Research article Special Issues

Double Ore extensions of anti-angle type for Hopf algebras

  • Received: 21 January 2022 Revised: 12 April 2022 Accepted: 18 April 2022 Published: 28 April 2022
  • MSC : 16S36, 16W30, 16W50

  • The aim of this article is to extend the structure of a bialgebra (Hopf algebra) which is connected graded as an algebra and generated in degree $ 1 $ to its double Ore extensions of anti-angle type. We construct two non-commutative and non-cocommutative Hopf algebras of infinite dimension and investigate the lifting of homological properties.

    Citation: Qining Li. Double Ore extensions of anti-angle type for Hopf algebras[J]. AIMS Mathematics, 2022, 7(7): 12566-12586. doi: 10.3934/math.2022696

    Related Papers:

  • The aim of this article is to extend the structure of a bialgebra (Hopf algebra) which is connected graded as an algebra and generated in degree $ 1 $ to its double Ore extensions of anti-angle type. We construct two non-commutative and non-cocommutative Hopf algebras of infinite dimension and investigate the lifting of homological properties.



    加载中


    [1] K. A. Brown, S. O'Hagan, J. J. Zhang, G. Zhuang, Connected Hopf algebra and iterated Ore extensions, J. Pure Appl. Algebra, 219 (2015), 2405–2443. http://doi.org/10.1016/j.jpaa.2014.09.007 doi: 10.1016/j.jpaa.2014.09.007
    [2] P. A. A. B. Carvalho, S. A. Lopes, J. Matczuk, Double Ore extensions versus iterated Ore extensions, Commun. Algebra, 39 (2011), 2838–2848. http://doi.org/10.1080/00927872.2010.489532 doi: 10.1080/00927872.2010.489532
    [3] J. C. McConnell, J. C. Robson, Noncommutative noetherian rings, 2 Eds., New York: Cambridge University Press, 1997. http://dx.doi.org/10.1090/gsm/030
    [4] A. N. Panov, Ore extensions of Hopf algebras, Math. Notes, 74 (2003), 401–410. http://doi.org/10.1023/A:1026115004357 doi: 10.1023/A:1026115004357
    [5] D. Pansera, A Class of Semisimple Hopf Algebras Acting on Quantum Polynomial Algebras, Contemp. Math, 727 (2019), 303–316.
    [6] Y. J. Xu, H. L. Huang, D. G. Wang, Realization of PBW-deformations of type $\mathbb{A}_n$ quantum groups via multiple Ore extensions, J. Pure Appl. Algebra, 223 (2019), 1531–1547. http://doi.org/10.1016/j.jpaa.2018.06.017 doi: 10.1016/j.jpaa.2018.06.017
    [7] J. J. Zhang, J. Zhang, Double Ore extensions, J. Pure Appl Algebra, 212 (2008), 2668–2690. http://doi.org/10.1016/j.jpaa.2008.05.008 doi: 10.1016/j.jpaa.2008.05.008
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1766) PDF downloads(85) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog