The problem of constructing confidence intervals (CIs) for the difference between coefficients of variation of two zero-inflated gamma distributions was considered. As gamma distribution does not have closed form maximum likelihood estimators, the parameters of gamma distribution have to be estimated numerically. To this end, we proposed here four different generalized confidence intervals (GCIs) based on fiducial inference, Box-Cox transformation, parametric bootstrap and the method of variance of estimates recovery (MOVER). Performances of the four GCIs were evaluated and compared via extensive simulation. The simulation results showed that all four methods returned satisfactory results according to coverage probabilities, even for the setting of small sample sizes.
Citation: Hongping Guo, Yuhang Qian, Yiran Zhu, Xinming Dai, Xiao Wang. Confidence intervals for the difference between coefficients of variation of zero-inflated gamma distributions[J]. AIMS Mathematics, 2023, 8(12): 29713-29733. doi: 10.3934/math.20231521
The problem of constructing confidence intervals (CIs) for the difference between coefficients of variation of two zero-inflated gamma distributions was considered. As gamma distribution does not have closed form maximum likelihood estimators, the parameters of gamma distribution have to be estimated numerically. To this end, we proposed here four different generalized confidence intervals (GCIs) based on fiducial inference, Box-Cox transformation, parametric bootstrap and the method of variance of estimates recovery (MOVER). Performances of the four GCIs were evaluated and compared via extensive simulation. The simulation results showed that all four methods returned satisfactory results according to coverage probabilities, even for the setting of small sample sizes.
[1] | L. Liu, Y. Shih, R. Strawderman, D. Zhang, B. Johnson, H. Chai, Statistical analysis of zero-inflated nonnegative continuous data: a review, Statist. Sci., 34 (2019), 253–279. http://dx.doi.org/10.1214/18-STS681 doi: 10.1214/18-STS681 |
[2] | D. Stephenson, K. Kumar, F. Doblas-Reyes, J. Royer, F. Chauvin, S. Pezzulli, Extreme daily rainfall events and their impact on ensemble forecasts of the Indian monsoon, Mon. Weather Rev., 127 (1999), 1954–1966. http://dx.doi.org/10.1175/1520-0493(1999)127<1954:EDREAT>2.0.CO; 2 doi: 10.1175/1520-0493(1999)127<1954:EDREAT>2.0.CO;2 |
[3] | X. Wang, C. Zou, L. Yi, J. Wang, X. Li, Fiducial inference for gamma distributions: two-sample problems, Commun. Stat.-Simul. C., 50 (2021), 811–821. http://dx.doi.org/10.1080/03610918.2019.1568471 doi: 10.1080/03610918.2019.1568471 |
[4] | X. Wang, M. Li, W. Sun, Z. Gao, X. Li, Confidence intervals for zero-inflated gamma distribution, Commun. Stat.-Simul. C., in press. http://dx.doi.org/10.1080/03610918.2022.2104315 |
[5] | M. Hasan, K. Krishnamoorthy, Confidence intervals for the mean and a percentile based on zero-inflated lognormal data, J. Stat. Comput. Simul., 88 (2018), 1499–1514. http://dx.doi.org/10.1080/00949655.2018.1439033 doi: 10.1080/00949655.2018.1439033 |
[6] | X. Wang, X. Li, Generalized confidence intervals for zero-inflated Pareto distribution. Mathematics, 9 (2021), 3272. http://dx.doi.org/10.3390/math9243272 doi: 10.3390/math9243272 |
[7] | M. Bugallo, M. Esteban, M. Marey-Pérez, D. Morales, Wildfire prediction using zero-inflated negative binomial mixed models: application to Spain, J. Environ. Manage., 328 (2023), 116788. http://dx.doi.org/10.1016/j.jenvman.2022.116788 doi: 10.1016/j.jenvman.2022.116788 |
[8] | V. Kerstin, On the distribution of the estimated mean from nonstandard mixtures of distributions, Commun. Stat.-Theor. M., 24 (1995), 1569–1584. http://dx.doi.org/10.1080/03610929508831572 doi: 10.1080/03610929508831572 |
[9] | K. Muralidharan, B. Kale, Modified gamma distribution with singularity at zero, Commun. Stat.-Simul. C., 31 (2002), 143–158. http://dx.doi.org/10.1081/SAC-9687286 doi: 10.1081/SAC-9687286 |
[10] | T. Kaewprasert, S. A. Niwitpong, S. Niwitpong, Confidence interval estimation for the common mean of several zero-inflated gamma distributions, Symmetry, 15 (2023), 67. http://dx.doi.org/10.3390/sym15010067 doi: 10.3390/sym15010067 |
[11] | G. Zou, J. Taleban, C. Huo, Confidence interval estimation for lognormal data with application to health economics. Comput. Stat. Data Anal., 53 (2009), 3755–3764. http://dx.doi.org/10.1016/j.csda.2009.03.016 doi: 10.1016/j.csda.2009.03.016 |
[12] | P. Ren, G. Liu, X. Pu, Simultaneous confidence intervals for mean differences of multiple zero-inflated gamma distributions with applications to precipitation, Commun. Stat.-Simul. C., 52 (2023), 4705–4716. http://dx.doi.org/10.1080/03610918.2021.1966466 doi: 10.1080/03610918.2021.1966466 |
[13] | T. Kaewprasert, S. A. Niwitpong, S. Niwitpong, Bayesian estimation for the mean of delta-gamma distributions with application to rainfall data in Thailand, PeerJ, 10 (2022), 13465. http://dx.doi.org/10.7717/peerj.13465 doi: 10.7717/peerj.13465 |
[14] | T. Kaewprasert, S. A. Niwitpong, S. Niwitpong, Bayesian confidence intervals for the ratio of the means of zero-inflated gamma distributions with application to rainfall data. Commun. Stat.-Simul. C., in press. http://dx.doi.org/10.1080/03610918.2023.2198176 |
[15] | A. Albatineh, B. Kibria, B. Zogheib, Asymptotic sampling distribution of inverse coefficient of variation and its applications: revisited, International Journal of Advanced Statistics and Probability, 2 (2014), 15–20. http://dx.doi.org/10.14419/ijasp.v2i1.1475 doi: 10.14419/ijasp.v2i1.1475 |
[16] | R. Ananthakrishnan, M. Soman, Statistical distribution of daily rainfall and its association with the coefficient of variation of rainfall series, Int. J. Climatol., 9 (1989), 485–500. http://dx.doi.org/10.1002/joc.3370090504 doi: 10.1002/joc.3370090504 |
[17] | W. Puggard, S. A. Niwitpong, S. Niwitpong, Confidence intervals for common coefficient of variation of several Birnbaum-Saunders distributions, Symmetry, 14 (2022), 2101. http://dx.doi.org/10.3390/sym14102101 doi: 10.3390/sym14102101 |
[18] | N. Niwitpong, S. A. Niwitpong. Confidence intervals for the ratio of coefficients of variation of delta-lognormal distribution, Appl. Math. Sci., 7 (2013), 3811–3818. http://dx.doi.org/10.12988/ams.2013.35248 doi: 10.12988/ams.2013.35248 |
[19] | K. Krishnamoorthy, X. Wang, Fiducial confidence limits and prediction limits for a gamma distribution: censored and uncensored cases, Environmetrics, 27 (2016), 479–493. http://dx.doi.org/10.1002/env.2408 doi: 10.1002/env.2408 |
[20] | R. Fisher, The fiducial argument in statistical inference, Annals of Eugenics, 6 (1935), 391–398. http://dx.doi.org/10.1111/j.1469-1809.1935.tb02120.x doi: 10.1111/j.1469-1809.1935.tb02120.x |
[21] | Y. Gao, L. Tian, Confidence interval estimation for the difference and ratio of the means of two gamma distributions, Commun. Stat.-Simul. C., in press. http://dx.doi.org/10.1080/03610918.2022.2116646 |
[22] | X. Zhou, W. Tu, Confidence intervals for the mean of diagnostic test charge data containing zeros, Biometrics, 56 (2000), 1118–1125. http://dx.doi.org/10.1111/j.0006-341X.2000.01118.x doi: 10.1111/j.0006-341X.2000.01118.x |
[23] | E. Wilson, Probable inference, the law of succession, and statistical inference, J. Am. Stat. Assoc., 22 (1927), 209–212. http://dx.doi.org/10.2307/2276774 doi: 10.2307/2276774 |
[24] | G. Zou, A. Donner, Construction of confidence limits about effect measures: a general approach, Stat. Med., 27 (2008), 1693–1702. http://dx.doi.org/10.1002/sim.3095 doi: 10.1002/sim.3095 |
[25] | Y. Tang, MOVER confidence intervals for a difference or ratio effect parameter under stratified sampling, Stat. Med., 41 (2022), 194–207. http://dx.doi.org/10.1002/sim.9230 doi: 10.1002/sim.9230 |
[26] | H. Li, M. Tang, W. Wong, Confidence intervals for ratio of two Poisson rates using the method of variance estimates recovery, Comput. Stat., 29 (2014), 869–889. http://dx.doi.org/10.1007/s00180-013-0467-9 doi: 10.1007/s00180-013-0467-9 |
[27] | A. Donner, G. Zou, Closed-form confidence intervals for functions of the normal mean and standard deviation, Stat. Methods Med. Res., 21 (2012), 347–359. http://dx.doi.org/10.1177/0962280210383082 doi: 10.1177/0962280210383082 |
[28] | X. Li, X. Zhou, L. Tian, Interval estimation for the mean of lognormal data with excess zeros, Stat. Probabil. Lett., 83 (2013), 2447–2453. http://dx.doi.org/10.1016/j.spl.2013.07.004 doi: 10.1016/j.spl.2013.07.004 |
[29] | X. Wang, X. Li, L. Zhang, Z. Liu, M. Li, Fiducial inference on gamma distributions: two-sample problems with multiple detection limits, Environ. Ecol. Stat., 29 (2022), 453–475. http://dx.doi.org/10.1007/s10651-022-00528-5 doi: 10.1007/s10651-022-00528-5 |