In this paper, we construct all the indecomposable modules of a class of non-pointed Hopf algebras, which are quotient Hopf algebras of a class of prime Hopf algebras of GK-dimension one. Then the decomposition formulas of the tensor product of any two indecomposable modules are established. Based on these results, the representation ring of the Hopf algebras is characterized by generators and some relations.
Citation: Ruifang Yang, Shilin Yang. Representations of a non-pointed Hopf algebra[J]. AIMS Mathematics, 2021, 6(10): 10523-10539. doi: 10.3934/math.2021611
In this paper, we construct all the indecomposable modules of a class of non-pointed Hopf algebras, which are quotient Hopf algebras of a class of prime Hopf algebras of GK-dimension one. Then the decomposition formulas of the tensor product of any two indecomposable modules are established. Based on these results, the representation ring of the Hopf algebras is characterized by generators and some relations.
[1] | N. Andruskiewitsch, I. Angiono, I. Heckenberger, On finite GK-dimensional Nichols algebras of diagonal type, In: Tensor categories and Hopf algebras, Providence: American Mathematical Society, 728 (2019), 1–23. |
[2] | G. Liu, A classification result on prime Hopf algebras of GK-dimension one, J. Algebra, 547 (2020), 579–667. doi: 10.1016/j.jalgebra.2019.12.003 |
[3] | G. D. James, M. W. Liebeak, Representations and characters of groups, 2 Eds., New York: Cambridge University Press, 2001. |
[4] | W. Fulton, J. Harris, Representation theory. A first course, New York: Springer-Verlag, 1991. |
[5] | S. Chang, Augmentation quotients for complex representation rings of generalized quaternion groups, Chin. Ann. Math., 37 (2016), 571–584. doi: 10.1007/s11401-016-1017-x |
[6] | S. Sehrawat, M. Pruthi, Codes over non-abelian groups, J. Inf. Optim. Sci., 40 (2019), 789–804. |
[7] | M. Auslander, I. Reiten, S. Smalø, Representation theory of Artin algebras, Cambridge: Cambridge University Press, 1997. |
[8] | I. Assem, D. Simson, A. Skowroński, Elements of the representation theory of associative algebras (vol. 1), Cambridge: Cambridge University Press, 2006. |
[9] | J. Białkowski, A. Skowro$\acute{n}$ski, Cycles of modules and finite representation type, Bull. London Math. Soc., 48 (2016), 589–600. doi: 10.1112/blms/bdw030 |
[10] | A. Mȩcel, J. Okni$\acute{n}$ski, Algebras with finitely many conjugacy classes of left ideals versus algebras of finite representation type, J. Pure Appl. Algebra, 223 (2019), 4302–4310. doi: 10.1016/j.jpaa.2019.01.010 |
[11] | S. Yang, Representations of simple pointed Hopf algebras, J. Algebra Appl., 3 (2004), 91–104. doi: 10.1142/S021949880400071X |
[12] | S. Yang, J. Liu, Representations of deformed preprojective algebras and quantum groups, Sci. China Ser. A: Math., 52 (2009), 109–118. |
[13] | H. Chen, F. V. Oystaeyen, Y. Zhang, The Green rings of Taft algebras, Proc. Amer. Math. Soc., 142 (2014), 765–775. |
[14] | L. Li, Y. Zhang, The Green rings of the generalized Taft algebras, Contemp. Math., 585 (2013), 275–288. doi: 10.1090/conm/585/11618 |
[15] | D. Su, S. Yang, Green rings of weak Hopf algebras based on generalized Taft algebras, Period. Math. Hung., 76 (2018), 229–242. doi: 10.1007/s10998-017-0221-0 |
[16] | D. Su, S. Yang, Representation ring of small quantum group $\bar{U}_q{(sl_2)}$, J. Math. Phys., 58 (2017), 091704. doi: 10.1063/1.4986839 |
[17] | H. Sun, H. S. E. Mohammed, W. Lin, H. Chen, Green rings of Drinfeld doubles of Taft algebras, Commun. Algebra, 48 (2020), 3933–3947. doi: 10.1080/00927872.2020.1752225 |
[18] | S. Montgomery, Hopf algebras and their actions on rings, In: CBMS regional conference series in mathematics, 1993. |
[19] | M. E. Sweedler, Hopf Algebras, In: Mathematics lecture note series, W. A. Benjamin, Inc., New York, 1969. |
[20] | I. Reiten, C. Riedtmann, Skew group algebras in the representation theory of Artin algebras, J. Algebra, 92 (1985), 224–282. doi: 10.1016/0021-8693(85)90156-5 |
[21] | A. G. Iglesias, Representations of finite dimensional pointed Hopf algebras over $\mathbb{S}_3$, Rev. Union Mat. Argent., 51 (2010), 51–77. |