Research article Special Issues

A new characterization of the dual space of the HK-integrable functions

  • Received: 02 December 2023 Revised: 27 January 2024 Accepted: 30 January 2024 Published: 27 February 2024
  • MSC : 26A39, 26A45, 46B10

  • We construct the Henstock-Kurzweil (HK) integral as an extension of a linear form initially defined on $ L^{1} $, but which is not continuous in this space. This gives us an alternative way to prove existing results. In particular, we give a new characterization of the dual space of Henstock-Kurzweil integrable functions in terms of a quotient space.

    Citation: Juan H. Arredondo, Genaro Montaño, Francisco J. Mendoza. A new characterization of the dual space of the HK-integrable functions[J]. AIMS Mathematics, 2024, 9(4): 8250-8261. doi: 10.3934/math.2024401

    Related Papers:

  • We construct the Henstock-Kurzweil (HK) integral as an extension of a linear form initially defined on $ L^{1} $, but which is not continuous in this space. This gives us an alternative way to prove existing results. In particular, we give a new characterization of the dual space of Henstock-Kurzweil integrable functions in terms of a quotient space.



    加载中


    [1] G. Liu, The dual of the Henstock-Kurzweil space, Real Anal. Exch., 22 (1996-97), 105–121. https://doi.org/10.2307/44152737 doi: 10.2307/44152737
    [2] P. Y. Lee, Lanzhou lectures on Henstock integration, World Scientific, Singapore, 1989. https://doi.org/10.1142/0845
    [3] A. Alexiewicz, Linear functionals on Denjoy integrable functions, Coll. Math., 1 (1948), 289–293.
    [4] I. Gasparis, An extension of James's compactness theorem, J. Funct. Anal., 268 (2015), 194–209. https://doi.org/10.1016/j.jfa.2014.10.021 doi: 10.1016/j.jfa.2014.10.021
    [5] R. C. James, Characterizations of reflexivity, Stud. Math., 23 (1964), 205–216. Available from: http://eudml.org/doc/217072.
    [6] T. H. Hildebrandt, Introduction to the theory of integration, Publisher Academic Press, New York, 1963. https://doi.org/10.1017/S0013091500025955
    [7] C. Swartz, Introduction to gauge integrals, World Scientific, Singapore, 2001. https://doi.org/10.1142/4361
    [8] G. Liu, On necessary conditions for Henstock integrability, Real Anal. Exch., 8 (1992/93), 522–531.
    [9] P. Y. Lee, V. Rudolf, The integral an easy approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, 2000.
    [10] G. A. Monteiro, A. Slavík, M. Tvrdý, Kurzweil-Stieltjes integral: Theory and applications, World Scientific, Singapore, 2017. https://doi.org/10.1142/9432
    [11] J. J. Benedetto, W. Czaja, Integration and modern analysis, Birkhäuser, Boston, 2009. https://doi.org/10.1007/978-0-8176-4656-1
    [12] R. Kannan, C. K. Krueger, Advanced analysis on the real line, Springer, New York, 1996. https://doi.org/10.1007/978-1-4613-8474-8
    [13] D. S. Kurtz, C. W. Swartz, Theories of integration: The integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane, 2 Eds., World Scientific, Singapore, 2012. https://doi.org/10.1142/5538
    [14] T. Apostol, Mathematical analysis, 2 Eds., Pearson Education, Boston, 1974.
    [15] R. G. Bartle, A modern theory of integration, Graduate Studies in Mathematics, American Mathematical Society, Providence, 32 (2001).
    [16] M. Reed, B. Simon, Methods of modern analysis, volume I: Functional analysis, Academic Press, London, 1980.
    [17] J. B. Conway, A course in functional analysis, 2 Eds., Springer, New York, 1990. https://doi.org/10.1007/978-1-4757-4383-8
    [18] N. Dunford, J. T. Schwartz, Linear operators, part I: General theory, Interscience Publishers, New York, 1957.
    [19] W. Rudin, Real and complex analysis, 3 Eds., McGraw-Hill, Singapore, 1987.
    [20] M. Carter, B. van Brunt, The Lebesgue-Stieltjes integral: A practical introduction, Springer, New York, 2000. https://doi.org/10.1007/978-1-4612-1174-7
    [21] R. C. James, Reflexivity and the sup of linear functionals, Isr. J. Math., 13 (1972), 289–300. https://doi.org/10.1007/BF02762803 doi: 10.1007/BF02762803
    [22] M. Jiménez, J. P. Moreno, A note on norm attaining functionals, P. Am. Math. Soc., 126 (1998), 1989–1997.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(632) PDF downloads(69) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog