Research article

The ACE2 receptor protein-mediated SARS-CoV-2 infection: dynamic properties of a novel delayed stochastic system

  • Received: 05 January 2024 Revised: 17 February 2024 Accepted: 18 February 2024 Published: 26 February 2024
  • MSC : 37H10, 60H10

  • We investigated the dynamic effect of stochastic environmental fluctuations on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection system with time delay and mediations by the angiotensin-converting enzyme 2 (ACE2) receptor protein. First, we discussed the existence and uniqueness of global positive solutions as well as the stochastic ultimate boundedness of the stochastic SARS-CoV-2 model. Second, the asymptotic properties of stochastic time-delay system were investigated by constructing a number of appropriate Lyapunov functions and applying differential inequality techniques. These properties indicated a positive relationship between the strength of oscillations and the intensity of environmental fluctuations, and this launched the properties of a deterministic system. When the random disturbance was relatively large, the disease went extinct. When the random disturbance was relatively small and $ R_0 < 1 $, the disease could become extinct. Conversely, when the random disturbance was smaller and $ R_0 > 1 $, then it would oscillate around the disease enduring equilibrium. At last, a series of numerical simulations were carried out to show how the SARS-CoV-2 system was affected by the intensity of environmental fluctuations and time delay.

    Citation: Kai Zhang, Xinzhu Meng, Abdullah Khames Alzahrani. The ACE2 receptor protein-mediated SARS-CoV-2 infection: dynamic properties of a novel delayed stochastic system[J]. AIMS Mathematics, 2024, 9(4): 8104-8133. doi: 10.3934/math.2024394

    Related Papers:

  • We investigated the dynamic effect of stochastic environmental fluctuations on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection system with time delay and mediations by the angiotensin-converting enzyme 2 (ACE2) receptor protein. First, we discussed the existence and uniqueness of global positive solutions as well as the stochastic ultimate boundedness of the stochastic SARS-CoV-2 model. Second, the asymptotic properties of stochastic time-delay system were investigated by constructing a number of appropriate Lyapunov functions and applying differential inequality techniques. These properties indicated a positive relationship between the strength of oscillations and the intensity of environmental fluctuations, and this launched the properties of a deterministic system. When the random disturbance was relatively large, the disease went extinct. When the random disturbance was relatively small and $ R_0 < 1 $, the disease could become extinct. Conversely, when the random disturbance was smaller and $ R_0 > 1 $, then it would oscillate around the disease enduring equilibrium. At last, a series of numerical simulations were carried out to show how the SARS-CoV-2 system was affected by the intensity of environmental fluctuations and time delay.



    加载中


    [1] J. Giesecke, Modern infectious disease epidemiology, CRC Press, 2017.
    [2] C. L. Campbell, L. V. Madden, Introduction to plant disease epidemiology, John Wiley & Sons, 1990.
    [3] J. T. Ladner, N. D. Grubaugh, O. G. Pybus, K. G. Andersen, Precision epidemiology for infectious disease control, Nat. Med., 25 (2019), 206–211. https://doi.org/10.1038/s41591-019-0345-2 doi: 10.1038/s41591-019-0345-2
    [4] M. Nowak, R. M. May, Virus dynamics: mathematical principles of immunology and virology: mathematical principles of immunology and virology, Oxford University Press, UK, 2000.
    [5] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1991.
    [6] S. P. Adhikari, S. Meng, Y. J. Wu, Y. P. Mao, R. X. Ye, Q. Z. Wang, et al., Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review, Infect. Dis. Poverty, 9 (2020), 1–12. https://doi.org/10.1186/s40249-020-00646-x doi: 10.1186/s40249-020-00646-x
    [7] H. A. Khan, F. K. Baig, R. Mehboob, Nosocomial infections: epidemiology, prevention, control and surveillance, Asian. Pac. J. Trop. Bio., 7 (2017), 478–482. https://doi.org/10.1016/j.apjtb.2017.01.019 doi: 10.1016/j.apjtb.2017.01.019
    [8] F. Rahimi, A. T. B. Abadi, Is omicron the last SARS-CoV-2 variant of concern? Arch. Med. Res., 53 (2022), 336–338. https://doi.org/10.1016/j.arcmed.2022.01.001 doi: 10.1016/j.arcmed.2022.01.001
    [9] D. Duong, Alpha, Beta, Delta, Gamma: what's important to know about SARS-CoV-2 variants of concern? Can. Med. Assoc. J., 193 (2021), E1059–E1060. https://doi.org/10.1503/cmaj.1095949 doi: 10.1503/cmaj.1095949
    [10] N. L. Washington, K. Gangavarapu, M. Zeller, A. Bolze, E. T. Cirulli, K. M. S. Barrett, et al., Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States, Cell, 184 (2021), 2587–2594. https://doi.org/10.1016/j.cell.2021.03.052 doi: 10.1016/j.cell.2021.03.052
    [11] L. J. Abu-Raddad, H. Chemaitelly, H. H. Ayoub, H. M. Yassine, F. M. Benslimane, H. A. Al Khatib, et al., Severity, criticality, and fatality of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant, Clin. Infect. Dis., 75 (2022), e1188–e1191. https://doi.org/10.1093/cid/ciab909 doi: 10.1093/cid/ciab909
    [12] V. P. Chavda, A. B. Patel, D. D. Vaghasiya, SARS-CoV-2 variants and vulnerability at the global level, J. Med. Virol., 94 (2022), 2986–3005. https://doi.org/10.1002/jmv.27717 doi: 10.1002/jmv.27717
    [13] S. M. Reincke, M. Yuan, H. C. Kornau, V. M. Corman, S. Hoof, E. Sáanchez-Sendin, et al., SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies, Science, 375 (2022), 782–787. https://doi.org/10.1126/science.abm5835 doi: 10.1126/science.abm5835
    [14] Q. Li, X. M. Zhan, J. Wang, H. Z. Lu, Considerations and guidance to control the rebound in COVID-19 cases, Biosci. Trends, 15 (2021), 341–344. https://doi.org/10.5582/bst.2021.01361 doi: 10.5582/bst.2021.01361
    [15] Y. B. Zhou, H. L. Zhi, Y. Teng, The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity, J. Med. Virol., 95 (2023), e28138. https://doi.org/10.1002/jmv.28138 doi: 10.1002/jmv.28138
    [16] Y. Araf, F. Akter, Y. D. Tang, R. Fatemi, M. S. A. Parvez, C. F. Zheng, et al., Omicron variant of SARS-CoV-2: genomics, transmissibility, and responses to current COVID-19 vaccines, J. Med. Virol., 94 (2022), 1825–1832. https://doi.org/10.1002/jmv.27588 doi: 10.1002/jmv.27588
    [17] L. Zhang, Q. Q. Li, Z. T. Liang, T. Li, S. Liu, Q. Q. Cui, et al., The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron, Emerg. Microbes Infect., 11 (2022), 1–5. https://doi.org/10.1080/22221751.2021.2017757 doi: 10.1080/22221751.2021.2017757
    [18] P. Pileri, Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi, R. Petracca, et al., Binding of hepatitis C virus to CD81, Science, 282 (1998), 938–941. https://doi.org/10.1126/science.282.5390.938 doi: 10.1126/science.282.5390.938
    [19] C. B. Jackson, M. Farzan, B. Chen, H. Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23 (2022), 3–20. https://doi.org/10.1038/s41580-021-00418-x doi: 10.1038/s41580-021-00418-x
    [20] Y. H. Wang, D. Z. Meng, Quasi-semilattices on networks, Axioms, 12 (2023), 943. https://doi.org/10.3390/axioms12100943 doi: 10.3390/axioms12100943
    [21] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582–1586. https://doi.org/10.1126/science.271.5255.1582 doi: 10.1126/science.271.5255.1582
    [22] A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247–267. https://doi.org/10.1007/s00285-005-0321-y doi: 10.1007/s00285-005-0321-y
    [23] Israel Ministry of Health, COVID-19 vaccine effectiveness against the Delta variant, 2021.
    [24] S. Nasreen, H. Chung, S. Y. He, K. A. Brown, J. B. Gubbay, S. A. Buchan, et al., Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario, Nat. Microbiol., 7 (2022), 379–385. https://doi.org/10.1038/s41564-021-01053-0 doi: 10.1038/s41564-021-01053-0
    [25] J. K. K. Asamoah, E. Okyere, A. Abidemi, S. E. Moore, G. Q. Sun, Z. Jin, et al., Optimal control and comprehensive cost-effectiveness analysis for COVID-19, Results Phys., 33 (2022), 105177. https://doi.org/10.1016/j.rinp.2022.105177 doi: 10.1016/j.rinp.2022.105177
    [26] A. Omame, M. Abbas, U. K. Nwajeri, C. P. Onyenegecha, A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function, Alex. Eng. J., 61 (2022), 7619–7635. https://doi.org/10.1016/j.aej.2022.01.012 doi: 10.1016/j.aej.2022.01.012
    [27] M. Fudolig, R. Howard, The local stability of a modified multi-strain SIR model for emerging viral strains, PloS One, 15 (2020), e0243408. https://doi.org/10.1371/journal.pone.0243408 doi: 10.1371/journal.pone.0243408
    [28] A. M. Ramos, M. Vela-Pérez, M. R. Ferrández, A. B. Kubik, B. Ivorra, Modeling the impact of SARS-CoV-2 variants and vaccines on the spread of COVID-19, Commun. Nonlinear Sci., 102 (2021) 105937. https://doi.org/10.1016/j.cnsns.2021.105937 doi: 10.1016/j.cnsns.2021.105937
    [29] J. L. Zhou, Y. Yang, Global dynamics of a discrete viral infection model with time delay, virus-to-cell and cell-to-cell transmissions, J. Differ. Equations Appl., 23 (2017), 1853–1868. https://doi.org/10.1080/10236198.2017.1371144 doi: 10.1080/10236198.2017.1371144
    [30] J. L. Lv, W. B. Ma, Global asymptotic stability of a delay differential equation model for SARS-CoV-2 virus infection mediated by ACE2 receptor protein, Appl. Math. Lett., 142 (2023), 108631. https://doi.org/10.1016/j.aml.2023.108631 doi: 10.1016/j.aml.2023.108631
    [31] A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3–44. https://doi.org/10.1137/S0036144598335107 doi: 10.1137/S0036144598335107
    [32] O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [33] S. P. Rajasekar, M. Pitchaimani, Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence, Appl. Math. Comput., 377 (2020), 125143. https://doi.org/10.1016/j.amc.2020.125143 doi: 10.1016/j.amc.2020.125143
    [34] D. Okuonghae, Analysis of a stochastic mathematical model for tuberculosis with case detection, Int. J. Dynam. Control, 10 (2022), 734–747. https://doi.org/10.1007/s40435-021-00863-8 doi: 10.1007/s40435-021-00863-8
    [35] Y. L. Cai, J. J. Jiao, Z. J. Gui, Y. T. Liu, W. M. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009
    [36] H. K. Qi, X. Z. Meng, Mathematical modeling, analysis and numerical simulation of HIV: the influence of stochastic environmental fluctuations on dynamics, Math. Comput. Simul., 187 (2021), 700–719. https://doi.org/10.1016/j.matcom.2021.03.027 doi: 10.1016/j.matcom.2021.03.027
    [37] M. Liu, M. L. Deng, Permanence and extinction of a stochastic hybrid model for tumor growth, Appl. Math. Lett., 94 (2019), 66–72. https://doi.org/10.1016/j.aml.2019.02.016 doi: 10.1016/j.aml.2019.02.016
    [38] Q. Liu, D. Q. Jiang, N. Z. Shi, Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching, Appl. Math. Comput., 316 (2018), 310–325. https://doi.org/10.1016/j.amc.2017.08.042 doi: 10.1016/j.amc.2017.08.042
    [39] A. Din, Y. J. Li, A. Yusuf, Delayed hepatitis B epidemic model with stochastic analysis, Chaos Soliton. Fract., 146 (2021), 110839. https://doi.org/10.1016/j.chaos.2021.110839 doi: 10.1016/j.chaos.2021.110839
    [40] W. M. Wang, Y. L. Cai, J. L. Li, Z. J. Gui, Periodic behavior in a FIV model with seasonality as well as environment fluctuations, J. Franklin Inst., 354 (2017), 7410–7428. https://doi.org/10.1016/j.jfranklin.2017.08.034 doi: 10.1016/j.jfranklin.2017.08.034
    [41] A. Omamea, M. Abbasc, A. Dine, Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2, Math. Comput. Simul., 204 (2023), 302–336. https://doi.org/10.1016/j.matcom.2022.08.012 doi: 10.1016/j.matcom.2022.08.012
    [42] X. R. Mao, Stochastic differential equations and applications, Elsevier, 2007.
    [43] X. R. Mao, C. G. Yuan, Stochastic differential equations with Markovian switching, Imperial College Press, 2006. https://doi.org/10.1142/p473
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(543) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog