magneto-thermoelasticity problems of rotating anisotropic viscoelastic functionally graded solids, Eng. Anal. Bound. Elem., 37 (2013), 107–115. https://doi.org/10.1016/j.enganabound.2012.08.002 doi: 10.1016/j.enganabound.2012.08.002
    [23] M. A. Fahmy, Boundary element modeling of fractional nonlinear generalized photothermal stress wave propagation problems in FG anisotropic smart semiconductors, Eng. Anal. Bound. Elem., 134 (2022), 665–679. https://doi.org/10.1016/j.enganabound.2021.11.009 doi: 10.1016/j.enganabound.2021.11.009
    [24] M. Yoon, S. Cho, Isogeometric shape design sensitivity analysis of elasticity problems using boundary integral equations, Eng. Anal. Bound. Elem., 66 (2016), 119–128. https://doi.org/10.1016/j.enganabound.2016.01.010 doi: 10.1016/j.enganabound.2016.01.010
    [25] W. A. Wall, M. A. Frenzel, C. Cyron, Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Eng., 197 (2008), 2976–2988. https://doi.org/10.1016/j.cma.2008.01.025 doi: 10.1016/j.cma.2008.01.025
    [26] M. Yoon, M. J. Choi, S. Cho, Isogeometric configuration design optimization of heat conduction problems using boundary integral equation, Int. J. Heat Mass Tran., 89 (2015), 937–949. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.112 doi: 10.1016/j.ijheatmasstransfer.2015.05.112
    [27] B. Chen, L. Tong, Thermomechanically coupled sensitivity analysis and design optimization of functionally graded materials, Comput. Methods Appl. Mech. Eng., 194 (2005), 1891–1911. https://doi.org/10.1016/j.cma.2004.07.005 doi: 10.1016/j.cma.2004.07.005
    [28] K. Dems, Z. Mroz, Variational approach to sensitivity analysis in thermoelasticity, J. Therm. Stresses, 10 (1987), 283–306. https://doi.org/10.1080/01495738708927014 doi: 10.1080/01495738708927014
    [29] D. A. Tortorelli, G. Subramani, S. C. Y. Lu, R. B. Haber, Sensitivity analysis for coupled thermoelastic systems, Int. J. Solids Struct., 27 (1991), 1477–1497. https://doi.org/10.1016/0020-7683(91)90073-O doi: 10.1016/0020-7683(91)90073-O
    [30] G. J. W. Hou, J. S. Sheen, C. H. Chuang, Shape-sensitivity analysis and design optimization of linear, thermoelastic solids, AIAA J., 30 (1992), 528–537. https://doi.org/10.2514/3.10948 doi: 10.2514/3.10948
    [31] Q. Li, G. P. Steven, Y. M. Xie, Thermoelastic topology optimization for problems with varying temperature fields, J. Therm. Stresses, 24 (2001), 347–366. https://doi.org/10.1080/01495730151078153 doi: 10.1080/01495730151078153
    [32] B. Y. Lee, B. M. Kwak, Shape optimization of two-dimensional thermoelastic structures using boundary integral equation formulation, Comput. Struct., 41 (1991), 709–722. https://doi.org/10.1016/0045-7949(91)90181-K doi: 10.1016/0045-7949(91)90181-K
    [33] W. Fang, Z. An, T. Yu, T. Q. Bui, Isogeometric boundary element analysis for two-dimensional thermoelasticity with variable temperature, Eng. Anal. Bound. Elem., 110 (2020), 80–94. https://doi.org/10.1016/j.enganabound.2019.10.003 doi: 10.1016/j.enganabound.2019.10.003
    [34] Q. X. Lieu, J. Lee, Modeling and optimization of functionally graded plates under thermo-mechanical load using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm, Compos. Struct., 179 (2017), 89–106. https://doi.org/10.1016/j.compstruct.2017.07.016 doi: 10.1016/j.compstruct.2017.07.016
    [35] Z. An, T. Yu, T. Q. Bui, C. Wang, N. A. Trinh, Implementation of isogeometric boundary element method for 2-D steady heat transfer analysis, Adv. Eng. Softw., 116 (2018), 36–49. https://doi.org/10.1016/j.advengsoft.2017.11.008 doi: 10.1016/j.advengsoft.2017.11.008
    [36] D. F. Rogers, An introduction to NURBS: With historical perspective, Elsevier, 2000.
    [37] L. A. Piegl, W. Tiller, The NURBS book (Monographs in visual communication), 1996.
    [38] A. Hadjidimos, Successive overrelaxation (SOR) and related methods, J. Comput. Appl. Math., 123 (2000), 177–199. https://doi.org/10.1016/S0377-0427(00)00403-9 doi: 10.1016/S0377-0427(00)00403-9
    [39] Y. Liu, T. J. Rudolphi, Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations, Eng. Anal. Bound. Elem., 8 (1991), 301–311. https://doi.org/10.1016/0955-7997(91)90043-S doi: 10.1016/0955-7997(91)90043-S
    [40] J. C. F. Telles, A self‐adaptive co‐ordinate transformation for efficient numerical evaluation of general boundary element integrals, Int. J. Numer. Methods Eng., 24 (1987), 959–973. https://doi.org/10.1002/nme.1620240509 doi: 10.1002/nme.1620240509
    [41] E. J. Haug, K. K. Choi, V. Komkov, Design sensitivity analysis of structural systems, Academic Press, 1986.
    [42] M. A. Fahmy, Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic problems using time-domain DRBEM, J. Therm. Stresses, 41 (2018), 119–138. https://doi.org/10.1080/01495739.2017.1387880 doi: 10.1080/01495739.2017.1387880
    [43] M. A. Fahmy, Shape design sensitivity and optimization of anisotropic functionally graded smart structures using bicubic B-splines DRBEM, Eng. Anal. Bound. Elem., 87 (2018), 27–35. https://doi.org/10.1016/j.enganabound.2017.11.005 doi: 10.1016/j.enganabound.2017.11.005
    [44] M. A. Fahmy, Modeling and optimization of anisotropic viscoelastic porous structures using CQBEM and moving asymptotes algorithm, Arab. J. Sci. Eng., 44 (2019), 1671–1684. https://doi.org/10.1007/s13369-018-3652-x doi: 10.1007/s13369-018-3652-x
    [45] M. A. Fahmy, A new boundary element strategy for modeling and simulation of three temperatures nonlinear generalized micropolar-magneto-thermoelastic wave propagation problems in FGA structures, Eng. Anal. Bound. Elem., 108 (2019), 192–200. https://doi.org/10.1016/j.enganabound.2019.08.006 doi: 10.1016/j.enganabound.2019.08.006
    [46] X. Yin, J. Zhang, An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method, J. Comput. Phys., 231 (2012), 4295–4303. https://doi.org/10.1016/j.jcp.2012.02.014 doi: 10.1016/j.jcp.2012.02.014
    [47] A. H. Soliman, M. A. Fahmy, Range of applying the boundary condition at fluid/porous interface and evaluation of beavers and Joseph's slip coefficient using finite element method, Computation, 8 (2020), 14. https://doi.org/10.3390/computation8010014 doi: 10.3390/computation8010014
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1449) PDF downloads(71) Cited by(5)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog