The equivalence between multi-transitive mean sensitivity and multi-transitive mean $ n $-sensitivity for linear dynamical systems was demonstrated in this study. Furthermore, this paper presented examples that highlighted the disparities among mean sensitivity, multi-transitive mean sensitivity, and syndetically multi-transitive mean sensitivity.
Citation: Quanquan Yao, Yuanlin Chen, Peiyong Zhu, Tianxiu Lu. Some stronger forms of mean sensitivity[J]. AIMS Mathematics, 2024, 9(1): 1103-1115. doi: 10.3934/math.2024054
The equivalence between multi-transitive mean sensitivity and multi-transitive mean $ n $-sensitivity for linear dynamical systems was demonstrated in this study. Furthermore, this paper presented examples that highlighted the disparities among mean sensitivity, multi-transitive mean sensitivity, and syndetically multi-transitive mean sensitivity.
[1] | K. G. Grosse-Erdmann, A. P. Manguillot, Linear chaos, Springer, 2011. https://doi.org/10.1007/978-1-4471-2170-1 |
[2] | L. Luo, B. Hou, Some remarks on distribution chaos for bounded linear operators, Turk. J. Math., 39 (2015), 251–258. https://doi.org/10.3906/mat-1403-41 doi: 10.3906/mat-1403-41 |
[3] | Y. Huang, Functional analysis: an introduction, 2 Eds., Science Press, 2019. |
[4] | J. Li, S. Tu, X. Ye, Mean equicontinuity and mean sensitivity, Ergod. Theory Dyn. Syst., 35 (2015), 2587–2612. https://doi.org/10.1017/etds.2014.41 doi: 10.1017/etds.2014.41 |
[5] | L. S. Banños, F. García-Ramos, Mean equicontinuity and mean sensitivity on cellular automata, Ergod. Theory Dyn. Syst., 41 (2020), 3704–3721. https://doi.org/10.1017/etds.2020.108 doi: 10.1017/etds.2020.108 |
[6] | F. García-Ramos, B. Marcus, Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems, Discrete Contin. Dyn. Syst., 39 (2019), 729–746. https://doi.org/10.3934/dcds.2019030 doi: 10.3934/dcds.2019030 |
[7] | J. Li, T. Yu, On mean sensitive tuples, J. Differ. Equations, 297 (2021), 175–200. https://doi.org/10.1016/j.jde.2021.06.032 |
[8] | X. Wu, S. Liang, X. Ma, T. Lu, S. A. Ahmadi, The mean sensitivity and mean equicontinuity in uniform spaces, Int. J. Bifurcat. Chaos, 30 (2020), 2050122. https://doi.org/10.1142/S0218127420501229 doi: 10.1142/S0218127420501229 |
[9] | F. García-Ramos, J. Li, R. Zhang, When is a dynamical system mean sensitive? Ergod. Theory Dyn. Syst., 39 (2019), 1608–1636. https://doi.org/10.1017/etds.2017.101 |
[10] | J. Li, C. Liu, S. Tu, T. Yu, Sequence entropy tuples and mean sensitive tuples, Ergod. Theory Dyn. Syst., 2023, 1–20. https://doi.org/10.1017/etds.2023.5 |
[11] | J. Li, X. Ye, T. Yu, Mean equicontinuity, complexity and applications, Discrete Contin. Dyn. Syst., 41 (2021), 359–393. https://doi.org/10.3934/dcds.2020167 |
[12] | T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115–2126. https://doi.org/10.1088/0951-7715/20/9/006 doi: 10.1088/0951-7715/20/9/006 |
[13] | X. Yang, T. Lu, W. Anwar, Transitivity and sensitivity for the $p$-seriodic discrete system via Furstenberg families, AIMS Math., 7 (2022), 1321–1332. https://doi.org/10.3934/math.2022078 doi: 10.3934/math.2022078 |
[14] | J. Li, P. Oprocha, X. Wu, Furstenberg families, sensitivity and the space of probability measures, Nonlinearity, 30 (2017), 987–1005. https://doi.org/10.1088/1361-6544/aa5495 doi: 10.1088/1361-6544/aa5495 |
[15] | R. Li, A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fract., 45 (2012), 753–758. https://doi.org/10.1016/j.chaos.2012.02.003 doi: 10.1016/j.chaos.2012.02.003 |
[16] | F. Tan, R. Zhang, On $\mathscr{F}$-sensitive pairs, Acta Math. Sci., 31 (2011), 1425–1435. https://doi.org/10.1016/S0252-9602(11)60328-7 doi: 10.1016/S0252-9602(11)60328-7 |
[17] | X. Wu, J. Wang, G. Chen, $\mathscr{F}$-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., 429 (2015), 16–26. https://doi.org/10.1016/j.jmaa.2015.04.009 doi: 10.1016/j.jmaa.2015.04.009 |
[18] | X. Wu, R. Li, Y. Zhang, The multi-$\mathbb{F}$-sensitivity and ($\mathbb{F}_{1}$, $\mathbb{F}_{2}$)-sensitivity for product systems, J. Nonlinear Sci. Appl., 9 (2016), 4364–4370. https://doi.org/10.22436/jnsa.009.06.76 doi: 10.22436/jnsa.009.06.76 |
[19] | W. Huang, D. Khilko, S. Kolyada, A. Peris, G. Zhang, Finite intersection property and dynamical compactness, J. Dyn. Differ. Equations, 30 (2018), 1221–1245. https://doi.org/10.1007/s10884-017-9600-8 doi: 10.1007/s10884-017-9600-8 |
[20] | W. Huang, D. Khilko, S. Kolyada, G. Zhang, Dynamical compactness and sensitivity, J. Differ. Equations, 260 (2016), 6800–6827. https://doi.org/10.1016/j.jde.2016.01.011 doi: 10.1016/j.jde.2016.01.011 |
[21] | N. C. Bernardes, A. Bonilla, A. Peris, X. Wu, Distributional chaos for operators on Banach spaces, J. Math. Anal. Appl., 459 (2018), 797–821. https://doi.org/10.1016/j.jmaa.2017.11.005 doi: 10.1016/j.jmaa.2017.11.005 |
[22] | J. Xiong, Chaos in a topologically transitive system, Sci. China Ser. A, 48 (2005), 929–939. https://doi.org/10.1007/BF02879075 doi: 10.1007/BF02879075 |
[23] | S. Shao, X. Ye, R. Zhang, Sensitivity and regionally proximal relation in minimal systems, Sci. China Ser. A, 51 (2008), 987–994. https://doi.org/10.1007/s11425-008-0012-4 doi: 10.1007/s11425-008-0012-4 |
[24] | X. Ye, R. Zhang, On sensitive sets in topological dynamics, Nonlinearity, 21 (2008), 1601–1620. https://doi.org/10.1088/0951-7715/21/7/012 doi: 10.1088/0951-7715/21/7/012 |
[25] | J. Li, X. Ye, T. Yu. Equicontinuity and sensitivity in mean forms, J. Dyn. Differ. Equations, 34 (2022), 133–154. https://doi.org/10.1007/s10884-021-09945-9 doi: 10.1007/s10884-021-09945-9 |
[26] | N. C. Bernardes, A. Bonilla, A. Peris, Mean Li-Yorke chaos in Banach spaces, J. Funct. Anal., 278 (2020), 108343. https://doi.org/10.1016/j.jfa.2019.108343 doi: 10.1016/j.jfa.2019.108343 |
[27] | H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347 (1995), 993–1004. https://doi.org/10.2307/2154883 |