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1. Introduction

Let W1 and W2 be two Banach spaces over F = R or C. The map R: W1 → W2 is called a linear
operator if

R(αx + βy) = αRx + βRy

for any α, β ∈ F and any x, y ∈ W1. A linear operator R: W1 → W2 is said to be bounded if there exists
a positive constant M such that ||Rx|| ≤ M||x|| for all x ∈ X, where ||.|| denotes the norm of the vectors.
The set of all bounded linear operators R: W1 → W2 is denoted by B(W1,W2).

A linear dynamical system means a pair (W,R), where W is a Banach space and R: W → W is
a bounded linear operator. Throughout the whole paper, 0W denotes the zero element of the Banach
space W. I denotes the identity operator. Z+, N, R, and C denote the set of all nonnegative numbers,
positive numbers, real numbers, and complex numbers, respectively.

A linear operator R: X → Y is continuous if, and only if, R: X → Y is bounded. A linear dynamical
system (W,R) is hypercyclic if there is some x ∈ W such that

orb(x,R) = {x,Rx,R2x, · · · }
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is dense in W. If W is separable, then (W,R) is transitive if, and only if, (W,R) is hypercyclic [1,
Theorem 2.19].

By [2], a linear dynamical system (W,R) is absolutely Cesàro bounded if there is M > 0 such that,

sup
n∈N

1
n

n∑
k=1

||Rkw|| ≤ M||w||

for any w ∈ W.
The number

||R|| = sup
x∈W,x,0X

||Rx||
||x||

is called the norm of the operator R, and

||R|| = sup
||x||=1
||Rx|| = sup

||x||≤1
||Rx||

(see for instance [3]).
This study examines some stronger forms of mean sensitive for linear dynamical systems. The

concepts and properties related to sensitivity are recalled in Section 2. Section 3 establishes the
equivalence between multi-transitive mean sensitivity and multi-transitive mean n-sensitivity for
linear dynamical systems (Theorem 3.1). An example is built to demonstrate the existence of a linear
dynamical system (W,R) that exhibits multi-transitive mean sensitivity but not syndetically
multi-transitive mean sensitivity (Example 3.1). In Section 4, a perturbative result concerning
syndetically multi-transitive mean sensitive systems is derived (Theorem 4.1). Conclusions propose
areas for future research.

2. Preliminaries

This section recalls some concepts related to sensitivity and defines three stronger forms of mean
sensitivity.

Li et al. [4] introduced the notion of mean sensitivity for the topological dynamical system (i.e., the
space considered is compact and metrizable and the map involved is continuous onto). For any x ∈ W
and any ε > 0, denote

B(x, ε) = {y ∈ W : ||x − y|| < ε}.

A linear dynamical system (W,R) is called mean sensitive if there is a δ > 0 such that for any x ∈ W
and any ε > 0, there exists a y ∈ B(x, ε) such that

lim sup
n→∞

1
n

n−1∑
i=0

||Rix − Riy|| > δ.

Several scholars have studied different properties related to mean sensitivity (see [5–11]).
Now, let us recall some concepts of positive integer sets. According to [12], a subset

S = {n1 < n2 < · · · } ⊂ Z+
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is syndetic if there exists an M ∈ Z+ such that nk+1 − nk ≤ M for each k ∈ N. S is thickly syndetic if for

any k ∈ Z+ there is a syndetic set
{
mk

1 < mk
2 < · · ·

}
such that⋃

j∈N

{
mk

j + 1,mk
j + 2, · · · ,mk

j + k
}
⊂ S .

S is cofinite if {u, u + 1, u + 2, · · · } ⊂ S for some u ∈ N. Combining these concepts, syndetic
sensitivity, cofinite sensitivity, and multi-sensitivity for the topological dynamical system were
introduced by Moothathu [12].

The set of all subsets of Z+ is denoted by P = P(Z+). A subset G of P is called a Furstenberg
family, if G1 ⊂ G2 and G1 ∈ G, then G2 ∈ G. Subsequently, many scholars discussed various notions
of F -sensitivity in [13–18].

Let U,V ⊂ W and denote

NR(U,V) = {n ∈ Z+ : Rn(U) ∩ V , ∅}.

The system (W,R) is called topologically ergodic if the set NR(U,V) is syndetic for every open subsets
U,V ⊂ W; It is called thickly systic if the set NR(U,V) is thickly syndetic for every open subsets
U,V ⊂ W; It is called mixing if the set NR(U,V) is cofinite for every open subsets U,V ⊂ W.

The product system of k copies of (W,R) is represented as
(
Wk,R(k)

)
. Recall that (W,R) is transitive

if NR(U,V) , ∅ for any open subsets U,V ⊂ W and is called weakly mixing if
(
W2,R(2)

)
is transitive.

Let δ > 0. For any x, y ∈ W, denote

FR(x, y, δ) =

n ∈ N :
1
n

n−1∑
i=0

||Rix − Riy|| > δ

 .
Inspirited by [12, 19, 20], the following concepts are introduced.

Definition 2.1. A linear dynamical system (W,R) is multi-transitively mean sensitive, if there is a δ > 0
such that for any finitely many open subsets P1, · · · , Pk ⊂ W, there exist x1, y1 ∈ P1; · · · ; xk, yk ∈ Pk

such that  k⋂
i=1

NR(Gi,Hi)

 ∩  k⋂
i=1

FR(xi, yi, δ)

 , ∅
for all open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W.

Definition 2.2. A linear dynamical system (W,R) is syndetically multi-transitive mean sensitive, if
there is a δ > 0 such that for any finitely many open subsets P1, · · · , Pk ⊂ W, there exist x1, y1 ∈ P1;
· · · ; xk, yk ∈ Pk such that the set  k⋂

i=1

NR(Gi,Hi)

 ∩  k⋂
i=1

FR(xi, yi, δ)


is syndetic for any open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W.

In fact, if (W,R) exhibits multi-transitively mean sensitive, then (W,R) is considered weakly mixing.
Furthermore, if (W,R) displays multi-transitively mean sensitive, it is also classified as topologically
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ergodic. This can be inferred from [1, Exercise 2.5.4], which establishes that (W,R) is thickly syndetic
transitive. Specifically, it is simple to confirm that a linear dynamical system (W,R) is absolutely
Cesàro bounded if, and only if, it demonstrates mean sensitivity. However, it is worth noting that
there exists a linear dynamical system (W,R) that is mixing but does not possess mean sensitivity (refer
to [21, Example 23]).

The concept of n-sensitivity for the topological dynamical system was first introduced by
Xiong [22]. Subsequently, Shao et al. [23] highlighted the distinction between n-sensitivity and
(n + 1)-sensitivity for the minimal system (see also [24]). More recently, Li et al. [25] proposed the
concept of mean n-sensitivity for the topological dynamical system. The system (W,R) is called mean
n-sensitive if there exists a δ > 0 such that for any open subset U ⊂ W, there are n distinct points
x1, · · · , xn ∈ U satisfying

lim sup
m→∞

1
m

m−1∑
k=0

min
1≤i, j≤n

||Rkxi − Rkx j|| > δ.

For any x1, · · · , xn ∈ W and δ > 0, denote

Fmin
R (x1, · · · , xn, δ) =

n ∈ N :
1
n

n−1∑
k=0

min
1≤i, j≤n

||Rkxi − Rkx j|| > δ

 .
An other new and stronger version of n-sensitivity is as follow.

Definition 2.3. A linear dynamical system (W,R) is multi-transitively mean n-sensitive, if there is
a δ > 0 such that for finitely many open subsets P1, · · · , Pk ⊂ W, there exist x1

1, · · · , x
1
n ∈ P1; · · · ;

xk
1, · · · , x

k
n ∈ Pk such that  k⋂

i=1

NR(Ui,Vi)

 ∩  k⋂
i=1

Fmin
R (xi

1, · · · , x
i
n, δ)

 , ∅
for any open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W.

3. Multi-transitive mean sensitivity

The following proof is arose by [26, Theorem 4].

Theorem 3.1. Let (W,R) be a linear dynamical system, then the following conditions are equivalent.

(1) (W,R) is multi-transitively mean sensitive;

(2) (W,R) is multi-transitively mean n-sensitive.

Proof. (1) ⇒ (2) Since (W,R) is multi-transitively mean sensitive, for any σ > 0, C > 0, k ∈ N and
open subsets U1, · · · ,Uk,V1, · · · ,Vk ⊂ W, there exist an x ∈ W and an

n ∈
k⋂

i=1

NR(Ui,Vi),
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such that

||x|| < σ and
1
n

n−1∑
i=0

∥∥∥Rix
∥∥∥ > C.

This means that there is an x0 ∈ W, which causes

sup
n∈

k⋂
i=1

NR(Ui,Vi)

1
n

n−1∑
i=0

∥∥∥Rix0

∥∥∥ = ∞.
In fact, assume that for any x ∈ W,

sup
n∈

k⋂
i=1

NR(Ui,Vi)

1
n

n−1∑
i=0

∥∥∥Rix
∥∥∥ < ∞.

Therefore, one can select a sequence {yn}n∈N ⊂ W and a sequence

{Mn}n∈N ⊂

k⋂
i=1

NR(Ui,Vi),

satisfying that

||yn|| <
1
2n

and

1
Mp

Mp−1∑
j=0

∥∥∥R j(y1 + · · · + yn)
∥∥∥ > p

for every 1 ≤ p ≤ n. Let

x =
∞∑

n=1

yn ∈ W,

then for all p ∈ N,

1
Mp

Mp−1∑
j=0

∥∥∥R jx
∥∥∥ ≥ p,

a contradiction to the assumption. Thus, there exists an x0 ∈ W satisfying

sup
r∈

k⋂
i=1

NR(Ui,Vi)

1
r

r−1∑
l=0

∥∥∥Rlx0

∥∥∥ = ∞. (3.1)
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Let n ≥ 2 and ε > 0. By (3.1), there is a sequence

{mr}r∈N ⊂

k⋂
i=1

NR(Ui,Vi),

such that

1
mr

mr−1∑
l=0

∥∥∥Rlx0

∥∥∥ > n(n + 1)||x0||

ε
.

Since

min
2≤i, j≤n+1

∥∥∥∥∥∥Rl

(
x0

||x0||

ε

i

)
− Rl

(
x0

||x0||

ε

j

)∥∥∥∥∥∥ = ε

||x0||

∥∥∥Rlx0

∥∥∥ min
2≤i, j≤n+1

∣∣∣∣∣1i − 1
j

∣∣∣∣∣
≥
ε

||x0||

∥∥∥Rlx0

∥∥∥ 1
n(n + 1)

for every l ≥ 0, then one has

1
mr

mr−1∑
l=0

min
2≤i, j≤n+1

∥∥∥∥∥∥Rl

(
x0

||x0||

ε

i

)
− Rl

(
x0

||x0||

ε

j

)∥∥∥∥∥∥ > 1

for every r ∈ N. Let x ∈ W. By linearity of W,

x +
x0

||x0||

ε

i
∈ B(x, ε)

for each 2 ≤ i ≤ n + 1 and

1
mr

mr−1∑
l=0

min
2≤i, j≤n+1

∥∥∥∥∥∥Rl

(
x +

x0

||x0||

ε

i

)
− Rl

(
x +

x0

||x0||

ε

j

)∥∥∥∥∥∥
=

1
mr

mr−1∑
l=0

min
2≤i, j≤n+1

∥∥∥∥∥∥Rl

(
x0

||x0||

ε

i

)
− Rl

(
x0

||x0||

ε

j

)∥∥∥∥∥∥
> 1

for every r ∈ N, which implies that

{mr}r∈N ⊂

 k⋂
i=1

NR(Ui,Vi)

 ∩ (
Fmin

R

(
x +

x0

||x0||

ε

2
, · · · , x +

x0

||x0||

ε

n + 1
, 1

))
.

Thus, for δ = 1 > 0, any y ∈ W, and any σ > 0, there exist

y +
x0

||x0||

σ

2
, · · · , y +

x0

||x0||

σ

n + 1
∈ B(y, σ),

such that  k⋂
i=1

NR(Gi,Hi)

 ∩ (
Fmin

R

(
y +

x0

||x0||

σ

2
, · · · , y +

x0

||x0||

σ

n + 1
, 1

))
, ∅

for finitely many open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W.
(2)⇒ (1) The proof is trivial. □
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Corollary 3.1. Let (W,R) be a linear dynamical system, then the following conditions are equivalent:

(1) (W,R) is multi-transitively mean sensitive.
(2) There is a δ0 > 0 such that, for every ε > 0, there exists a y ∈ B(0W , ε) satisfying k⋂

i=1

NR(Gi,Hi)

 ∩ FR(0W , y, δ0) , ∅

for any finitely many open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W.
(3) Let δ > 0. For any ε > 0, there exists a y ∈ B(0W , ε) such that k⋂

i=1

NR(Ri, S i)

 ∩ FR(0W , y, δ) , ∅

for any finitely many open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W.

Proof. (1)⇔ (2) The proof is directly from the linearity of the operator.
(2) ⇒ (3) Let k ∈ N and nonempty open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W. By the proof of

Theorem 3.1, there exists an x0 ∈ W such that

sup
n∈

k⋂
i=1

NR(Gi,Hi)

1
n

n−1∑
i=0

||Rix0|| = ∞.

Let δ > 0 and ε > 0, then there exists a sequence

{mr}r∈N ⊂

k⋂
i=1

NR(Gi,Hi),

such that

1
mr

mr−1∑
i=0

∥∥∥∥∥∥Ri

(
x0

||x0||
·
ε

2

)∥∥∥∥∥∥ > δ.
In other words,

{mr}r∈N ⊂

 k⋂
i=1

NR(Gi,Hi)

 ∩ FR

(
x0

||x0||

ε

2
, 0W , δ

)
.

This finishes the proof.
(3)⇒ (2) The proof is trivial. □

Note that a syndetically multi-transitive mean sensitive system is multi-transitive mean sensitive.
Using Corollary 3.1, one can get that the converse is not true; see the following Example 3.1.

Before starting Example 3.1, let us recall the Hilbert space

l2(Z) =

x = (xn)n∈Z ∈ R
Z :

∞∑
n=−∞

|xn|
2 < ∞


AIMS Mathematics Volume 9, Issue 1, 1103–1115.
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with the inner product defined by

< u, v >=
∞∑

k=−∞

ukvk

for all
u = (uk)k∈Z, v = (vk)k∈Z ∈ l2(Z).

This inner product generates the norm

||u|| =
√
< u, u > =

 ∞∑
k=−∞

|uk|
2


1
2

.

Let (W,R) be a linear dynamical system. If w∗ ∈ W∗, then write

w∗(w) =< w,w∗ >, w ∈ W.

Define the adjoint operator R∗: W∗ → W∗ as R∗u∗ = u∗ ◦ R; that is to say

< u,R∗u∗ >=< Ru, u∗ >, u ∈ W, u∗ ∈ W∗.

Example 3.1. Let W = l2(Z). Define R: W → W as

(xn)n∈Z ∈ W 7→ (λn+1xn+1)n∈Z ∈ W,

where λ = (λn)n∈Z satisfies three conditions:

(1) tn =

(
n∏

u=1
λu

)−1

, n ≥ 1; tn =
0∏

u=n+1
λu, n ≤ −1; t0 = 1.

(2) (tn)n≥0 = (1, 1, 2, 1, 1
2 , 1, 2, 2

2, 2, 1, 1
2 ,

1
22 ,

1
2 , 1, 2, 4, 8, 4, 2, 1,

1
2 ,

1
22 ,

1
23 ,

1
22 , · · · ).

(3) t−n = υn for all n ≥ 1.
The following will show that (W,R) is multi-transitive mean sensitive but not syndetically multi-

transitive mean sensitive.

Claim 3.1. (W,R) is multi-transitively mean sensitive.

Proof of Claim 3.1. Using the construction of (tn)n≥0, one can select a sequence {nm}m∈N satisfying
nm > m and  tnm−i =

1
2m−i , 0 ≤ i ≤ m,

tnm+i =
1

2m−i , 0 < i ≤ m.

Let ε > 0. There is an N > 0 such that 1
2n < ε for any n ≥ N. Take xε = (xi

ε)i∈Z with

xi
ε =

 1
2m , i = nm, m ≥ N + 1,

0, otherwise,

then, ||xε|| = 1
2N < ε.

AIMS Mathematics Volume 9, Issue 1, 1103–1115.
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Let m ≥ N + 1. Since

1
tnm

=

nm∏
u=1

λu = 2m,
1

tnm−m
=

nm−m∏
u=1

λu = 2m−m = 1,

one has

nm∏
u=nm−m+1

λu = 2m,

and then

Rm(xε) =
∞∑

i=−∞

 i∏
j=i−m+1

|λ j|

 |xi
ε| ≥

 nm∏
j=nm−m+1

|λ j|

 |xnm
ε | = 1.

This means that there is an M > 0 such that

1
m

m−1∑
i=0

||Ri(xε)|| >
1
2

for any m ≥ M. In other words, FR

(
0W , xε, 1

2

)
is cofinite. Since (W,R) is weakly mixing by [1,

Proposition 4.16], one has
k⋂

i=1

NR(Ui,Vi) , ∅

for any finitely many open subsets U1, · · · ,Uk,V1, · · · ,Vk ⊂ W, then k⋂
i=1

NR(Ui,Vi)

 ∩ FR(0W , xε,
1
2

) , ∅

for every k ∈ N and open subsets U1, · · · ,Uk,V1, · · · ,Vk ⊂ W. Thus, (W,R) is multi-transitively mean
sensitive by Corollary 3.1.

Claim 3.2. (W,R) is not syndetically multi-transitive mean sensitive.

Proof of Claim 3.2. By [1, Remark 4.17], (W × W∗,R × R∗) is not hypercyclic. Notice that W ×
W∗ is separable. By Theorem 3.1, one can obtain that (W × W∗,R × R∗) has no transitivity. Since
(W∗,R∗) is weakly mixing by [1, Proposition 4.16], then, (W,R) is not topologically ergodic by [1,
Exercise 1.5.6(iii)]. This means that (W,R) has no syndetic multi-transitive mean sensitivity.

In addition, by the proof of Theorem 3.1, one can obtain that if a system (W,R) is multi-transitively
mean sensitive, then, (W,R) is mean sensitive. The following example indicates that the converse is not
true.

Example 3.2. Let

W =

x = (xn)n∈N ∈ R
N :

∞∑
n=1

|xn| < ∞


AIMS Mathematics Volume 9, Issue 1, 1103–1115.
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with the norm

||x|| =
∞∑

n=1

|xn|.

Define R: W → W as

R(x1, x2, x3, · · · ) = (0, 2x1, 2x2, 2x3, · · · )

for any (x1, x2, x3, · · · ) ∈ W. Let x = (xm)m∈N ∈ W and n ∈ N, then

||Rnx|| =
∞∑

i=1

2n|xi| = 2n
∞∑

i=1

|xi| = 2n||x||

and
lim
n→∞
||Rnx|| = ∞.

This implies that

lim
n→∞

1
n

n−1∑
i=0

||Rix|| = ∞

for any x ∈ X with x , 0W . Thus, by the linearity of W, (W,R) is mean sensitive. Notice that (W,R) has
no hypercyclicity by [1, Remark 4.10] and W is separable, then by [1, Theorem 2.19]), (W,R) is not
transitive. Thus, (W,R) is not multi-transitively mean sensitive.

4. Sensitive perturbations of the identity

Affected by the methods in [27, Theorem 3.3] and [1, Corollary 8.3], the following result
(Theorem 4.1) can be obtained.

Let 1 ≤ p < ∞. Recall the Banach space

lp =

u = (un)n∈N ∈ F
N :

∞∑
n=1

|un|
p < ∞


with the norm

||u|| =

 ∞∑
n=1

|un|
p


1
p

and the Banach space
c0 = {u = (un)n∈N ∈ F

N : lim
n→∞

un = 0}

with the norm
||u|| = sup

n∈N
|un|.

Define weight shift operator Bω: W → W as

Bω(y1, y2, y3, · · · ) = (ω2y2, ω3y3, ω4y4, · · · )

for all y = (y1, y2, y3, · · · ) ∈ W, where ω = (ωn)n∈N is a bounded sequence.

Theorem 4.1. Let W = lp, 1 ≤ p < ∞, and let ω = (ωn)n∈N such that sup
n∈N
|ωn| < ∞, then (W, I + Bω) is

syndetically multi-transitive mean sensitive.
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Proof. Let ε > 0. There is an N > 0 such that 1
n < ε for any n ≥ N. Take

xε =
(
0,

1
N
, 0, 0, · · ·

)
∈ W,

then ||xε|| = 1
N < ε and

∥(I + Bω)n(xε)∥ =

∥∥∥∥∥∥∥
 n∑

k=0

(
n
k

)
Bk
ω

 (xε)

∥∥∥∥∥∥∥ =
(

1
N p +

(
n|ω2|

N

)p)1/p

≥
n|ω2|

N
> 1

for any n > N
|ω2 |

, which means that there is an M > 0, satisfying

1
m

m−1∑
i=0

||(I + Bω)ixε|| >
1
2

for any m ≥ M. Thus, FI+Bω(0W , xε, 1) is cofinite.

Since (W, I + Bω) is mixing by [1, Corollary 8.3], then
k⋂

i=1
NI+Bω(Gi,Hi) is cofinite for any finitely

many open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W. Therefore k⋂
i=1

NI+Bω(Gi,Hi)

 ∩ FI+Bω(0W , xε,
1
2

) , ∅

for any finitely many open subsets G1, · · · ,Gk,H1, · · · ,Hk ⊂ W. Thus, (W, I + Bω) is syndetically
multi-transitive mean sensitive by Corollary 3.1. □

Similarly, one can get the following result.

Theorem 4.2. Let W = c0 and let ω = (ωn)n∈N such that sup
n∈N
|ωn| < ∞, then (W, I + Bω) is syndetically

multi-transitive mean sensitive.

5. Conclusions

In this research, it was demonstrated that there is an equivalence between multi-transitive mean
sensitivity and multi-transitive mean n-sensitivity in the context of linear dynamical systems.
Additionally, it was proven that there is the existence of a system (W,R) that is multi-transitive mean
sensitive but not syndetically multi-transitive mean sensitive. This study provided evidence of the
relation between these different types of system sensitivities. Whether similar conclusions hold in
ergodic theory will be investigated in the future.
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