The aim of this article is to extend the structure of a bialgebra (Hopf algebra) which is connected graded as an algebra and generated in degree $ 1 $ to its double Ore extensions of anti-angle type. We construct two non-commutative and non-cocommutative Hopf algebras of infinite dimension and investigate the lifting of homological properties.
Citation: Qining Li. Double Ore extensions of anti-angle type for Hopf algebras[J]. AIMS Mathematics, 2022, 7(7): 12566-12586. doi: 10.3934/math.2022696
The aim of this article is to extend the structure of a bialgebra (Hopf algebra) which is connected graded as an algebra and generated in degree $ 1 $ to its double Ore extensions of anti-angle type. We construct two non-commutative and non-cocommutative Hopf algebras of infinite dimension and investigate the lifting of homological properties.
[1] | K. A. Brown, S. O'Hagan, J. J. Zhang, G. Zhuang, Connected Hopf algebra and iterated Ore extensions, J. Pure Appl. Algebra, 219 (2015), 2405–2443. http://doi.org/10.1016/j.jpaa.2014.09.007 doi: 10.1016/j.jpaa.2014.09.007 |
[2] | P. A. A. B. Carvalho, S. A. Lopes, J. Matczuk, Double Ore extensions versus iterated Ore extensions, Commun. Algebra, 39 (2011), 2838–2848. http://doi.org/10.1080/00927872.2010.489532 doi: 10.1080/00927872.2010.489532 |
[3] | J. C. McConnell, J. C. Robson, Noncommutative noetherian rings, 2 Eds., New York: Cambridge University Press, 1997. http://dx.doi.org/10.1090/gsm/030 |
[4] | A. N. Panov, Ore extensions of Hopf algebras, Math. Notes, 74 (2003), 401–410. http://doi.org/10.1023/A:1026115004357 doi: 10.1023/A:1026115004357 |
[5] | D. Pansera, A Class of Semisimple Hopf Algebras Acting on Quantum Polynomial Algebras, Contemp. Math, 727 (2019), 303–316. |
[6] | Y. J. Xu, H. L. Huang, D. G. Wang, Realization of PBW-deformations of type $\mathbb{A}_n$ quantum groups via multiple Ore extensions, J. Pure Appl. Algebra, 223 (2019), 1531–1547. http://doi.org/10.1016/j.jpaa.2018.06.017 doi: 10.1016/j.jpaa.2018.06.017 |
[7] | J. J. Zhang, J. Zhang, Double Ore extensions, J. Pure Appl Algebra, 212 (2008), 2668–2690. http://doi.org/10.1016/j.jpaa.2008.05.008 doi: 10.1016/j.jpaa.2008.05.008 |