Research article

Stochastic analysis of survival and sensitivity in a competition model influenced by toxins under a fluctuating environment

  • Received: 15 January 2024 Revised: 12 February 2024 Accepted: 20 February 2024 Published: 27 February 2024
  • MSC : 34F05, 37H10, 60J70, 92B05

  • This paper proposed a stochastic toxin-dependent competition model to investigate the impact of environmental noise on species interaction dynamics. First, a survival analysis was conducted to establish the sufficient conditions for population extinction and persistence. Second, we proved the existence of a unique ergodic stationary distribution. Finally, the spatial arrangement of random states near the deterministic attractor was investigated using the stochastic sensitivity functions technique. This analytical approach facilitates constructing confidence ellipses and estimating critical noise intensity corresponding to the onset of transition. Both theoretical and numerical findings demonstrated that significant levels of noise experienced by one species lead to its extinction while promoting persistence in its competitor; conversely, negligible levels of noise did not alter the original competition outcomes in the deterministic model. However, when both species encounter moderate levels of noise, various modifications can occur in competition outcomes. These findings have significant implications for preserving ecosystem diversity.

    Citation: Yuanlin Ma, Xingwang Yu. Stochastic analysis of survival and sensitivity in a competition model influenced by toxins under a fluctuating environment[J]. AIMS Mathematics, 2024, 9(4): 8230-8249. doi: 10.3934/math.2024400

    Related Papers:

  • This paper proposed a stochastic toxin-dependent competition model to investigate the impact of environmental noise on species interaction dynamics. First, a survival analysis was conducted to establish the sufficient conditions for population extinction and persistence. Second, we proved the existence of a unique ergodic stationary distribution. Finally, the spatial arrangement of random states near the deterministic attractor was investigated using the stochastic sensitivity functions technique. This analytical approach facilitates constructing confidence ellipses and estimating critical noise intensity corresponding to the onset of transition. Both theoretical and numerical findings demonstrated that significant levels of noise experienced by one species lead to its extinction while promoting persistence in its competitor; conversely, negligible levels of noise did not alter the original competition outcomes in the deterministic model. However, when both species encounter moderate levels of noise, various modifications can occur in competition outcomes. These findings have significant implications for preserving ecosystem diversity.



    加载中


    [1] C. H. Walker, R. M. Sibly, S. P. Hopkin, D. B. Peakall, Principles of ecotoxicology, Boca Raton: CRC Press, 2012. https://doi.org/10.1201/b11767
    [2] H. I. Freedman, J. B. Shukla, Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30 (1991), 15–30. https://doi.org/10.1007/BF00168004 doi: 10.1007/BF00168004
    [3] T. G. Hallam, C. E. Clark, R. R. Lassiter, Effect of toxicants on populations: a qualitative approach Ⅰ. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291–304. https://doi.org/10.1016/0304-3800(83)90019-4 doi: 10.1016/0304-3800(83)90019-4
    [4] M. Liu, K. Wang, Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment Ⅱ, J. Theor. Biol., 267 (2010), 283–291. https://doi.org/10.1016/j.jtbi.2010.08.030 doi: 10.1016/j.jtbi.2010.08.030
    [5] D. M. Thomas, T. W. Snell, S. M. Jaffar, A control problem in a polluted environment, Math. Biosci., 133 (1996), 139–163. https://doi.org/10.1016/0025-5564(95)00091-7 doi: 10.1016/0025-5564(95)00091-7
    [6] H. R. Thieme, Mathematics in population biology, Princeton University Press, 2003.
    [7] Q. Huang, L. Parshotam, H. Wang, C. Bampfylde, M. A. Lewis, A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334 (2013), 71–79. https://doi.org/10.1016/j.jtbi.2013.05.018 doi: 10.1016/j.jtbi.2013.05.018
    [8] W. Wang, Biodynamic understanding of mercury accumulation in marine and freshwater fish, Adv. Environ. Res., 1 (2012), 15–35. https://doi.org/10.12989/aer.2012.1.1.015 doi: 10.12989/aer.2012.1.1.015
    [9] W. Wang, P. S. Rainbow, Comparative approaches to understand metal bioaccumulation in aquatic animals, Comp. Biochem. Phys. C, 148 (2008), 315–323. https://doi.org/10.1016/j.cbpc.2008.04.003 doi: 10.1016/j.cbpc.2008.04.003
    [10] Y. Zhao, S. Yuan, J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bull. Math. Biol., 77 (2015), 1285–1326. https://doi.org/10.1007/s11538-015-0086-4 doi: 10.1007/s11538-015-0086-4
    [11] P. Zhou, Q. Huang, A spatiotemporal model for the effects of toxicants on populations in a polluted river, SIAM J. Appl. Math., 82 (2022), 95–118. https://doi.org/10.1137/21M1405629 doi: 10.1137/21M1405629
    [12] A. Q. Khan, S. S. Kazmi, T. D. Alharbi, Bifurcations of a three-species prey-predator system with scavenger, Ain Shams. Eng. J., 14 (2023), 102514. https://doi.org/10.1016/j.asej.2023.102514 doi: 10.1016/j.asej.2023.102514
    [13] Q. Huang, H. Wang, M. A. Lewis, The impact of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378 (2015), 12–30. https://doi.org/10.1016/j.jtbi.2015.04.019 doi: 10.1016/j.jtbi.2015.04.019
    [14] A. Peace, M. D. Poteat, H. Wang, Somatic growth dilution of a toxicant in a predator-prey model under stoichiometric constraints, J. Theor. Biol., 407 (2016), 198–211. https://doi.org/10.1016/j.jtbi.2016.07.036 doi: 10.1016/j.jtbi.2016.07.036
    [15] C. Shan, Q. Huang, Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739–766. https://doi.org/10.1007/s00285-018-1290-2 doi: 10.1007/s00285-018-1290-2
    [16] D. Li, S. Liu, J. Cui, Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, J. Differ. Equations, 263 (2017), 8873–8915. https://doi.org/10.1016/j.jde.2017.08.066 doi: 10.1016/j.jde.2017.08.066
    [17] X. Chen, X. Li, Y. Ma, C. Yuan, The threshold of stochastic tumor-immune model with regime switching, J. Math. Anal. Appl., 522 (2023), 126956. https://doi.org/10.1016/j.jmaa.2022.126956 doi: 10.1016/j.jmaa.2022.126956
    [18] X. Zhang, Q. Yang, D. Jiang, A stochastic predator-prey model with Ornstein-Uhlenbeck process: characterization of stationary distribution, extinction and probability density function, Commun. Nonlinear. Sci., 122 (2023), 107259. https://doi.org/10.1016/j.cnsns.2023.107259 doi: 10.1016/j.cnsns.2023.107259
    [19] Q. Liu, D. Jiang, Analysis of a stochastic inshore-offshore hairtail fishery model with Ornstein-Uhlenbeck process, Chaos Soliton. Fract., 172 (2023), 113525. https://doi.org/10.1016/j.chaos.2023.113525 doi: 10.1016/j.chaos.2023.113525
    [20] M. N. Srinivas, K. S. Reddy, A. Sabarmathi, Optimal harvesting strategy and stochastic analysis for a two species commensaling system, Ain Shams. Eng. J., 5 (2014), 515–523. https://doi.org/10.1016/j.asej.2013.10.003 doi: 10.1016/j.asej.2013.10.003
    [21] R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic resonance, J. Phys. A. Math. Gen., 14 (1981), 4531981. https://doi.org/10.1088/0305-4470/14/11/006 doi: 10.1088/0305-4470/14/11/006
    [22] D. O. Filatov, D. V. Vrzheshch, O. V. Tabakov, A. S. Novikov, A. I. Belov, I. N. Antonov, et al., Noise-induced resistive switching in a memristor based on ZrO$_{2}$(Y)/Ta$_{2}$O$_{5}$ stack, J. Stat. Mech., 2019 (2019), 124026. https://doi.org/10.1088/1742-5468/ab5704 doi: 10.1088/1742-5468/ab5704
    [23] N. V. Agudov, A. V. Safonov, A. V. Krichigin, A. A. Kharcheva, A. A. Dubkov, D. Valenti, et al., Nonstationary distributions and relaxation times in a stochastic model of memristor, J. Stat. Mech., 2020 (2020), 024003. https://doi.org/10.1088/1742-5468/ab684a doi: 10.1088/1742-5468/ab684a
    [24] L. S. Pontryagin, A. A. Andronov, A. A. Witt, On statistical analysis of dynamical systems, Zh. Eksp. Teor. Fiz., 3 (1933), 165.
    [25] I. Bashkirtseva, L. Ryashko, Constructive analysis of noise-induced transitions for coexisting periodic attractors of the Lorenz model, Phys. Rev. E, 79 (2009), 041106. https://doi.org/10.1103/PhysRevE.79.041106 doi: 10.1103/PhysRevE.79.041106
    [26] I. Bashkirtseva, L. Ryashko, T. Ryazanova, Stochastic sensitivity technique in a persistence analysis of randomly forced population systems with multiple trophic levels, Math. Biosci., 293 (2017), 38–45. https://doi.org/10.1016/j.mbs.2017.08.007 doi: 10.1016/j.mbs.2017.08.007
    [27] L. Ryashko, T. Perevalova, I. Bashkirtseva, Stochastic bifurcations and multistage order-chaos transitions in a 4D eco-epidemiological model, Int. J. Bifurcat. Chaos, 33 (2023), 2350112. https://doi.org/10.1142/S0218127423501122 doi: 10.1142/S0218127423501122
    [28] I. Bashkirtseva, L. Ryashko, How noise induces multi-stage transformations of oscillatory regimes in a thermochemical model, Phys. Lett. A, 476 (2023), 128884. https://doi.org/10.1016/j.physleta.2023.128884 doi: 10.1016/j.physleta.2023.128884
    [29] C. Xu, S. Yuan, T. Zhang, Stochastic sensitivity analysis for a competitive turbidostat model with inhibitory nutrients, Int. J. Bifurcat. Chaos, 26 (2016), 1650173. https://doi.org/10.1142/S021812741650173X doi: 10.1142/S021812741650173X
    [30] D. Wu, H. Wang, S. Yuan, Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins, Math. Biosci. Eng., 16 (2019), 2141–2153. https://doi.org/10.3934/mbe.2019104 doi: 10.3934/mbe.2019104
    [31] S. Yuan, D. Wu, G. Lan, H. Wang, Noise-induced transitions in a nonsmooth producer-grazer model with stoichiometric constraints, Bull. Math. Biol., 82 (2020), 55. https://doi.org/10.1007/s11538-020-00733-y doi: 10.1007/s11538-020-00733-y
    [32] D. Valenti, G. Fazio, B. Spagnolo, Stabilizing effect of volatility in financial markets, Phys. Rev. E, 97 (2018), 062307. https://doi.org/10.1103/PhysRevE.97.062307 doi: 10.1103/PhysRevE.97.062307
    [33] I. A. Surazhevsky, V. A. Demin, A. I. Ilyasov, A. V. Emelyanov, K. E. Nikiruy, V. V. Rylkov, et al., Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network, Chaos Soliton. Fract., 146 (2021), 110890. https://doi.org/10.1016/j.chaos.2021.110890 doi: 10.1016/j.chaos.2021.110890
    [34] A. V. Yakimov, D. O. Filatov, O. N. Gorshkov, D. A. Antonov, D. A. Liskin, I. N. Antonov, et al., Measurement of the activation energies of oxygen ion diffusion in yttria stabilized zirconia by flicker noise spectroscopy, Appl. Phys. Lett., 114 (2019), 253506. https://doi.org/10.1063/1.5098066 doi: 10.1063/1.5098066
    [35] B. Spagnolo, C. Guarcello, L. Magazz$\grave{u}$, A. Carollo, D. P. Adorno, D. Valenti, Nonlinear relaxation phenomena in metastable condensed matter systems, Entropy, 19 (2017), 20. https://doi.org/10.3390/e19010020 doi: 10.3390/e19010020
    [36] C. Xu, S. Yuan, Competition in the chemostat: a stochastic multi-species model and its asymptotic behavior, Math. Biosci., 280 (2016), 1–9. https://doi.org/10.1016/j.mbs.2016.07.008 doi: 10.1016/j.mbs.2016.07.008
    [37] X. Yu, S. Yuan, T. Zhang, The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic blooms, Nonlinear Dyn., 91 (2018), 1653–1668. https://doi.org/10.1007/s11071-017-3971-6 doi: 10.1007/s11071-017-3971-6
    [38] X. Mao, Stochastic differential equations and spplications, Chichester: Horwood Publishing Limited, 1997.
    [39] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X
    [40] Q. Yang, D. Jiang, N. Shi, C. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248–271. https://doi.org/10.1016/j.jmaa.2011.11.072 doi: 10.1016/j.jmaa.2011.11.072
    [41] M. Liu, C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 73 (2016), 597–625. https://doi.org/10.1007/s00285-016-0970-z doi: 10.1007/s00285-016-0970-z
    [42] R. Khasminskii, Stochastic stability of differential equations, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0
    [43] Y. Zhao, S. Yuan, Q. Zhang, The effect of Lévy noise on the survival of a stochastic competitive model in an impulsive polluted environment, Appl. Math. Model., 40 (2016), 7583–7600. https://doi.org/10.1016/j.apm.2016.01.056 doi: 10.1016/j.apm.2016.01.056
    [44] S. Zhang, X. Meng, T. Feng, T. Zhang, Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Anal.-Hybri., 26 (2017), 19–37. https://doi.org/10.1016/j.nahs.2017.04.003 doi: 10.1016/j.nahs.2017.04.003
    [45] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Boston: Jones and Bartlett Publishers, 1995.
    [46] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, New York: Springer, 1984. https://doi.org/10.1007/978-1-4684-0176-9
    [47] R. C. Smith, P. Cheeseman, On the representation and estimation of spatial uncertainty, Int. J. Rob. Res., 5 (1986), 56–68. https://doi.org/10.1177/027836498600500404 doi: 10.1177/027836498600500404
    [48] A. Hastings, T. Powell, Chaos in a three-species food chain, Ecology, 72 (1991), 896–903. https://doi.org/10.2307/1940591 doi: 10.2307/1940591
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(544) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog