Processing math: 47%
Research article

The ACE2 receptor protein-mediated SARS-CoV-2 infection: dynamic properties of a novel delayed stochastic system

  • Received: 05 January 2024 Revised: 17 February 2024 Accepted: 18 February 2024 Published: 26 February 2024
  • MSC : 37H10, 60H10

  • We investigated the dynamic effect of stochastic environmental fluctuations on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection system with time delay and mediations by the angiotensin-converting enzyme 2 (ACE2) receptor protein. First, we discussed the existence and uniqueness of global positive solutions as well as the stochastic ultimate boundedness of the stochastic SARS-CoV-2 model. Second, the asymptotic properties of stochastic time-delay system were investigated by constructing a number of appropriate Lyapunov functions and applying differential inequality techniques. These properties indicated a positive relationship between the strength of oscillations and the intensity of environmental fluctuations, and this launched the properties of a deterministic system. When the random disturbance was relatively large, the disease went extinct. When the random disturbance was relatively small and R0<1, the disease could become extinct. Conversely, when the random disturbance was smaller and R0>1, then it would oscillate around the disease enduring equilibrium. At last, a series of numerical simulations were carried out to show how the SARS-CoV-2 system was affected by the intensity of environmental fluctuations and time delay.

    Citation: Kai Zhang, Xinzhu Meng, Abdullah Khames Alzahrani. The ACE2 receptor protein-mediated SARS-CoV-2 infection: dynamic properties of a novel delayed stochastic system[J]. AIMS Mathematics, 2024, 9(4): 8104-8133. doi: 10.3934/math.2024394

    Related Papers:

    [1] Ahmed M. Elaiw, Amani S. Alsulami, Aatef D. Hobiny . Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity. AIMS Mathematics, 2024, 9(1): 1046-1087. doi: 10.3934/math.2024052
    [2] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model. AIMS Mathematics, 2023, 8(3): 6136-6166. doi: 10.3934/math.2023310
    [3] Tahir Khan, Fathalla A. Rihan, Muhammad Bilal Riaz, Mohamed Altanji, Abdullah A. Zaagan, Hijaz Ahmad . Stochastic epidemic model for the dynamics of novel coronavirus transmission. AIMS Mathematics, 2024, 9(5): 12433-12457. doi: 10.3934/math.2024608
    [4] Afnan Al Agha, Hakim Al Garalleh . Oncolysis by SARS-CoV-2: modeling and analysis. AIMS Mathematics, 2024, 9(3): 7212-7252. doi: 10.3934/math.2024351
    [5] S. M. E. K. Chowdhury, J. T. Chowdhury, Shams Forruque Ahmed, Praveen Agarwal, Irfan Anjum Badruddin, Sarfaraz Kamangar . Mathematical modelling of COVID-19 disease dynamics: Interaction between immune system and SARS-CoV-2 within host. AIMS Mathematics, 2022, 7(2): 2618-2633. doi: 10.3934/math.2022147
    [6] Sara J Hamis, Fiona R Macfarlane . A single-cell mathematical model of SARS-CoV-2 induced pyroptosis and the effects of anti-inflammatory intervention. AIMS Mathematics, 2021, 6(6): 6050-6086. doi: 10.3934/math.2021356
    [7] Oluwaseun F. Egbelowo, Justin B. Munyakazi, Manh Tuan Hoang . Mathematical study of transmission dynamics of SARS-CoV-2 with waning immunity. AIMS Mathematics, 2022, 7(9): 15917-15938. doi: 10.3934/math.2022871
    [8] Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad . Computational analysis of COVID-19 model outbreak with singular and nonlocal operator. AIMS Mathematics, 2022, 7(9): 16741-16759. doi: 10.3934/math.2022919
    [9] Chandan Maji, Fahad Al Basir, Debasis Mukherjee, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran . COVID-19 propagation and the usefulness of awareness-based control measures: A mathematical model with delay. AIMS Mathematics, 2022, 7(7): 12091-12105. doi: 10.3934/math.2022672
    [10] R. Sriraman, R. Samidurai, V. C. Amritha, G. Rachakit, Prasanalakshmi Balaji . System decomposition-based stability criteria for Takagi-Sugeno fuzzy uncertain stochastic delayed neural networks in quaternion field. AIMS Mathematics, 2023, 8(5): 11589-11616. doi: 10.3934/math.2023587
  • We investigated the dynamic effect of stochastic environmental fluctuations on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection system with time delay and mediations by the angiotensin-converting enzyme 2 (ACE2) receptor protein. First, we discussed the existence and uniqueness of global positive solutions as well as the stochastic ultimate boundedness of the stochastic SARS-CoV-2 model. Second, the asymptotic properties of stochastic time-delay system were investigated by constructing a number of appropriate Lyapunov functions and applying differential inequality techniques. These properties indicated a positive relationship between the strength of oscillations and the intensity of environmental fluctuations, and this launched the properties of a deterministic system. When the random disturbance was relatively large, the disease went extinct. When the random disturbance was relatively small and R0<1, the disease could become extinct. Conversely, when the random disturbance was smaller and R0>1, then it would oscillate around the disease enduring equilibrium. At last, a series of numerical simulations were carried out to show how the SARS-CoV-2 system was affected by the intensity of environmental fluctuations and time delay.



    During the development of human society, the outbreak of various infectious diseases and epidemics has brought great economic losses and harmful to human well-being, and therefore infectious diseases have always attracted widespread attention and research. Epidemiology [1,2,3] is a scientific discipline that specializes in the research of the transmission, occurrence, distribution, and control of disease in populations [4,5]. Using epidemiological studies, one can gain an improved comprehension of the pathophysiology, modes of transmission, and influencing variables of diseases, which can aid in disease prevention and control[6,7].

    Since the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to novel coronavirus infection has spread rapidly worldwide, bringing great challenges to human society. SARS-CoV-2 is a single-stranded RNA virus that undergoes genetic mutations during replication due to factors such as its replication mechanism and genome structure. As a result, multiple mutated strains emerged[8,9], such as, the B.1.1.7 (Alpha) mutated strain detected in the UK in September 2020 [10]. In December 2020, a variant strain B.1.351 (Beta) was detected in South Africa [11,12,13]. The P.1 (Gamma) variant detected in Brazil in January 2021 was strongly drug-resistant. The B.1.617.2 (Delta) variant strain was detected in the UK in March 2021[9,12,14]. The Omicron mutant was detected in Botswana in November 2021, and it is the most mutated strain of the new library virus so far[15,16,17]. These five variants are called "variants of concern".

    Normally, the process of SARS-CoV-2 virus incursion into cells is a multifaceted interaction. First, the free SARS-CoV-2 virus combines with the receptor angiotensin-converting enzyme 2 (ACE2) on the target cell via the hook protein (S protein), which binds to the cell surface. Second, once the virus binds to the surface of the target cell, its fusion protein undergoes a conformational change that results in the virus fusing with the target cell membrane. This allows the viral genetic material (RNA) to enter the target cytoplasm. Finally, after the viral RNA enters the cytoplasm, it will utilize the target cell's biosynthetic machinery to replicate itself and produce new viral particles. These new viral particles gradually accumulate within the cell and are eventually released to continue infecting other cells. Among the steps involved in viral replication are transcription, translation, genome replication, and assembly. Blocking any of these stages in the process may prevent viral replication and provide selective targets for vaccines and drugs to act on. For example, hepatitis C virus particles invade regular cells by combining with target cell receptors via the E2 proteins[18]. SARS-CoV-2 enters target cells by combining with ACE2 receptors on target cells[19].

    In recent decades, the development of mathematical models have provided powerful tools and methods for epidemiological research, allowing us to more accurately understand the transmission patterns of epidemics, predict the development trends of epidemics, and guide the development of appropriate prevention and control strategies[20]. In 1996, Perelson et al. [21] developed a fundamental model that includes free viruses, uninfected cells, and infected cells to study the interaction between host cells and replicating viruses. A brief mathematical model of free viruses, antibodies, uninfected cells, and infected cells was considered by Murase et al. [22]. For example, literature[23,24] investigated the effectiveness of existing vaccines in controlling the SARS-CoV-2 virus. References [25,26,27,28] studied the kinetics of SARS-CoV-2 and its strains.

    On the one hand, the infection process of viruses and cells is a complex and dynamic process that is usually not completed in a short period of time. For a virus, such as SARS-CoV-2, the infection process involves multiple links, from the entry of the virus into the target cell to the replication and spread of the virus, each of which requires a certain time delay. Therefore, the affect of time delay on the SARS-CoV-2 system needs to be considered. In recent years, a number of infectious disease models with time delays have been proposed [29,30]. In 2023, Lv and Ma [30] established the system SARA-CoV-2 with time delay as follows:

    {dU(t)dt=λβv(t)f(D(t))U(t)d1U(t),dI(t)dt=ed2ωβv(tω)f(D(tω)U(tω))d2I(t),dv(t)dt=d2NI(t)c1v(t),dD(t)dt=λ1kβv(t)f(D(t))D(t)c2D(t), (1.1)

    where U(t), I(t), v(t), and D(t) represent the densities of uninfected target celles, infected target cells, free viruses, and ACE2 receptors carried by uninfected target cells at time t, respectively. λ and d1 are the proliferation and mortality rates of uninfected target cells, respectively. The free virus fuses with uninfected target cells mediated by the ACE2 receptor, leading to a reduction of uninfected target cell numbers βv(t)f(D(t))U(t), in which β denotes the rate constant for free virus infection of uninfected target cells, and f(D(t)) denotes the probability that the virus successfully enters the target cell under ACE2 receptor mediation. Normally, f(D(t)) is defined as a Hill function:

    f(D)=DnDn1+Dn,

    in which the Hill coefficient is denoted by n>0, and D1 denotes the half-saturation constant. It goes to show that f(D(t))(0,1). Let f(D) be a continuously differentiable function that strictly monotonically increases on [0,+) and fulfills f(0)=0. The term ed2ωβv(tω)f(D(tω)U(tω) represents the value added by infected cells, and d2 denotes the mortality rate of infected target cells. The time delay is denoted by the constant ω, and the term ed2ω denotes the survival probability of infected cells after time ω[4,31]. d2NI(t) denotes the amount of virus released from dead infected target cells, and the integer N is positive. Viruses degrade at a rate of c1. λ1 and c2 represent proliferation and mortality rates of ACE2 receptor, respectively. The term βv(t)f(D(t))U(t) refers to the reduction in the number of uninfected target cells resulting from free virus, and D(t)/U(t) is the average amount of ACE2 receptors that are carried by per uninfected target cell. Therefore, the reduction of ACE2 receptors resulting from the reduction of non-infected target cells denotes

    kβv(t)f(D(t))U(t)×D(t)/U(t)=kβv(t)f(D(t))D(t),

    in which k is a constant ratio. It is assumed that every parameter is a positive constant.

    From [32], the next generation matrix method is used to calculate that the system (1.1) has one basic reproduction number

    R0=ed2ωβNλc1d1f(λ1c2),

    which has a number of properties, as follows:

    (1) System (1.1) possesses a disease-free equilibrium point

    E0=(λd1,0,0,λ1c2)

    when R0<1, and this point is globally asymptotically stable.

    (2) System (1.1) possesses an endemic disease equilibrium point

    E=(U,I,v,D)

    when R0>1, and this point is globally asymptotically stable.

    On the other hand, some epidemiologic models usually consider the impact of environmental variables like precipitation, temperature, and relative humidity when exploring disease transmission[33,34]. These factors in the environment may have a great influence on the viability, speed of spread, and range of transmission of pathogens. Therefore, during the infection process of the SARS-CoV-2 virus, it is inevitable that it will be affected by various environmental noises, which may have a great impact on the whole system. Generally, white noise, as a major environmental disturbance, is a noise consisting of zero-mean random signals of various frequencies. It is a continuous disturbance that can simulate various small or medium level fluctuations in the environment. Moreover these fluctuations have relatively little effect on the intrinsic cell growth rate. Therefore, revealing how environmental white noise disturbs and effects the SARA-CoV-2 system has great practical significance. Stochastic models with white noise interference have been constructed and investigated by numerous academics in the last few years. The reader is referred to the literature [35,36,37,38,39,40,41] and references contained therein. For example, Omamea et al.[41] proposed a SARS-CoV-2 bivariate stochastic model, and investigated the global asymptotic stability of the equilibrium point as well as the threshold conditions for disease extinction and ergodic stationary distribution.

    Here, we consider the effect of stochastic environmental fluctuations on target cells, which leads to the following stochastic SARA-CoV-2 system with time delay

    {dU(t)=[λβv(t)f(D(t))U(t)d1U(t)]dt+σ1U(t)dB1(t),dI(t)=[ed2ωβv(tω)f(D(tω))U(tω)d2I(t)]dt+σ2I(t)dB2(t),dv(t)=[d2NI(t)c1v(t)]dt,dD(t)=[λ1kβv(t)f(D(t))D(t)c2D(t)]dt, (1.2)

    where Bi(t) (i=1,2) is standard Brownian motions independent of each other and Bi(0)=0. And σ2i0 (i=1,2) is the intensity of white noise.

    Our objective next is to investigate how stochastic disturbances in system (1.2) affect the global asymptotic stability of the equilibrium point that determines system (1.1).

    The initial conditions of system (1.2) are

    {U(ξ)=Φ1(ξ),  I(ξ)=Φ2(ξ),v(ξ)=Φ3(ξ),  D(ξ)=Φ4(ξ),Φi(ξ)0,   ξ[ω,0],   i=1,2,3,4,(Φ1,Φ2,Φ3,Φ4)C, (1.3)

    here C stands for the Banach space C ([ω,0], R4+) of continuous functions mapping the interval [ω,0] into R4+ and

    R4+={y=(y1,y2,y3,y4)R4+,  yi>0,  i=1,2,3,4}.

    We further assume, on the basis of biological significance, that

    Φi(ξ)>0,  (i=1,2,3,4).

    Following is an arrangement of the remaining of the contents of the paper. In Section 2, we demonstrate that the stochastic system is stochastically ultimately bounded and has a global positive solution. In Section 3, by building a number of appropriate Lyapunov functions and utilizing differential inequality techniques, we investigate the long-term asymptotic properties of the stochastic system with time delay. Finally, we give some numerical simulations and discuss the conclusions.

    Lemma 2.1. ([42], Itô's formula) For a more detailed explanation of Itô's formula, see [42]. The following are the main formulas applied.

    dV(X(t),t)=Vt(X(t),t)+VX(X(t),t)F(t)+12trace[GT(t)VXX(X(t),t)G(t)]dt+VX(X(t),t)G(t)dB(t),

    then by the diffusion operator

    LV:Rn×R+R

    and

    LV(X(t),t)=Vt(X(t),t)+VX(X(t),t)F(t)+12trace[GT(t)VXX(X(t),t)G(t)],

    the another pxpression for Itô's formula is

    dV(X(t),t)=LV(X(t),t)dt+VX(X(t),t)G(t)dB(t).

    Theorem 2.1. There is a unique positive solution (U(t),I(t),v(t),D(t)) R4+ to system (1.2) at t0 for any given initial value (1.3), and the solution will stay in R4+ with a probability of one (a.s.).

    Proof. Due to the fact that the coefficients of the system (1.2) fulfill the local Lipschitz conditions, then for any given initial condition (1.3), there exists a unique local solution (U(t),I(t),v(t),D(t)) on t[0,ωe), in which ωe is the time of explosion. We merely have to prove that ωe= to guarantee that this solution is global. We will not go into the details here and can refer to the literature [29]. Construct a C2-function V: R4+R+ by

    V(U,I,v,D)=ed2ωU+(I1lnI)+1N(vc1c1lnvc1)+1ked2ωD+ed2ωttωβv(θ)f(D(θ))U(θ)dθ.

    Application of Itô's formula yields

    dV=LVdt+ed2ωσ1UdB1(t)+σ2(I1)dB2(t),

    where

    LV=ed2ω[λβvf(D)Ud1U]+(11I)[ed2ωβv(tω)f(D(tω))U(tω)d2I]+12σ22+1N(1c1v)(d2NIc1v)+1ked2ω[λ1kβvf(D)Dc2D]+ed2ωβvf(D)Ued2ωβv(tω)f(D(tω))U(tω)d2+ed2ω(λ+λ1k)+c21N+12σ22:=M,

    where M is a non-negative constant. The proof of the rest is given in[28] and will not be repeated here.

    Definition 2.1. ([43]) Assume that the solution of system (1.2) with initially value (1.3) is (U(t),I(t),v(t),D(t)). If there is a constant Γ=Γ(α)>0 for any α(0,1), and the solution of system (1.2) satisfies

    lim suptP{|U(t),I(t),v(t),D(t)|Γ}1α,

    then the system (1.2) is stochastically ultimately bounded.

    Theorem 2.2. The solution (U(t),I(t),v(t),D(t)) of the system (1.2) is stochastically ultimate bounded for any initial value (1.3).

    Proof. Construct a C2function V: R4+R+ by

    V(U,I,v,D)=ed2ωU+I+12Nv+ed2ωD.

    Applying Itô's formula gets

    dV=LVdt+ed2ωσ1UdB1(t)+σ2IdB2(t),

    where

    LV=ed2ω[λβvf(D)Ud1U]+[ed2ωβv(tω)f(D(tω))U(tω)d2I]+12N(d2NIc1v)+ed2ω[λ1kβvf(D)Dc2D]ed2ωλH0[ed2ωU+I+12Nv+ed2ωD]ed2ωβ[vf(D)Uv(tω)f(D(tω)U(tω)]+ed2ωλ1ed2ωkβvf(D)Ded2ω(λ+λ1)H0[ed2ωU+I+12Nv+ed2ωD]ed2ωβ[vf(D)Uv(tω)f(D(tω))U(tω)]=ed2ω(λ+λ1)H0Ved2ωβ[vf(D)Uv(tω)f(D(tω))U(tω)],

    where

    H0=min{d1,d22,c1,c2},

    then,

    dV[ed2ω(λ+λ1)H0V]dted2ωβ[vf(D)Uv(tω)f(D(tω))U(tω)]dt+ed2ωσ1UdB1(t)+σ2IdB2(t).

    Applying Itô's formula to eH0tV yields

    deH0tV=eH0t(dV+H0Vdt)eH0t[ed2ω(λ+λ1)H0V]dteH0ted2ωβ[vf(D)Uv(tω)f(D(tω))U(tω)]dt+eH0t[ed2ωσ1UdB1(t)+σ2IdB2(t)]+eH0tH0Vdt=eH0ted2ω(λ+λ1)dteH0ted2ωβ[vf(D)Uv(tω)f(D(tω))U(tω)]dt+eH0t[ed2ωσ1UdB1(t)+σ2IdB2(t)].

    Taking the expectation for either side of the above inequality results in

    eH0tEV(U(t),I(t),v(t),D(t))V(U(0),I(0),v(0),D(0))+ed2ω(λ+λ1)H0(eH0t1)ed2ωβEt0eH0(s+ω)v(s)f(D(s))U(s)ds+ed2ωβEtωωeH0(s+ω)v(s)f(D(s))U(s)dsV(U(0),I(0),v(0),D(0))+ed2ω(λ+λ1)H0(eH0t1)+ed2ωβ0ωeH0(s+ω)v(s)f(D(s))U(s)ds,

    Taking the upper limit of the above inequality, one has

    lim suptEV(U(t),I(t),v(t),D(t))ed2ω(λ+λ1)H0.

    So,

    lim suptEV(U(t)+I(t)+v(t)+D(t))1hlim suptEV(U(t),I(t),v(t),D(t))ed2ω(λ+λ1)H0h,

    where

    h=min{ed2ω,1,12N}.

    Therefore, for any α>0, set

    Γ=λ+λ1ed2ωH0hα,

    application of Chebyshev's inequality leads to

    P{|U(t),I(t),v(t),D(t)|>Γ}E|U(t)+I(t)+v(t)+D(t)|Γ.

    Hence,

    lim suptP{|U(t),I(t),v(t),D(t)|>Γ}α.

    This implies

    lim suptP{|U(t),I(t),v(t),D(t)|Γ}1α.

    The asymptotic properties of the stochastic system (1.2) near the disease-free equilibrium E0 and the endemic equilibrium E are examined in this subsection.

    Definition 3.1. Suppose (U(t),I(t),v(t),D(t)) is the solution of system (1.2) with initial conditions (1.3), and

    ˉE=(ˉU,ˉI,ˉv,ˉD)

    is an equilibrium point of the corresponding deterministic system (1.1). If there exists a constant Λ>0 that makes the following equation hold true

    lim supt1tEt0[(U(s)ˉU)2+(I(s)ˉI)2+(v(s)ˉv)2+(D(s)ˉD)2]dsΛa.s.,

    then we claim that the solution of the system (1.2) will oscillate around the equilibrium point ˉE=(ˉU,ˉI,ˉv,ˉD) of its deterministic system (1.1).

    Lemma 3.1. ([34]) The Young inequality is specified as follows

    |m|x|n|yε|m|(x+y)+yx+y[xε(x+y)]xy|n|(x+y),m,nR,x,y,ε>0.

    System (1.1) has a globally asymptotically stable equilibrium point

    E0=(λd1,0,0,λ1c2),

    when R0<1. The asymptotic characteristics of the system (1.2) solution in the vicinity of E0 are investigated in this subsection.

    Theorem 3.1. Suppose (U(t),I(t),v(t),D(t)) is the solution of the system (1.2) with the initial conditions (1.3). If

    R0<1andσ2i<di,  (i=1,2)

    are valid, then,

    lim supt1tEt0(U(s)λd1)2dsλ2σ21(d1σ21)d21,a.s.,lim supt1tEt0I2(s)dsΦ1,a.s.,lim supt1tEt0v2(s)ds2N2γ1c1,a.s.,lim supt1tEt0f(ξ)(D(s)λ1c2)2dskλ1σ212c22,a.s.,

    where

    Φ1=e2d2ω(d1+d2)2λ2σ21(d1σ21)(d2σ22)d21d2,γ1=e2d2ωλ2σ21(d1σ21)d21(1+2d1+c1+d21c1)+(d214+c1+σ222)Φ1.

    Proof. Define

    V1=12(Uλd1)2.

    Applying Itô's formula, one has

    dV1=LV1dt+σ1U(Uλd1)dB1(t),

    where

    LV1=(Uλd1)[λβvf(D)Ud1U]+12σ21U2=d1(Uλd1)2+(Uλd1)[βvf(D)(Uλd1)λd1βvf(D)]+12σ21U2d1(Uλd1)2βvf(D)λd1(Uλd1)+σ21(Uλd1)2+σ21λ2d21=(d1σ21)(Uλd1)2βvf(D)λd1(Uλd1)+σ21λ2d21.

    Define

    V2=I(t+ω)+d2t+ωtI(s)ds.

    Applying Itô's formula leads to

    dV2=LV2dt+σ2IdB2(t),

    where

    LV2=ed2ωβvf(D)Ud2I(t+ω)+d2I(t+ω)d2I(t)=ed2ωβvf(D)(Uλd1)+ed2ωβvf(D)λd1d2I=ed2ωβvf(D)(Uλd1)+d2I(ed2ωβvf(D)λd1d2I1)=ed2ωβvf(D)(Uλd1)+d2I(ed2ωβf(D)Nλc1d11)ed2ωβvf(D)(Uλd1)+d2I(ed2ωβNλc1d1f(λ1c2)1)ed2ωβvf(D)(Uλd1).

    Define

    V3=ed2ωV1+λd1V2.

    It is easy to get that

    LV3ed2ω(d1σ21)(Uλd1)2+ed2ωλ2σ21d21. (3.1)

    Taking the expected yield after integrating each side of Eq (3.1) from 0 to t

    EV3(t)EV3(0)ed2ω(d1σ21)Et0(U(s)λd1)2ds+ed2ωλ2σ21d21t. (3.2)

    Taking the upper limit yield after dividing both sides of (3.2) by t

    lim supt1tEt0(U(s)λd1)2dsλ2σ21(d1σ21)d21,a.s.

    Moreover, define

    V4=12[ed2ω(Uλd1)+I(t+ω)]2,

    then

    LV4=[ed2ω(Uλd1)+I(t+ω)][ed2ω(λd1U)d2I(t+ω)]+12e2d2ωσ21U2+12σ22I2(t+ω)=[ed2ω(Uλd1)+I(t+ω)][ed2ωd1(Uλd1)+d2I(t+ω)]+12e2d2ωσ21U2+12σ22I2(t+ω)=e2d2ωd1(Uλd1)2d2I2(t+ω)ed2ω(d1+d2)(Uλd1)I(t+ω)+12e2d2ωσ21U2+12σ22I2(t+ω)e2d2ωd1(Uλd1)2d2I2(t+ω)+d22I2(t+ω)+e2d2ω(d1+d2)22d2(Uλd1)2+e2d2ωσ21(Uλd1)2+e2d2ωλ2σ21d21+12σ22I2(t+ω)=e2d2ω(d21+d222d2+σ21)(Uλd1)212(d2σ22)I2(t+ω)+e2d2ωλ2σ21d21,

    where the Young inequality is utilized in the inequality above

    ed2ω(d1+d2)(Uλd1)I(t+ω)d22I2(t+ω)+e2d2ω(d1+d2)22d2(Uλd1)2.

    Define

    V5=ed2ω[d21+d222d2(d1σ21)+σ21d1σ21]V3+V4+12(d2σ22)t+ωtI2(s)ds,

    then,

    LV512(d2σ22)I2+e2d2ω(d1+d2)2λ2σ212(d1σ21)d21d2. (3.3)

    Taking the expected yield after integrating each side of Eq (3.3) from 0 to t

    EV5(t)EV5(0)12(d2σ22)Et0I2(s)ds+e2d2ω(d1+d2)2λ2σ212(d1σ21)d21d2t. (3.4)

    Taking the upper limit yield after dividing both sides of (3.4) by t

    lim supt1tEt0I2(s)dse2d2ω(d1+d2)2λ2σ21(d1σ21)(d2σ22)d21d2=Φ1,a.s.

    Define

    V6=12[ed2ω(Uλd1)+I(t+ω)+1Nv(t+ω)]2,

    then,

    LV6=[ed2ω(Uλd1)+I(t+ω)+1Nv(t+ω)][ed2ω(λd1U)c1v(t+ω)]+12e2d2ωσ21U2+12σ22I2(t+ω)e2d2ω(d1σ21)(Uλd1)2ed2ωd1(Uλd1)I(t+ω)ed2ω(d1+c1)N(Uλd1)v(t+ω)c1NI(t+ω)v(t+ω)c1N2v2(t+ω)+12σ22I2(t+ω)+e2d2ωλ2σ21d21e2d2ω(d1σ21)(Uλd1)2+e2d2ω(Uλd1)2+d214I2(t+ω)+e2d2ω(d1+c1)2c1(Uλd1)2+c14N2v2(t+ω)+c1I2(t+ω)+c14N2v2(t+ω)c1N2v2(t+ω)+12σ22I2(t+ω)+e2d2ωλ2σ21d21=e2d2ω(1+d1+c1+d21c1+σ21)(Uλd1)2+(d214+c1+σ222)I2(t+ω)c12N2v2(t+ω)+e2d2ωλ2σ21d21,

    whereby we employ the Young inequality in the inequality above

    {ed2ωd1(Uλd1)I(t+ω)e2d2ω(Uλd1)2+d214I2(t+ω),ed2ω(d1+c1)N(Uλd1)v(t+ω)e2d2ω(d1+c1)2c1(Uλd1)2+c14N2v2(t+ω),c1NI(t+ω)v(t+ω)c1I2(t+ω)+c14N2v2(t+ω),

    and the inequality (a+b)22a2+2b2 for any a,bR+.

    Define

    V7=ed2ωp1V3+h1V4+V6+c12N2t+ωtv2(s)ds,

    where

    p1=1d1σ21[(1+d1+c1+d21c1+σ21)+h1(d21+d222d2+σ21)],h1=2d2σ22(d214+c1+σ222).

    Therefore,

    LV7c12N2v2+e2d2ωλ2σ21(d1σ21)d21(1+2d1+c1+d21c1)+(d214+c1+σ222)Φ1=c12N2v2+γ1, (3.5)

    where

    γ1=e2d2ωλ2σ21(d1σ21)d21(1+2d1+c1+d21c1)+(d214+c1+σ222)Φ1.

    Taking the expected yield after integrating each side of Eq (3.5) from 0 to t

    EV7(t)EV7(0)c12N2Et0v2(s)ds+γ1t. (3.6)

    Taking the upper limit yield after dividing both sides of (3.6) by t

    lim supt1tEt0v2(s)ds2N2γ1c1,a.s.

    Define

    V8=(UU0U0lnUU0)+ed2ωI+ed2ω1Nv+U0kD0(DD0DD0f(D0)f(ξ)dξ)+ttωβf(D(s))v(s)U(s)ds,

    where

    U0=λd1,D0=λ1c2,

    then,

    LV8=(1U0U)(λβf(D)vUd1U)+ed2ω[ed2τβv(tω)f(D(tω))U(tω)d2I]+ed2ω1N(d2NIc1v)+U0kD0(1f(D0)f(D))(λ1kβf(D)vDc2D)+βf(D)vUβv(tω)f(D(tω))U(tω)+12U0σ21=λ(2U0UUU0)+c1Ned2ω(ed2ωNU0βf(D0)c11)v+U0βv[f(D)f(D0)]+U0βf(D)vDD0[f(D0)f(D)1]+U0λ1kD0[1f(D0)f(D)]+U0c2DkD0[f(D0)f(D)1]+12U0σ21=λ(2U0UUU0)+c1Ned2ω(R01)v+(U0c2kD0+βU0f(D)vD0)(DD0)[f(D0)f(D)1]+12U0σ21U0c2kD0(DD0)f(D)f(D0)f(D)+12U0σ21=U0c2f(ξ)kD0f(D)(DD0)2+12U0σ21U0c2kD0f(ξ)(DD0)2+12U0σ21,

    where

    f(D)f(D0)=f(ξ)(DD0),

    ξ is between D and D0, and f(ξ)>0, so

    LV8λc22kλ1d1f(ξ)(Dλ1c2)2+λσ212d1. (3.7)

    Taking the expected yield after integrating each side of Eq (3.7) from 0 to t

    EV8(t)EV8(0)λc22kλ1d1Et0f(ξ)(D(s)λ1c2)2ds+λσ212d1t. (3.8)

    Taking the upper limit yield after dividing both sides of (3.8) by t

    lim supt1tEt0f(ξ)(D(s)λ1c2)2dskλ1σ212c22,a.s.

    Remark 3.1. When σi=0 (i=1,2), it is evident from Theorem 3.1 that

    {LV3ed2ωd1(Uλd1)20,LV512d2I20,LV7c12N2v20,LV8λc22kλ1d1f(ξ)(Dλ1c2)20,

    this means that the disease-free equilibrium point E0 of system (1.1) is globally asymptotically stable, from which the nature of the deterministic system can be introduced.

    System (1.1) has a globally asymptotically stable equilibrium point

    E=(U,I,v,D)

    when R0>1. The asymptotic characteristics of the system (1.2) solution in the vicinity of E are investigated in this subsection.

    Theorem 3.2. Suppose (U(t),I(t),v(t),D(t)) is the solution of system (1.2) with the initial conditions (1.3). If R0>1 and σ21<d1,2σ22<d2 are valid, then

    lim supt1tEt0(U(s)U)2dsψ2d1σ21,a.s.,lim supt1tEt0(I(s)I)2dsΦ2,a.s.,lim supt1tEt0(v(s)v)2ds2N2γ2c1,a.s.,lim supt1tEt0f(ξ)(D(s)D)2dskDφ2ed2ωc2U,a.s.,

    where

    ψ2=2d1+βvf(D)2d1(U)2σ21+(d1+βvf(D))U2d1ed2ωIσ22,Φ2=2d22σ22[e2d2ωd1σ21(d21+d222d2+σ21)ψ2+e2d2ωσ21(U)2+σ22(I)2],γ2=e2d2ω(1+d1+c1+d21c1+σ21)ψ2+(d214+c1+σ22)Φ2+e2d2ωσ21(U)2+σ22(I)2,φ2=12ed2ωUσ21+12Iσ22.

    Proof. Observing that the positive equilibrium of the system (1.1) is (U^*, I^*, v^*, D^*) , we have

    \begin{equation*} \label{eq.5} \left\{\begin{aligned} & \lambda-\beta v^*f(D^*)U^*-d_1U^* = 0, \\ & e^{-d_2\omega}\beta v^*f(D^*)U^*-d_2I^* = 0, \\ & d_2NI^*-c_1v^* = 0, \\ & \lambda_1-k\beta v^*f(D^*)D^*-c_2D^* = 0. \end{aligned}\right. \end{equation*}

    Define

    \begin{align*} V_1 = U-U^*-U^*\ln\frac{U}{U^*}. \end{align*}

    Applying Itô's formula, we can show that

    \begin{align*} {\rm{d}}V_1 = LV_1 {\rm{d}}t+\sigma_1(U-U^*) {\rm{d}}B_1(t), \end{align*}

    where

    \begin{align*} LV_1& = \left(1-\frac{U^*}{U}\right)\left[\lambda-\beta vf(D)U-d_1U\right] +\frac{1}{2}U^*\sigma_1^2\\& = \lambda-\beta vf(D)U-d_1U-\frac{\lambda U^*}{U}+\beta vf(D)U^*+d_1U^*+\frac{1}{2}U^*\sigma_1^2\\& = \left[\beta v^*f(D^*)U^*+d_1U^*\right]\left(2-\frac{U^*}{U}-\frac{U}{U^*}\right) +\beta v^*f(D^*)(U-U^*)-\beta vf(D)(U-U^*)+\frac{1}{2}U^*\sigma_1^2\\& = -[\beta v^*f(D^*)+d_1]\frac{(U-U^*)^2}{U}-[\beta vf(D)-\beta v^*f(D^*)](U-U^*)+\frac{1}{2}U^*\sigma_1^2. \end{align*}

    Define

    \begin{align*} V_2 = I-I^*-I^*\ln \frac{I}{I^*}. \end{align*}

    Utilizing Itô's formula results in

    \begin{align*} {\rm{d}}V_2 = LV_2 {\rm{d}}t+\sigma_2(I-I^*) {\rm{d}}B_2(t), \end{align*}

    where

    \begin{align*} \begin{aligned} LV_2 = &\left(1-\frac{I^*}{I}\right)\left[ e^{-d_2\omega}\beta v(t-\omega)f(D(t-\omega))U(t-\omega)-d_2I\right]+\frac{1}{2}I^*\sigma_2^2\\ = &e^{-d_2\omega}\beta v(t-\omega)f(D(t-\omega))U(t-\omega)-d_2I-e^{-d_2\omega}\beta v(t-\omega)f(D(t-\omega))U(t-\omega)\frac{I^*}{I}+d_2I^*+\frac{1}{2}I^*\sigma_2^2\\ = &e^{-d_2\omega}\beta v(t-\omega)f(D(t-\omega))U(t-\omega)-d_2I-e^{-d_2\omega}\beta v(t-\omega)f(D(t-\omega))U(t-\omega)\frac{I^*}{I}\\&+ e^{-d_2\omega}\beta v^*f(D^*)U^*+\frac{1}{2}I^*\sigma_2^2\\ = & e^{-d_2\omega}\beta v^*f(D^*)U^*\left[\frac{v(t-\omega)f(D(t-\omega))U(t-\omega)}{v^*f(D^*)U^*}+1-\frac{I^*v(t-\omega)f(D(t-\omega))U(t-\omega)}{Iv^*f(D^*)U^*}-\frac{I}{I^*}\right]+\frac{1}{2}I^*\sigma_2^2\\ \leq& e^{-d_2\omega}\beta v^*f(D^*)U^*\left[\frac{v(t-\omega)f(D(t-\omega))U(t-\omega)}{v^*f(D^*)U^*}-\ln \frac{I^*v(t-\omega)f(D(t-\omega))U(t-\omega)}{Iv^*f(D^*)U^*}-\frac{I}{I^*}\right]+\frac{1}{2}I^*\sigma_2^2.\end{aligned} \end{align*}

    Define

    \begin{align*} V_3 = e^{-d_2\omega}\beta v^*f(D^*)U^*\int_{t-\omega}^{t}\left[\frac{v(s)f(D(s))U(s)}{v^*f(D^*)U^*}-\ln \frac{v(s)f(D(s))U(s)}{v^*f(D^*)U^*}-1\right] {\rm{d}}s, \end{align*}

    then,

    \begin{align*} LV_3 = &e^{-d_2\omega}\beta v^*f(D^*)U^*\left[ \frac{vf(D)U}{v^*f(D^*)U^*}-\ln\frac{vf(D)U}{v^*f(D^*)U^*}-\frac{v(t-\omega)f(D(t-\omega))U(t-\omega)}{v^*f(D^*)U^*}\right.\\ &\left.+\ln\frac{v(t-\omega)f(D(t-\omega))U(t-\omega)}{v^*f(D^*)U^*}\right]. \end{align*}

    Define

    \begin{align*} V_4 = \frac{1}{d_2NI^*}\left(v-v^*-v^*\ln \frac{v}{v^*}\right) . \end{align*}

    Applying Itô's formula, we can show that

    \begin{align*} LV_4& = \frac{1}{d_2NI^*}\left(1-\frac{v^*}{v}\right) (d_2NI-c_1v)\\& = \frac{I}{I^*}-\frac{c_1v}{d_2NI^*}-\frac{v^*I}{vI^*}+\frac{c_1v^*}{d_2NI^*}\\& = \frac{I}{I^*}-\frac{v}{v^*}-\frac{v^*I}{vI^*}+1\\&\leq\frac{I}{I^*}-\frac{v}{v^*}-\ln \frac{v^*I}{vI^*}\\& = \frac{I}{I^*}-\frac{v}{v^*}-\ln \frac{I}{I^*}+\ln \frac{v}{v^*}. \end{align*}

    Define

    \begin{align*} V_5 = V_2+V_3+e^{-d_2\omega}\beta v^*f(D^*)U^*V_4. \end{align*}

    Then, we can easy to get that

    \begin{align*} LV_5\leq& e^{-d_2\omega}\beta v^*f(D^*)U^*\left[\frac{vf(D)U}{v^*f(D^*)U^*}-\ln \frac{vf(D)U}{v^*f(D^*)U^*}-\frac{I}{I^*}+\ln \frac{I}{I^*}\right]+\frac{1}{2}I^*\sigma_2^2\\&+e^{-d_2\omega}\beta v^*f(D^*)U^*\left(\frac{I}{I^*}-\ln \frac{I}{I^*}-\frac{v}{v^*}+\ln \frac{v}{v^*}\right)\\ = &e^{-d_2\omega}\beta v^*f(D^*)U^*\left[\frac{vf(D)U}{v^*f(D^*)U^*}-\ln \frac{vf(D)U}{v^*f(D^*)U^*}-\frac{v}{v^*}+\ln \frac{v}{v^*}\right]+\frac{1}{2}I^*\sigma_2^2\\ = &e^{-d_2\omega}\beta v^*f(D^*)U^*\left[\frac{vf(D)U}{v^*f(D^*)U^*}-\ln \frac{f(D)U}{f(D^*)U^*}-\frac{v}{v^*}\right]+\frac{1}{2}I^*\sigma_2^2\\ = &e^{-d_2\omega}\beta v^*f(D^*)U^*\left(\frac{U}{U^*}-\ln \frac{U}{U^*}-1\right)+e^{-d_2\omega}\beta v^*f(D^*)U^*\Big[\frac{vf(D)U}{v^*f(D^*)U^*}\\&-\ln \frac{f(D)}{f(D^*)}-\frac{v}{v^*}-\frac{U}{U^*}+1\Big] +\frac{1}{2}I^*\sigma_2^2\\\leq&e^{-d_2\omega}\beta v^*f(D^*)U^*\left(\frac{U}{U^*}+\frac{U^*}{U}-2\right)\\&+e^{-d_2\omega}\beta v^*f(D^*)U^*\left[\frac{vf(D)U}{v^*f(D^*)U^*}-\frac{vf(D)}{v^*f(D^*)}-\frac{U}{U^*}+1\right]+\frac{1}{2}I^*\sigma_2^2\\ = &e^{-d_2\omega}\beta v^*f(D^*)\frac{(U-U^*)^2}{U}+e^{-d_2\omega}\left[\beta vf(D)-\beta v^*f(D^*)\right](U-U^*)+\frac{1}{2}I^*\sigma_2^2. \end{align*}

    Define

    \begin{align*} V_6 = \frac{1}{2}(U-U^*)^2. \end{align*}

    Then,

    \begin{align*} {\rm{d}}V_6 = LV_6 {\rm{d}}t+\sigma_1U(U-U^*) {\rm{d}}B_1(t), \end{align*}

    where

    \begin{align*} LV_6 = &(U-U^*)\left[\lambda-\beta vf(D)U-d_1U\right]+\frac{1}{2}\sigma_1^2U^2\\ = &(U-U^*)\left[\beta v^*f(D^*)U^*+d_1U^*-d_1U-\beta vf(D)U\right] +\frac{1}{2}\sigma_1^2U^2\\\leq&-d_1(U-U^*)^2+[\beta v^*f(D^*)U^*-\beta vf(D)U](U-U^*)+\sigma_1^2(U-U^*)^2+\sigma_1^2(U^*)^2\\ = &-(d_1-\sigma_1^2)(U-U^*)^2-\beta vf(D)(U-U^*)^2-\beta U^*\left[vf(D)-v^*f(D^*)\right](U-U^*)+\sigma_1^2(U^*)^2\\\leq &-(d_1-\sigma_1^2)(U-U^*)^2-\beta U^*\left[vf(D)-v^*f(D^*)\right] (U-U^*)+\sigma_1^2(U^*)^2. \end{align*}

    Define

    \begin{align*} V_7 = \frac{\beta v^*f(D^*)U^*}{d_1}V_1+e^{d_2\omega}\frac{(d_1+\beta v^*f(D^*))U^*}{d_1}V_5+V_6, \end{align*}

    then, we can derive that

    \begin{align} \begin{aligned} \begin{aligned} LV_7\leq &\frac{\beta v^*f(D^*)U^*}{d_1}\left[ -(\beta v^*f(D^*)+d_1)\frac{(U-U^*)^2}{U}-(\beta vf(D)-\beta v^*f(D^*))(U-U^*)+\frac{1}{2}U^*\sigma_1^2\right]\\&+e^{d_2\omega}\frac{(d_1+\beta v^*f(D^*))U^*}{d_1}\Big[ e^{-d_2\omega}\beta v^*f(D^*)\frac{(U-U^*)^2}{U}+e^{-d_2\omega}(\beta vf(D)-\beta v^*f(D^*))(U-U^*)\\&+\frac{1}{2}I^*\sigma_2^2\Big]-(d_1-\sigma_1^2)(U-U^*)^2-\beta U^*\left[vf(D)-v^*f(D^*)\right] (U-U^*)+\sigma_1^2(U^*)^2\\ = &-(d_1-\sigma_1^2)(U-U^*)^2+\frac{2d_1+\beta v^*f(D^*)}{2d_1}(U^*)^2\sigma_1^2+\frac{(d_1+\beta v^*f(D^*))U^*}{2d_1}e^{d_2\omega}I^*\sigma_2^2\\ = &-(d_1-\sigma_1^2)(U-U^*)^2+\psi _2, \end{aligned}\end{aligned} \end{align} (3.9)

    where

    \begin{align*} \psi _2 = \frac{2d_1+\beta v^*f(D^*)}{2d_1}(U^*)^2\sigma_1^2+\frac{(d_1+\beta v^*f(D^*))U^*}{2d_1}e^{d_2\omega}I^*\sigma_2^2. \end{align*}

    Taking the expected yield after integrating each side of Eq (3.9) from 0 to t

    \begin{align} \mathbb{E}V_7(t)-\mathbb{E}V_7(0)\leq-(d_1-\sigma_1^2)\mathbb{E}\int_{0}^{t}\left(U(s)-U^*\right)^2 {\rm{d}}s+\psi _2t. \end{align} (3.10)

    Dividing each side of (3.10) by t and then taking the upper limit yield

    \begin{align*} \limsup\limits_{t\to\infty}\frac{1}{t}\mathbb{E}\int_{0}^{t}\left(U(s)-U^*\right)^2 {\rm{d}}s\leq\frac{\psi _2}{(d_1-\sigma_1^2)}, \quad a.s. \end{align*}

    Define

    \begin{align*} V_8 = \frac{1}{2}\left[e^{-d_2\omega}(U-U^*)+(I(t+\tau)-I^*)\right] ^2. \end{align*}

    Then,

    \begin{align*} \begin{aligned} LV_8 = &\left[e^{-d_2\omega}(U-U^*)+(I(t+\omega)-I^*)\right]\left[e^{-d_2\omega}(\lambda-\beta vf(D)U-d_1U)+e^{-d_2\omega}\beta vf(D)U-d_2I(t+\omega )\right] \\&+\frac{1}{2}e^{-2d_2\omega}\sigma_1^2+\frac{1}{2}\sigma_2^2I^2(t+\omega )\\ = &\left[e^{-d_2\omega}(U-U^*)+(I(t+\omega)-I^*)\right]\Big[e^{-d_2\omega}(\beta v^*f(D^*)U^*+d_1U^*-d_1U)+e^{-d_2\omega}\beta vf(D)U\\&-d_2I(t+\omega )\Big] +\frac{1}{2}e^{-2d_2\omega}\sigma_1^2+\frac{1}{2}\sigma_2^2I^2(t+\omega )\\ = &\left[e^{-d_2\omega}(U-U^*)+(I(t+\omega)-I^*)\right]\left[-d_1(U-U^*)-d_2(I(t+\omega )-I^*)\right] +\frac{1}{2}e^{-2d_2\omega}\sigma_1^2+\frac{1}{2}\sigma_2^2I^2(t+\omega )\\ = &-e^{-2d_2\omega}d_1(U-U^*)^2-e^{-d_2\omega}d_1(U-U^*)(I(t+\omega)-I^*)-d_2(I(t+\omega )-I^*)^2\\&-e^{-d_2\omega}d_2(U-U^*)(I(t+\omega )-I^*)+\frac{1}{2}e^{-2d_2\omega}\sigma_1^2+\frac{1}{2}\sigma_2^2I^2(t+\omega)\\\leq &-e^{-2d_2\omega}d_1(U-U^*)^2-d_2(I(t+\omega )-I^*)^2-e^{-d_2\omega}(d_1+d_2)(U-U^*)(I(t+\omega )-I^*)\\&+e^{-2d_2\omega}\sigma_1^2(U-U^*)^2+e^{-2d_2\omega}\sigma_1^2(U^*)^2+\sigma_2^2(I(t+\omega )-I^*)^2+\sigma_2^2(I^*)^2\\\leq &-e^{-2d_2\omega}(d_1-\sigma_1^2)(U-U^*)^2-(d_2-\sigma_2^2)(I(t+\omega )-I^*)^2+e^{-2d_2\omega}\frac{(d_1+d_2)^2}{2d_2}(U-U^*)^2\\&+\frac{d_2}{2}(I(t+\omega )-I^*)^2+e^{-2d_2\omega}\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2\\ = &e^{-2d_2\omega}\left(\frac{d_1^2+d_2^2}{2d_2}+\sigma_1^2\right) (U-U^*)^2-\frac{1}{2}(d_2-2\sigma_2^2)(I(t+\omega )-I^*)^2+e^{-2d_2\omega}\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2, \end{aligned} \end{align*}

    in the above inequality, we apply the Young inequality

    \begin{align*} -e^{-d_2\omega}(d_1+d_2)(U-U^*)(I(t+\omega )-I^*)\leq e^{-2d_2\omega}\frac{(d_1+d_2)^2}{2d_2}(U-U^*)^2+\frac{d_2}{2}(I(t+\omega )-I^*)^2. \end{align*}

    Define

    \begin{align*} V_9 = \frac{e^{-2d_2\omega}}{d_1-\sigma_1^2}\left(\frac{d_1^2+d_2^2}{2d_2}+\sigma_1^2\right)V_7+V_8+\frac{1}{2}(d_2-2\sigma_2^2)\int_{t}^{t+\omega }(I(s )-I^*)^2 {\rm{d}}s. \end{align*}

    Then,

    \begin{align} \begin{aligned} LV_9\leq& \frac{e^{-2d_2\omega}}{d_1-\sigma_1^2}\left(\frac{d_1^2+d_2^2}{2d_2}+\sigma_1^2\right)\left[-(d_1-\sigma_1^2)(U-U^*)^2+\psi _2\right]\\&+e^{-2d_2\omega}\left(\frac{d_1^2+d_2^2}{2d_2}+\sigma_1^2\right)(U-U^*)^2-\frac{1}{2}(d_2-2\sigma_2^2)(I(t+\omega )-I^*)^2+e^{-2d_2\omega}\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2\\&+\frac{1}{2}(d_2-2\sigma_2^2)(I(t+\omega )-I^*)^2-\frac{1}{2}(d_2-2\sigma_2^2)(I-I^*)^2\\ = &-\frac{1}{2}(d_2-2\sigma_2^2)(I-I^*)^2+\frac{e^{-2d_2\tau}}{d_1-\sigma_1^2}\left(\frac{d_1^2+d_2^2}{2d_2}+\sigma_1^2\right)\psi _2+e^{-2d_2\omega}\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2. \end{aligned} \end{align} (3.11)

    Taking the expected yield after integrating each side of Eq (3.11) from 0 to t

    \begin{align} \begin{aligned} \mathbb{E}V_9(t)-\mathbb{E}V_9(0)\leq&-\frac{1}{2}(d_2-2\sigma_2^{2})\mathbb{E}\int_{0}^{t}\left(I(s)-I^*\right)^2 {\rm{d}}s\\&+\left[\frac{e^{-2d_2\omega}}{d_1-\sigma_1^2}\left(\frac{d_1^2+d_2^2}{2d_2}+\sigma_1^2\right)\psi_2+e^{-2d_2\omega}\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2\right]t. \end{aligned} \end{align} (3.12)

    Taking the upper limit yield after dividing both sides of (3.12) by t

    \begin{align*} \limsup\limits_{t\to\infty}\frac{1}{t}\mathbb{E}\int_{0}^{t}\left(I(s)-I^*\right)^2 {\rm{d}}s&\leq\frac{2}{d_2-2\sigma_2^2}\left[\frac{e^{-2d_2\omega}}{d_1-\sigma_1^2}\left(\frac{d_1^2+d_2^2}{2d_2}+\sigma_1^2\right)\psi_2+e^{-2d_2\omega}\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2\right] \\& = \Phi_2, \quad a.s. \end{align*}

    Define

    \begin{align*} V_{10} = \frac{1}{2}\left[e^{-d_2\omega }(U-U^*)+(I(t+\omega )-I^*)+\frac{1}{N}(v(t+\omega )-v^*)\right]^2. \end{align*}

    Then,

    \begin{align*} \begin{aligned} LV_{10} = &\left[e^{-d_2\omega }(U-U^*)+(I(t+\omega )-I^*)+\frac{1}{N}(v(t+\omega )-v^*)\right]\left[e^{-d_2\omega }(\lambda-d_1U)-\frac{c_1}{N}v(t+\omega )\right]\\&+\frac{1}{2}e^{-2d_2\omega }\sigma_1^2U^2+\frac{1}{2}\sigma_2^2I^2(t+\omega)\\ = &\left[e^{-d_2\omega }(U-U^*)+(I(t+\omega )-I^*)+\frac{1}{N}(v(t+\omega )-v^*)\right]\left[-e^{-d_2\omega }d_1(U-U^*)-\frac{c_1}{N}(v(t+\omega )-v^*)\right]\\&+\frac{1}{2}e^{-2d_2\omega }\sigma_1^2U^2+\frac{1}{2}\sigma_2^2I^2(t+\omega)\\ = &-e^{-2d_2\omega }d_1(U-U^*)^2-\frac{c_1}{N^2}(v(t+\omega )-v^*)^2-e^{-d_2\omega}d_1(U-U^*)(I(t+\omega )-I^*)\\&-e^{-d_2\omega }\frac{(d_1+c_1)}{N}(U-U^*)(v(t+\omega )-v^*)-\frac{c_1}{N}(I(t+\omega)-I^*)(v(t+\omega )-v^*)+\frac{1}{2}e^{-2d_2\omega }\sigma_1^2U^2\\&+\frac{1}{2}\sigma_2^2I^2(t+\omega)\\\leq&-e^{-2d_2\omega }d_1(U-U^*)^2-\frac{c_1}{N^2}\left(v(t+\omega )-v^*\right) ^2+e^{-2d_2\omega }(U-U^*)^2+\frac{d_1^2}{4}(I(t+\omega )-I^*)^2\\&+e^{-2d_2\omega }\frac{(d_1+c_1)^2}{c_1}(U-U^*)^2+\frac{c_1}{4N^2}(v(t+\omega)-v^*)^2+c_1(I(t+\omega )-I^*)^2+\frac{c_1}{4N^2}(v(t+\omega )-v^*)^2\\&+e^{-2d_2\omega }\sigma_1^2(U-U^*)^2+\sigma_2^2(I(t+\omega )-I^*)^2+e^{-2d_2\omega }\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2\\ = &e^{-2d_2\omega }\left(1+d_1+c_1+\frac{d_1^2}{c_1}+\sigma_1^2\right)(U-U^*)^2+\left(\frac{d_1^2}{4}+c_1+\sigma_2^2\right)(I(t+\omega )-I^*)^2\\&-\frac{c_1}{2N^2}(v(t+\omega )-v^*)^2+e^{-2d_2\omega }\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2, \end{aligned} \end{align*}

    where, we use the Young inequality to simplify the above inequalities

    \begin{equation*} \label{eq.6} \left\{\begin{aligned} & -e^{-d_2\omega }d_1(U-U^*)(I(t+\omega )-I^*)\leq e^{-2d_2\omega }(U-U^*)^2+\frac{d_1^2}{4}(I(t+\omega )-I^*)^2, \\ &-e^{-d_2\omega }\frac{(d_1+c_1)}{N}(U-U^*)(v(t+\omega )-v^*)\leq e^{-2d_2\omega }\frac{(d_1+c_1)^2}{c_1}(U-U^*)^2+\frac{c_1}{4N^2}(v(t+\omega)-v^*)^2, \\ &-\frac{c_1}{N}(I(t+\omega)-I^*)(v(t+\omega )-v^*)\leq c_1(I(t+\omega )-I^*)^2+\frac{c_1}{4N^2}(v(t+\omega )-v^*)^2.\\ \end{aligned}\right. \end{equation*}

    Define

    \begin{align*} V_{11} = e^{-2d_2\omega }p_2V_7+h_2V_8+V_{10}+\frac{c_1}{2N^2}\int_{t}^{t+\omega}(v(s)-v^*)^2 {\rm{d}}s, \end{align*}

    where

    \begin{align*} p_2& = \frac{1}{d_1-\sigma_1^2}\left[\left(1+d_1+c_1+\frac{d_1^2}{c_1}+\sigma_1^2\right)+h_2\left(\frac{d_1^2+d_2^2}{2d_2}+\sigma_2^2\right)\right], \\h_2& = \frac{2}{d_2-2\sigma_2^2}\left(\frac{d_1^2}{4}+c_1+\sigma_2^2\right). \end{align*}

    Therefore,

    \begin{align} \begin{aligned} LV_{11}\leq&-\frac{c_1}{2N^2}(v-v^*)^2+e^{-2d_2\omega }\left(1+d_1+c_1+\frac{d_1^2}{c_1}+\sigma_1^2\right) \psi_2+\left(\frac{d_1^2}{4}+c_1+\sigma_2^2\right) \Phi_2\\&+e^{-2d_2\omega}\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2\\ = &-\frac{c_1}{2N^2}(v-v^*)^2+\gamma_2, \end{aligned} \end{align} (3.13)

    where

    \begin{align*} \gamma_2 = e^{-2d_2\omega }\left(1+d_1+c_1+\frac{d_1^2}{c_1}+\sigma_1^2\right)\psi_2+\left(\frac{d_1^2}{4}+c_1+\sigma_2^2\right)\Phi_2+e^{-2d_2\omega }\sigma_1^2(U^*)^2+\sigma_2^2(I^*)^2. \end{align*}

    Taking the expected yield after integrating each side of Eq (3.13) from 0 to t

    \begin{align} \mathbb{E}V_{11}(t)-\mathbb{E}V_{11}(0)\leq-\frac{c_1}{2N^2}\mathbb{E}\int_{0}^{t}\left(v(s)-v^*\right)^2 {\rm{d}}s+\gamma_2t. \end{align} (3.14)

    Taking the upper limit yield after dividing both sides of (3.14) by t

    \begin{align*} \limsup\limits_{t\to\infty}\frac{1}{t}\mathbb{E}\int_{0}^{t}\left(v(s)-v^*\right) ^2 {\rm{d}}s\leq\frac{2N^2\gamma_2}{c_1}, \quad a.s. \end{align*}

    Define

    \begin{align*} V_{12} = &e^{-d_2\omega }\left(U-U^*-U^*\ln \frac{U}{U^*}\right) +\left(I-I^*-I^*\ln \frac{I}{I^*}\right)+\frac{1}{N}\left(v-v^*-v^*\ln \frac{v}{v^*}\right) \\&+\frac{e^{-d_2\omega }U^*}{kD^*}\left(D-D^*-\int_{D^*}^{D}\frac{f(D^*)}{f(s)} {\rm{d}}s\right)+d_2I^*\int_{t-\omega }^{t}g\left( \frac{v(s)f(D(s ))U(s)}{v^*f(D^*)U^*}\right) {\rm{d}}s. \end{align*}

    Then,

    \begin{align*} \begin{aligned} LV_{12} = &e^{-d_2\omega }\left(1-\frac{U^*}{U}\right)\left[\beta v^*f(D^*)U^*-\beta vf(D)U+d_1(U^*-U)\right]\\&+\left(1-\frac{I^*}{I}\right)\Big[e^{-d_2\omega}\beta v(t-\omega)f(D(t-\omega ))U(t-\omega) -d_2I\Big]+\frac{1}{N}\left(1-\frac{v^*}{v}\right)(d_2NI-c_1v)\\&+\frac{e^{-d_2\omega }U^*}{kD^*}\left(1-\frac{f(D^*)}{f(D)}\right)\left[k\beta v^*f(D^*)D^*-k\beta vf(D)D+c_2D^*-c_2D\right]+d_2I^*g\left(\frac{vf(D)U}{v^*f(D^*)U^*}\right)\\&-d_2I^*g\left(\frac{v(t-\omega )f(D(t-\omega))U(t-\omega )}{v^*f(D^*)U^*}\right)+\frac{1}{2}e^{-d_2\omega }U^*\sigma_1^2+\frac{1}{2}I^*\sigma_2^2\\ = &e^{-d_2\omega }\left(1-\frac{U^*}{U}\right)\left[\beta v^*f(D^*)U^*-\beta vf(D)U+d_1(U^*-U)\right]\\&+\left(1-\frac{I^*}{I}\right)\Big[e^{-d_2\omega}\beta v(t-\omega)f(D(t-\omega ))U(t-\omega) -d_2I\Big]+\frac{1}{N}(1-\frac{v^*}{v})(d_2NI-c_1v)\\&+\frac{e^{-d_2\omega }U^*}{kD^*}\left(1-\frac{f(D^*)}{f(D)}\right)\left[k\beta v^*f(D^*)D^*-k\beta vf(D)D+c_2D^*-c_2D\right] +d_2I^*\frac{vf(D)U}{v^*f(D^*)U^*}\\&-d_2I^*\frac{v(t-\omega)f(D(t-\omega))U(t-\omega )}{v^*f(D^*)U^*}+d_2I^*\ln\frac{v(t-\omega )f(D(t-\omega))U(t-\omega )}{vf(D)U}+\frac{1}{2}e^{-d_2\omega }U^*\sigma_1^2+\frac{1}{2}I^*\sigma_2^2.\end{aligned} \end{align*}

    We have

    \begin{align*} \beta v^*f(D^*)U^* = e^{d_2\omega }d_2I, c_1v^* = d_2NI^* \end{align*}

    and use the equality

    \begin{align*} \ln\frac{v(t-\omega )f(D(t-\omega ))U(t-\omega )}{vf(D)U} = \ln\frac{v(t-\omega )f(D(t-\omega))U(t-\omega )I^*}{v^*f(D^*)U^*I}+\ln \frac{f(D^*)}{f(D)}+\ln \frac{v^*I}{vI^*}+\ln \frac{U^*}{U}. \end{align*}

    So,

    \begin{align} \begin{aligned} \begin{aligned} LV_{12} = &-\frac{d_1e^{-d_2\omega }}{U}(U-U^*)^2-\left(\frac{e^{-d_2\omega }\beta vU^*}{D^*}+\frac{e^{-d_2\omega }c_2U^*}{f(D)kD^*}\right) (D-D^*)[f(D)-f(D^*)]-d_2I^*\left[g\left(\frac{U^*}{U}\right)\right. \\&\left. +g\left( \frac{v^*I}{vI^*}\right) +g\left(\frac{f(D^*)}{f(D)}\right)+g\left(\frac{v(t-\omega)f(D(t-\omega))U(t-\omega )I^*}{v^*f(D^*)U^*I}\right) \right] +\frac{1}{2}e^{-d_2\omega }U^*\sigma_1^2+\frac{1}{2}I^*\sigma_2^2\\\leq &-\frac{e^{-d_2\omega }c_2U^*}{f(D)kD^*}(D-D^*)[f(D)-f(D^*)]+\frac{1}{2}e^{-d_2\omega }U^*\sigma_1^2+\frac{1}{2}I^*\sigma_2^2\\ = & -\frac{e^{-d_2\omega }c_2U^*f'(\xi)}{f(D)kD^*}(D-D^*)^2+\frac{1}{2}e^{-d_2\omega }U^*\sigma_1^2+\frac{1}{2}I^*\sigma_2^2\\\leq&-\frac{e^{-d_2\omega }c_2U^*f'(\xi)}{kD^*}(D-D^*)^2+\frac{1}{2}e^{-d_2\omega }U^*\sigma_1^2+\frac{1}{2}I^*\sigma_2^2\\ = &-\frac{e^{-d_2\omega}c_2U^*}{kD^*}f'(\xi )(D-D^*)^2+\varphi_2, \end{aligned}\end{aligned} \end{align} (3.15)

    where

    f(D)-f(D_0) = f'(\xi)(D-D_0),

    \xi is between D and D_0 , f'(\xi) > 0 , and

    \begin{align*} \varphi_2 = \frac{1}{2}e^{-d_2\omega }U^*\sigma_1^2+\frac{1}{2}I^*\sigma_2^2. \end{align*}

    Taking the expected yield after integrating each side of Eq (3.15) from 0 to t

    \begin{align} \mathbb{E}V_{14}(t)-\mathbb{E}V_{14}(0)\leq-\frac{e^{-d_2\omega }c_2U^*}{kD^*}\mathbb{E}\int_{0}^{t}f'(\xi)\left(D(s)-D^*\right) ^2 {\rm{d}}s+\varphi_2t. \end{align} (3.16)

    Taking the upper limit yield after dividing both sides of (3.16) by t

    \begin{align*} \limsup\limits_{t\to\infty}\frac{1}{t}\mathbb{E}\int_{0}^{t}f'(\xi)\left(D(s)-D^*\right)^2 {\rm{d}}s\leq\frac{kD^*\varphi_2}{e^{-d_2\omega }c_2U^*}, \quad a.s. \end{align*}

    Remark 3.2. When \sigma_i = 0 (i = 1, 2) , it is evident from Theorem 3.2 that

    \begin{align*} \label{eq.7} \left\{\begin{aligned} &LV_7\leq -d_1(U-U^*)^2\leq 0, \\ &LV_9\leq-\frac{1}{2}d_2(I-I^*)^2\leq 0, \\ &LV_{11}\leq-\frac{c_1}{2N^2}(v-v^*)^2\leq 0, \\ &LV_{14}\leq -\frac{e^{-d_2\omega}c_2U^* }{kD^*}f'(\xi)(D-D^*)^2\leq 0, \end{aligned}\right. \end{align*}

    this means that the disease-free equilibrium point E^* of system (1.1) is globally asymptotically stable, from which the nature of the deterministic system can be introduced.

    In this subsection, we provide some numerical simulations to confirm the validity of the above theorem and validate the conclusions in the paper. We set the initial value to

    (U(0), I(0), v(0), D(0)) = (6, 3, 4, 4)

    before the numerical simulation.

    Case 1. Let \lambda = 2, \ \lambda_1 = 1.2, \ d_1 = 0.4, \ d_2 = 0.4, c_1 = 0.3, \ c_2 = 0.4, \ \beta = 0.05, \ \omega = 2, N = 2, \ k = 0.5, \ D_1 = 0.2. Then calculate that the basic reproduction number R_0 = 0.7470 < 1 . Let \sigma_i = 0.1 (i = 1, 2) in Figure 1a. Let \sigma_i = 0.2 (i = 1, 2) in Figure 1b. As seen in Figure 1, the solution of system (1.2) swings asymptotically about E_0 , confirming the Theorem 3.1.

    Figure 1.  (a) and (b) are the time sequence diagrams at \sigma_i = 0.1 and \sigma_i = 0.2 (i = 1.2) , respectively, and (c) and (d) are the corresponding spatial phases.

    Case 2. Let \lambda = 6, \ \lambda_1 = 2, \ d_1 = 0.4, \ d_2 = 0.4, c_1 = 0.8, \ c_2 = 0.2, \ \beta = 0.05, \ \omega = 2, N = 3, \ k = 0.5, \ D_1 = 0.2. Then calculate that the basic reproduction number R_0 = 1.2606 > 1 . Let \sigma_i = 0.1 (i = 1, 2) in Figure 2a. Let \sigma_i = 0.2 (i = 1, 2) in Figure 2b. As seen in Figure 2, the solution of system (1.2) swings asymptotically about E^* , confirming the Theorem 3.2.

    Figure 2.  (a) and (b) are the time sequence diagrams at \sigma_i = 0.1 and \sigma_i = 0.2 (i = 1.2) , respectively, and (c) and (d) are the corresponding spatial phases.

    Case 3. Let \lambda = 3, \ \lambda_1 = 2, \ d_1 = 0.4, \ d_2 = 0.4, c_1 = 0.4, \ c_2 = 0.2, \ \beta = 0.05, \ \omega = 2, \ N = 3, k = 0.5, \ D_1 = 0.2, \ \sigma_1 = 0.1, \ \sigma_2 = 0.1. We can observe that the viruses and the infected target cells are going to persist from Figure 3c, d.

    Figure 3.  The time sequence diagrams for U(t) , D(t) , I(t) , and v(t) are represented by the symbols for (a) , (b) , (c) , and (d) . \sigma_1 = 0.1, \sigma_2 = 0.1 .

    Case 4. Let \lambda = 3, \ \lambda_1 = 2, \ d_1 = 0.4, \ d_2 = 0.4, c_1 = 0.4, \ c_2 = 0.2, \ \beta = 0.05, \ \omega = 2, \ N = 3, k = 0.5, \ D_1 = 0.2, \ \sigma_1 = 0.1, \ \sigma_2 = 1. We can see that the viruses and the infected target cells will become extinct from Figure 4c, d.

    Figure 4.  The time sequence diagrams for U(t) , D(t) , I(t) , and v(t) are represented by the symbols for (a) , (b) , (c) , and (d) . \sigma_1 = 0.1, \sigma_2 = 1 .

    Case 5. Let \lambda = 6, \ \lambda_1 = 2, \ d_1 = 0.4, \ d_2 = 0.4, c_1 = 0.8, \ c_2 = 0.2, \ \beta = 0.05, \ \omega = 2, N = 3, \ k = 0.5, \ D_1 = 0.2. In Figure 5a, let \sigma_i = 0.1 (i = 1, 2) . In Figure 5b, let \sigma_i = 0.8 (i = 1, 2) . Figure 5 shows that under strong noise interference conditions, infected target cells and viruses go extinct.

    Figure 5.  (a) and (b) are time sequence diagrams at \sigma_i = 0.1 and \sigma_i = 0.8 (i = 1, 2) , respectively.

    Case 6. Let \lambda = 6, \ \lambda_1 = 2, \ d_1 = 0.4, \ d_2 = 0.4, c_1 = 0.8, \ c_2 = 0.2, \ \beta = 0.05, \ N = 3, \ k = 0.5, D_1 = 0.2, \ \sigma_1 = \sigma_2 = 0.1. In Figure 6, let \omega = 1.8, \omega = 2.2, \omega = 4 , respectively. According to Figure 6, infected target cells and viruses will go extinct as the time delay gets longer.

    Figure 6.  The time series plots (a) , (b) and (c) are at \omega = 1.8 , \omega = 2.2 and \omega = 4 , respectively.

    We investigate the dynamic impact of stochastic fluctuations in the environment, mediated by the ACE2 receptor protein, on the SARS-CoV-2 virus infection system with time delay. The long-term asymptotic properties of the stochastic time-delay system are obtained by building the suitable Lyapunov functions and applying the differential inequality techniques. The results indicate that the solution of the stochastic system (1.2) swings in the vicinity of the no-disease equilibrium point E_0 when R_0 < 1 . When R_0 > 1 , the solution of the stochastic system (1.2) swings in the vicinity of the endemic equilibrium point E^* .

    The major results are as follows:

    (1) The system (1.2) is stochastically ultimately bounded.

    (2) When R_0 < 1 and \sigma_i^2 < d_i (i = 1, 2) , the solution of the system (1.2) will oscillate in the vicinity of the disease-free equilibrium E_0 of its deterministic system (1.1), which means the viruses and the infected target cells will go extinct.

    (3) When R_0 > 1 and \sigma_1^2 < d_1, 2\sigma_2^2 < d_2 , the solution of the system (1.2) will oscillate in the vicinity of the endemic equilibrium E^* of its deterministic system (1.1), which means the viruses and the infected target cells will persist.

    The following conclusions are obtained via theoretical analysis and numerical simulations:

    (ⅰ) The solution of the stochastic system (1.2) oscillates in the neighborhood of the equilibrium of the deterministic system (1.1), the amplitude of the oscillation increases with the intensity of the environmental disturbances, and when the intensity of noise grows large enough, both virus and infected target cells go extinct, which suggests that fluctuations in the environment have an impact on the dynamics of the SARS-CoV-2 virus infection system (1.2).

    (ⅱ) Time delay also affects the dynamic properties of the SARS-CoV-2 virus infection system (1.2), and a long time delay leads to the extinction of the virus and infected target cells of system (1.2).

    As a consequence, the spread of the SARS-CoV-2 virus can be controlled by increasing the intensity of random disturbances in the environment or by prolonging the time it takes for the virus to invade uninfected target cells or for infected cells to generate new viruses.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the National Natural Science Foundation of China (No. 12271308).

    The authors declare that they have no competing interests.



    [1] J. Giesecke, Modern infectious disease epidemiology, CRC Press, 2017.
    [2] C. L. Campbell, L. V. Madden, Introduction to plant disease epidemiology, John Wiley & Sons, 1990.
    [3] J. T. Ladner, N. D. Grubaugh, O. G. Pybus, K. G. Andersen, Precision epidemiology for infectious disease control, Nat. Med., 25 (2019), 206–211. https://doi.org/10.1038/s41591-019-0345-2 doi: 10.1038/s41591-019-0345-2
    [4] M. Nowak, R. M. May, Virus dynamics: mathematical principles of immunology and virology: mathematical principles of immunology and virology, Oxford University Press, UK, 2000.
    [5] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1991.
    [6] S. P. Adhikari, S. Meng, Y. J. Wu, Y. P. Mao, R. X. Ye, Q. Z. Wang, et al., Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review, Infect. Dis. Poverty, 9 (2020), 1–12. https://doi.org/10.1186/s40249-020-00646-x doi: 10.1186/s40249-020-00646-x
    [7] H. A. Khan, F. K. Baig, R. Mehboob, Nosocomial infections: epidemiology, prevention, control and surveillance, Asian. Pac. J. Trop. Bio., 7 (2017), 478–482. https://doi.org/10.1016/j.apjtb.2017.01.019 doi: 10.1016/j.apjtb.2017.01.019
    [8] F. Rahimi, A. T. B. Abadi, Is omicron the last SARS-CoV-2 variant of concern? Arch. Med. Res., 53 (2022), 336–338. https://doi.org/10.1016/j.arcmed.2022.01.001 doi: 10.1016/j.arcmed.2022.01.001
    [9] D. Duong, Alpha, Beta, Delta, Gamma: what's important to know about SARS-CoV-2 variants of concern? Can. Med. Assoc. J., 193 (2021), E1059–E1060. https://doi.org/10.1503/cmaj.1095949 doi: 10.1503/cmaj.1095949
    [10] N. L. Washington, K. Gangavarapu, M. Zeller, A. Bolze, E. T. Cirulli, K. M. S. Barrett, et al., Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States, Cell, 184 (2021), 2587–2594. https://doi.org/10.1016/j.cell.2021.03.052 doi: 10.1016/j.cell.2021.03.052
    [11] L. J. Abu-Raddad, H. Chemaitelly, H. H. Ayoub, H. M. Yassine, F. M. Benslimane, H. A. Al Khatib, et al., Severity, criticality, and fatality of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant, Clin. Infect. Dis., 75 (2022), e1188–e1191. https://doi.org/10.1093/cid/ciab909 doi: 10.1093/cid/ciab909
    [12] V. P. Chavda, A. B. Patel, D. D. Vaghasiya, SARS-CoV-2 variants and vulnerability at the global level, J. Med. Virol., 94 (2022), 2986–3005. https://doi.org/10.1002/jmv.27717 doi: 10.1002/jmv.27717
    [13] S. M. Reincke, M. Yuan, H. C. Kornau, V. M. Corman, S. Hoof, E. Sáanchez-Sendin, et al., SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies, Science, 375 (2022), 782–787. https://doi.org/10.1126/science.abm5835 doi: 10.1126/science.abm5835
    [14] Q. Li, X. M. Zhan, J. Wang, H. Z. Lu, Considerations and guidance to control the rebound in COVID-19 cases, Biosci. Trends, 15 (2021), 341–344. https://doi.org/10.5582/bst.2021.01361 doi: 10.5582/bst.2021.01361
    [15] Y. B. Zhou, H. L. Zhi, Y. Teng, The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity, J. Med. Virol., 95 (2023), e28138. https://doi.org/10.1002/jmv.28138 doi: 10.1002/jmv.28138
    [16] Y. Araf, F. Akter, Y. D. Tang, R. Fatemi, M. S. A. Parvez, C. F. Zheng, et al., Omicron variant of SARS-CoV-2: genomics, transmissibility, and responses to current COVID-19 vaccines, J. Med. Virol., 94 (2022), 1825–1832. https://doi.org/10.1002/jmv.27588 doi: 10.1002/jmv.27588
    [17] L. Zhang, Q. Q. Li, Z. T. Liang, T. Li, S. Liu, Q. Q. Cui, et al., The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron, Emerg. Microbes Infect., 11 (2022), 1–5. https://doi.org/10.1080/22221751.2021.2017757 doi: 10.1080/22221751.2021.2017757
    [18] P. Pileri, Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi, R. Petracca, et al., Binding of hepatitis C virus to CD81, Science, 282 (1998), 938–941. https://doi.org/10.1126/science.282.5390.938 doi: 10.1126/science.282.5390.938
    [19] C. B. Jackson, M. Farzan, B. Chen, H. Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23 (2022), 3–20. https://doi.org/10.1038/s41580-021-00418-x doi: 10.1038/s41580-021-00418-x
    [20] Y. H. Wang, D. Z. Meng, Quasi-semilattices on networks, Axioms, 12 (2023), 943. https://doi.org/10.3390/axioms12100943 doi: 10.3390/axioms12100943
    [21] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582–1586. https://doi.org/10.1126/science.271.5255.1582 doi: 10.1126/science.271.5255.1582
    [22] A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247–267. https://doi.org/10.1007/s00285-005-0321-y doi: 10.1007/s00285-005-0321-y
    [23] Israel Ministry of Health, COVID-19 vaccine effectiveness against the Delta variant, 2021.
    [24] S. Nasreen, H. Chung, S. Y. He, K. A. Brown, J. B. Gubbay, S. A. Buchan, et al., Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario, Nat. Microbiol., 7 (2022), 379–385. https://doi.org/10.1038/s41564-021-01053-0 doi: 10.1038/s41564-021-01053-0
    [25] J. K. K. Asamoah, E. Okyere, A. Abidemi, S. E. Moore, G. Q. Sun, Z. Jin, et al., Optimal control and comprehensive cost-effectiveness analysis for COVID-19, Results Phys., 33 (2022), 105177. https://doi.org/10.1016/j.rinp.2022.105177 doi: 10.1016/j.rinp.2022.105177
    [26] A. Omame, M. Abbas, U. K. Nwajeri, C. P. Onyenegecha, A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function, Alex. Eng. J., 61 (2022), 7619–7635. https://doi.org/10.1016/j.aej.2022.01.012 doi: 10.1016/j.aej.2022.01.012
    [27] M. Fudolig, R. Howard, The local stability of a modified multi-strain SIR model for emerging viral strains, PloS One, 15 (2020), e0243408. https://doi.org/10.1371/journal.pone.0243408 doi: 10.1371/journal.pone.0243408
    [28] A. M. Ramos, M. Vela-Pérez, M. R. Ferrández, A. B. Kubik, B. Ivorra, Modeling the impact of SARS-CoV-2 variants and vaccines on the spread of COVID-19, Commun. Nonlinear Sci., 102 (2021) 105937. https://doi.org/10.1016/j.cnsns.2021.105937 doi: 10.1016/j.cnsns.2021.105937
    [29] J. L. Zhou, Y. Yang, Global dynamics of a discrete viral infection model with time delay, virus-to-cell and cell-to-cell transmissions, J. Differ. Equations Appl., 23 (2017), 1853–1868. https://doi.org/10.1080/10236198.2017.1371144 doi: 10.1080/10236198.2017.1371144
    [30] J. L. Lv, W. B. Ma, Global asymptotic stability of a delay differential equation model for SARS-CoV-2 virus infection mediated by ACE2 receptor protein, Appl. Math. Lett., 142 (2023), 108631. https://doi.org/10.1016/j.aml.2023.108631 doi: 10.1016/j.aml.2023.108631
    [31] A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3–44. https://doi.org/10.1137/S0036144598335107 doi: 10.1137/S0036144598335107
    [32] O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [33] S. P. Rajasekar, M. Pitchaimani, Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence, Appl. Math. Comput., 377 (2020), 125143. https://doi.org/10.1016/j.amc.2020.125143 doi: 10.1016/j.amc.2020.125143
    [34] D. Okuonghae, Analysis of a stochastic mathematical model for tuberculosis with case detection, Int. J. Dynam. Control, 10 (2022), 734–747. https://doi.org/10.1007/s40435-021-00863-8 doi: 10.1007/s40435-021-00863-8
    [35] Y. L. Cai, J. J. Jiao, Z. J. Gui, Y. T. Liu, W. M. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009
    [36] H. K. Qi, X. Z. Meng, Mathematical modeling, analysis and numerical simulation of HIV: the influence of stochastic environmental fluctuations on dynamics, Math. Comput. Simul., 187 (2021), 700–719. https://doi.org/10.1016/j.matcom.2021.03.027 doi: 10.1016/j.matcom.2021.03.027
    [37] M. Liu, M. L. Deng, Permanence and extinction of a stochastic hybrid model for tumor growth, Appl. Math. Lett., 94 (2019), 66–72. https://doi.org/10.1016/j.aml.2019.02.016 doi: 10.1016/j.aml.2019.02.016
    [38] Q. Liu, D. Q. Jiang, N. Z. Shi, Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching, Appl. Math. Comput., 316 (2018), 310–325. https://doi.org/10.1016/j.amc.2017.08.042 doi: 10.1016/j.amc.2017.08.042
    [39] A. Din, Y. J. Li, A. Yusuf, Delayed hepatitis B epidemic model with stochastic analysis, Chaos Soliton. Fract., 146 (2021), 110839. https://doi.org/10.1016/j.chaos.2021.110839 doi: 10.1016/j.chaos.2021.110839
    [40] W. M. Wang, Y. L. Cai, J. L. Li, Z. J. Gui, Periodic behavior in a FIV model with seasonality as well as environment fluctuations, J. Franklin Inst., 354 (2017), 7410–7428. https://doi.org/10.1016/j.jfranklin.2017.08.034 doi: 10.1016/j.jfranklin.2017.08.034
    [41] A. Omamea, M. Abbasc, A. Dine, Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2, Math. Comput. Simul., 204 (2023), 302–336. https://doi.org/10.1016/j.matcom.2022.08.012 doi: 10.1016/j.matcom.2022.08.012
    [42] X. R. Mao, Stochastic differential equations and applications, Elsevier, 2007.
    [43] X. R. Mao, C. G. Yuan, Stochastic differential equations with Markovian switching, Imperial College Press, 2006. https://doi.org/10.1142/p473
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(930) PDF downloads(46) Cited by(0)

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog