Research article

Time-delayed feedback control for chaotic systems with coexisting attractors

  • Received: 04 October 2023 Revised: 18 November 2023 Accepted: 27 November 2023 Published: 06 December 2023
  • MSC : 93B52

  • This study investigated the Hopf bifurcation of the equilibrium point of chaotic systems with coexisting attractors under the time-delayed feedback control. First, the equilibrium point and Hopf bifurcation of chaotic systems with coexisting attractors were analyzed. Second, the chaotic systems were controlled by time-delayed feedback, the transversality condition of Hopf bifurcation at the equilibrium point was discussed, and the time-delayed value of Hopf bifurcation at the equilibrium point was obtained. Lastly, the correctness of the theoretical analysis was verified by using the numerical results.

    Citation: Erxi Zhu. Time-delayed feedback control for chaotic systems with coexisting attractors[J]. AIMS Mathematics, 2024, 9(1): 1088-1102. doi: 10.3934/math.2024053

    Related Papers:

  • This study investigated the Hopf bifurcation of the equilibrium point of chaotic systems with coexisting attractors under the time-delayed feedback control. First, the equilibrium point and Hopf bifurcation of chaotic systems with coexisting attractors were analyzed. Second, the chaotic systems were controlled by time-delayed feedback, the transversality condition of Hopf bifurcation at the equilibrium point was discussed, and the time-delayed value of Hopf bifurcation at the equilibrium point was obtained. Lastly, the correctness of the theoretical analysis was verified by using the numerical results.



    加载中


    [1] K. Cheng, Z. Lu, Y. Zhen, Multi-level multi-fidelity sparse polynomial chaos expansion based on Gaussian process regression, Comput. Meth. Appl. Mech. Eng., 349 (2019), 360–377. https://doi.org/10.1016/j.cma.2019.02.021 doi: 10.1016/j.cma.2019.02.021
    [2] G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2014), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [3] L. Grigoryeva, A. Hart, J. P. Ortega, Chaos on compact manifolds: differentiable synchronizations beyond Takens, Phys. Rev. E, 103 (2020), 062204. https://doi.org/10.1103/PhysRevE.103.062204 doi: 10.1103/PhysRevE.103.062204
    [4] A. Jahangiri, N. K. A. Attari, A. Nikkhoo, Z. Waezi, Nonlinear dynamic response of an Euler-Bernoulli beam under a moving mass-spring with large oscillations, Arch. Appl. Mech., 90 (2020), 1135–1156. https://doi.org/10.1007/s00419-020-01656-9 doi: 10.1007/s00419-020-01656-9
    [5] F. Fotiadis, K. G. Vamvoudakis, Detection of actuator faults for continuous-time systems with intermittent state feedback, Syst. Control Lett., 152 (2021), 104938. https://doi.org/10.1016/j.sysconle.2021.104938 doi: 10.1016/j.sysconle.2021.104938
    [6] T. Xu, J. Xu, X. Zhang, Inertia-free computation efficient immersion and invariance adaptive tracking control for Euler-Lagrange mechanical systems with parametric uncertainties, Adv. Space Res., 66 (2020), 1902–1910. https://doi.org/10.1016/j.asr.2020.07.004 doi: 10.1016/j.asr.2020.07.004
    [7] M. P. Aghababa, No-chatter variable structure control for fractional nonlinear complex systems, Nonlinear Dyn., 73 (2013), 2329–2342. https://doi.org/10.1007/s11071-013-0944-2 doi: 10.1007/s11071-013-0944-2
    [8] X. Song, L. Chen, K. Wang, D. He, Robust time-delay feedback control of vehicular CACC systems with uncertain dynamics, Sensors, 20 (2020), 1775. https://doi.org/10.3390/s20061775 doi: 10.3390/s20061775
    [9] M. Farazmand, Mitigation of tipping point transitions by time-delay feedback control, Chaos, 301 (2019), 013149. https://doi.org/10.1063/1.5137825 doi: 10.1063/1.5137825
    [10] Y. Ding, L. Zheng, R. Yang, Time-delayed feedback control of improved friction-induced model: application to moving belt of particle supply device, Nonlinear Dyn., 100 (2020), 423–434. https://doi.org/10.1007/s11071-020-05523-8 doi: 10.1007/s11071-020-05523-8
    [11] G. Yang, Hopf birurcation of Lorenz-like system about parameter $h$, Mod. Appl. Sci., 4 (2009), 91–95. https://doi.org/10.5539/mas.v4n1p91 doi: 10.5539/mas.v4n1p91
    [12] Y. Li, H. P. Ju, C. Hua, G. Liu, Distributed adaptive output feedback containment control for time-delay nonlinear multiagent systems, Automatica, 127 (2021), 109545. https://doi.org/10.1016/j.automatica.2021.109545 doi: 10.1016/j.automatica.2021.109545
    [13] J. Kengne, Z. T. Njitacke, H. B. Fotsin, Dynamical analysis of a simple autonomous jerk system with multiple attractors, Nonlinear Dyn., 83 (2016), 751–765. https://doi.org/10.1007/s11071-015-2364-y doi: 10.1007/s11071-015-2364-y
    [14] V. T. Pham, C. Volos, S. Jafari, T. Kapitaniak, Coexistence of hidden chaotic attractors in a novel no-equilibrium system, Nonlinear Dyn., 87 (2017), 2001–2010. https://doi.org/10.1007/s11071-016-3170-x doi: 10.1007/s11071-016-3170-x
    [15] B. C. Bao, H. Bao, N. Wang, M. Chen, Q. Wu, Hidden extreme multistability in memristive hyperchaotic system, Chaos Soliton. Fract., 94 (2017), 102–111. https://doi.org/10.1016/j.chaos.2016.11.016 doi: 10.1016/j.chaos.2016.11.016
    [16] B. Bao, W. Ning, X. Quan, H. Wu, Y. Hu, A simple third-order memristive band pass filter chaotic circuit, IEEE Trans. Circuits Syst. II, 64 (2017), 977–981. https://doi.org/10.1109/TCSII.2016.2641008 doi: 10.1109/TCSII.2016.2641008
    [17] C. Li, W. J. C. Thio, J. C. Sprott, H. H. C. Iu, Y. Xu, Constructing infinitely many attractors in a programmable chaotic circuit, IEEE Access, 2018 (2018), 29003–29012. https://doi.org/10.1109/ACCESS.2018.2824984 doi: 10.1109/ACCESS.2018.2824984
    [18] Q. Lai, Z. Wan, P. D. K. Kuate, H. Fotsin, Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105341. https://doi.org/10.1016/j.cnsns.2020.105341 doi: 10.1016/j.cnsns.2020.105341
    [19] B. Muthuswamy, L. O. Chua, Simplest chaotic circuit, Int. J. Bifurcation Chaos, 20 (2010), 1567–1580. https://doi.org/10.1142/S0218127410027076
    [20] X. Zhang, Y. Lin, Global stabilization of high-order nonlinear time-delay systems by state feedback, Syst. Control Lett., 65 (2014), 89–95. https://doi.org/10.1016/j.sysconle.2013.12.015 doi: 10.1016/j.sysconle.2013.12.015
    [21] C. C. Hua, X. P. Guan, Smooth dynamic output feedback control for multiple time-delay systems with nonlinear uncertainties, Automatica, 28 (2016), 1–8. https://doi.org/10.1016/j.automatica.2016.01.007 doi: 10.1016/j.automatica.2016.01.007
    [22] E. Fridman, U. Shaked, A descriptor system approach to H$\infty$ control oflinear time-delay systems, IEEE Trans. Autom. Control, 47 (2002), 253–270. https://doi.org/10.1109/9.983353 doi: 10.1109/9.983353
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(810) PDF downloads(51) Cited by(1)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog