Research article Special Issues

Reliability inference and remaining useful life prediction for the doubly accelerated degradation model based on Wiener process

  • Received: 16 November 2022 Revised: 27 December 2022 Accepted: 05 January 2023 Published: 17 January 2023
  • MSC : 62F30

  • Degradation data are an important source of products' reliability information. Though stochastic degradation models have been widely used for fitting degradation data, there is a lack of efficient and accurate methods to get their confidence intervals, especially in small sample cases. In this paper, based on the Wiener process, a doubly accelerated degradation test model is proposed, in which both the drift and diffusion parameters are affected by the stress level. The point estimates of model parameters are derived by constructing a regression model. Furthermore, based on the point estimates of model parameters, the interval estimation procedures are developed for the proposed model by constructing generalized pivotal quantities. First, the generalized confidence intervals of model parameters are developed. Second, based on the generalized pivotal quantities of model parameters, using the substitution method the generalized confidence intervals for some interesting quantities, such as the degradation rate $ \mu_0 $, the diffusion parameter $ \sigma_0^2 $, the reliability function $ R(t_0) $ and the mean lifetime $ E(T) $, are obtained. In addition, the generalized prediction intervals for degradation amount $ X_0(t) $ and remaining useful life at the normal use stress level are also developed. Extensive simulations are conducted to investigate the performances of the proposed generalized confidence intervals in terms of coverage percentage and average interval length. Finally, a real data set is given to illustrate the proposed model.

    Citation: Peihua Jiang, Xilong Yang. Reliability inference and remaining useful life prediction for the doubly accelerated degradation model based on Wiener process[J]. AIMS Mathematics, 2023, 8(3): 7560-7583. doi: 10.3934/math.2023379

    Related Papers:

  • Degradation data are an important source of products' reliability information. Though stochastic degradation models have been widely used for fitting degradation data, there is a lack of efficient and accurate methods to get their confidence intervals, especially in small sample cases. In this paper, based on the Wiener process, a doubly accelerated degradation test model is proposed, in which both the drift and diffusion parameters are affected by the stress level. The point estimates of model parameters are derived by constructing a regression model. Furthermore, based on the point estimates of model parameters, the interval estimation procedures are developed for the proposed model by constructing generalized pivotal quantities. First, the generalized confidence intervals of model parameters are developed. Second, based on the generalized pivotal quantities of model parameters, using the substitution method the generalized confidence intervals for some interesting quantities, such as the degradation rate $ \mu_0 $, the diffusion parameter $ \sigma_0^2 $, the reliability function $ R(t_0) $ and the mean lifetime $ E(T) $, are obtained. In addition, the generalized prediction intervals for degradation amount $ X_0(t) $ and remaining useful life at the normal use stress level are also developed. Extensive simulations are conducted to investigate the performances of the proposed generalized confidence intervals in terms of coverage percentage and average interval length. Finally, a real data set is given to illustrate the proposed model.



    加载中


    [1] W. Nelson, Accelerated testing: statistical models, test plans, and data analysis, New York: John Wiley & Sons, 1990.
    [2] W. Q. Meeker, L. A. Escobar, C. J. Lu, Accelerated degradation tests: modeling and analysis, Technometrics, 40 (1998), 89–99. https://doi.org/10.1080/00401706.1998.10485191 doi: 10.1080/00401706.1998.10485191
    [3] H. Wang, G. J. Wang, F. J. Duan, Planning of step-stress accelerated degradation test based on the Inverse Gaussian process, Reliab. Eng. Syst. Safe., 154 (2016), 97–105. https://doi.org/10.1016/j.ress.2016.05.018 doi: 10.1016/j.ress.2016.05.018
    [4] S. J. Bae, W. Kuo, P. H. Kvam, Degradation models and implied lifetime distribution, Reliab. Eng. Syst. Safe., 92 (2007), 601–608. https://doi.org/10.1016/J.RESS.2006.02.002 doi: 10.1016/J.RESS.2006.02.002
    [5] W. Nelson, Analysis of performance-degradation data from accelerated tests, IEEE T. Reliab., 30 (1981), 149–155. https://doi.org/10.1109/TR.1981.5221010 doi: 10.1109/TR.1981.5221010
    [6] L. Wang, R. Pan, X. Li, T. A. Jiang, A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information, Reliab. Eng. Syst. Safe., 112 (2013), 38–47. https://doi.org/10.1016/j.ress.2012.09.015 doi: 10.1016/j.ress.2012.09.015
    [7] Z. Pan, N. Balakrishnan, Reliability modeling of degradation of products with multiple performance characteristics based on gamma process, Reliab. Eng. Syst. Safe., 96 (2011), 949–957. https://doi.org/10.1016/j.ress.2011.03.014 doi: 10.1016/j.ress.2011.03.014
    [8] M. H. Ling, K. L. Tsui, N. Balakrishnan, Accelerated degradation analysis for the quality of a system based on the Gamma process, IEEE T. Reliab., 64 (2015), 463–472. https://doi.org/10.1109/TR.2014.2337071 doi: 10.1109/TR.2014.2337071
    [9] P. H. Jiang, B. X. Wang, F. T. Wu, Inference for constant-stress accelerated degradation test based on gamma process, Appl. Math. Model., 67 (2019), 123–134. https://doi.org/10.1016/j.apm.2018.10.017 doi: 10.1016/j.apm.2018.10.017
    [10] X. F. Wang, B. X. Wang, Y. L. Hong, P. H. Jiang, Degradation data analysis based on gamma process with random effects, Eur. J. Oper. Res., 292 (2021), 1200–1208. https://doi.org/10.1016/j.ejor.2020.11.036 doi: 10.1016/j.ejor.2020.11.036
    [11] X. Wang, Wiener process with random effects for degradation data, J. Multivariate Anal., 101 (2010), 340–351. https://doi.org/10.1016/j.jmva.2008.12.007 doi: 10.1016/j.jmva.2008.12.007
    [12] P. H. Jiang, B. X. Wang, X. F. Wang, S. D. Qin, Optimal plan for Wiener constant-stress accelerated degradation model, Appl. Math. Model., 84 (2020), 191–201. https://doi.org/10.1016/j.apm.2020.03.036 doi: 10.1016/j.apm.2020.03.036
    [13] X. F. Wang, B. X. Wang, P. H. Jiang, Y. L. Hong, Accurate reliability inference based on Wiener process with random effects for degradation data, Reliab. Eng. Syst. Safe., 193 (2020), 106631. https://doi.org/10.1016/j.ress.2019.106631 doi: 10.1016/j.ress.2019.106631
    [14] X. Wang, D.H. Xu, An inverse Gaussian process model for degradation data, Technometrics, 52 (2010), 188–197. https://doi.org/10.1198/TECH.2009.08197 doi: 10.1198/TECH.2009.08197
    [15] D. H. Pan, J. B. Liu, J. D. Cao, Remaining useful life estimation using an inverse Gaussian degradation model, Neurocomputing, 185 (2016), 64–72. https://doi.org/10.1016/j.neucom.2015.12.041 doi: 10.1016/j.neucom.2015.12.041
    [16] P. H. Jiang, B. X. Wang, X. F. Wang, Z. H. Zhou, Inverse Gaussian process based reliability analysis for constant-stress accelerated degradation data, Appl. Math. Model., 105 (2022), 137–148. https://doi.org/10.1016/j.apm.2021.12.003 doi: 10.1016/j.apm.2021.12.003
    [17] Z. Q. Pan, N. Balakrishnan, Multiple-steps step-stress accelerated degradation modeling based on wiener and gamma process, Commun. Stat.-Simul. Comput., 39 (2010), 1384–1402. https://doi.org/10.1080/03610918.2010.496060 doi: 10.1080/03610918.2010.496060
    [18] Z. S. Ye, N. Chen, Y. Shen, A new class of Wiener process models for degradation analysis, Reliab. Eng. Syst. Safe., 139 (2015), 58–67. https://doi.org/10.1016/j.ress.2015.02.005 doi: 10.1016/j.ress.2015.02.005
    [19] C. Y. Peng, S. T. Tseng, Mis-specification analysis of linear degradation models, IEEE T. Reliab., 58 (2009), 444–455. https://doi.org/10.1109/TR.2009.2026784 doi: 10.1109/TR.2009.2026784
    [20] P. H. Jiang, Statistical inference of Wiener constant-stress accelerated degradation model with random effects, Mathematics, 10 (2022), 2863. https://doi.org/10.3390/math10162863 doi: 10.3390/math10162863
    [21] Q. Guan, Y. C. Tang, A. C. Xu, Objective Bayesian analysis accelerated degradation test based on Wiener process models, Appl. Math. Model., 40 (2016), 2743–2755. https://doi.org/10.1016/j.apm.2015.09.076 doi: 10.1016/j.apm.2015.09.076
    [22] X. F. Wang, B. X. Wang, W. H. Wu, Y. L. Hong, Reliability analysis for accelerated degradation data based on the Wiener process with random effects, Qual. Reliab. Eng. Int., 36 (2020), 1969–1981. https://doi.org/10.1002/qre.2668 doi: 10.1002/qre.2668
    [23] L. Q. Hong, Z. S. Ye, J. K. Sari, Interval estimation for Wiener processes based on accelerated degradation test data, IISE Trans., 50 (2018), 1043–1057. https://doi.org/10.1080/24725854.2018.1468121 doi: 10.1080/24725854.2018.1468121
    [24] D. H. Pan, Y. T. Wei, H. Z. Fang, W. Z. Yang, A reliability estimation approach via Wiener degradation model with measurement errors, Appl. Math. Comput., 320 (2018), 131–141. https://doi.org/10.1016/j.amc.2017.09.020 doi: 10.1016/j.amc.2017.09.020
    [25] C. H. Hu, M. Y. Lee, J. Tang, Optimum step-stress accelerated degradation test for Wiener degradation process under constraints, Eur. J. Oper. Res., 241 (2015), 412–421. https://doi.org/10.1016/j.ejor.2014.09.003 doi: 10.1016/j.ejor.2014.09.003
    [26] D. J. He, M. Z. Tao, Statistical analysis for the doubly accelerated degradation Wiener model: an objective Bayesian approach, Appl. Math. Model., 77 (2020), 378–391. https://doi.org/10.1016/j.apm.2019.07.045 doi: 10.1016/j.apm.2019.07.045
    [27] W. G. Cochran, The distribution of quadratic forms in a normal system, with applications to the analysis of covariance, Mathematical Proceedings of the Cambridge Philosophical Society, 30 (1934), 178–191. https://doi.org/10.1017/S0305004100016595 doi: 10.1017/S0305004100016595
    [28] S. Weerahandi, Generalized inference in repeated measures: exact methods in manova and mixed models, New York: John Wiley & Sons, 2004.
    [29] S. Weerahandi, Generalized confidence intervals, J. Amer. Stat. Assoc., 88 (1993), 899–905. http://dx.doi.org/10.1080/01621459.1993.10476355 doi: 10.1080/01621459.1993.10476355
    [30] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, E. Zanoni, A review on the physical mechanisms that limit the reliability of gan-based LEDs, IEEE T. Electron Dev., 57 (2010), 108–118. https://doi.org/10.1109/TED.2009.2033649 doi: 10.1109/TED.2009.2033649
    [31] S. J. Bae, P. H. Kvam, A nonlinear random-coefficients model for degradation testing, Technometrics, 46 (2004), 460–469. https://doi.org/10.1198/004017004000000464 doi: 10.1198/004017004000000464
    [32] H. Lim, B. J. Yum, Optional design of accelerated degradation tests based on Wiener processmodels, J. Appl. Stat., 38 (2011), 309–325. https://doi.org/10.1080/02664760903406488 doi: 10.1080/02664760903406488
    [33] B. X. Wang, K. M. Yu, Optimum plan for step-stress model with progressive type-Ⅱ censoring, TEST, 18 (2009), 115–135. https://doi.org/10.1007/s11749-007-0060-z doi: 10.1007/s11749-007-0060-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1441) PDF downloads(86) Cited by(5)

Article outline

Figures and Tables

Figures(2)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog