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Abstract: The problem of constructing confidence intervals (CIs) for the difference between
coefficients of variation of two zero-inflated gamma distributions was considered. As gamma
distribution does not have closed form maximum likelihood estimators, the parameters of gamma
distribution have to be estimated numerically. To this end, we proposed here four different generalized
confidence intervals (GCIs) based on fiducial inference, Box-Cox transformation, parametric bootstrap
and the method of variance of estimates recovery (MOVER). Performances of the four GCIs were
evaluated and compared via extensive simulation. The simulation results showed that all four methods
returned satisfactory results according to coverage probabilities, even for the setting of small sample
sizes.
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1. Introduction

Many disciplines, including meteorology, biomedicine and economics, frequently encounter zero-
inflated nonnegative continuous data [1], in which zero-inflated refers to the part of the data consisting
of zero values. For example, daily precipitation data often exhibits a mix of zero values representing
dry days and a right-skewed positive part indicating rainy or snowy days. As one of the most common
right-skewed models, gamma distribution has been widely used to analyze precipitation data [2, 3]. In
such cases, zero values are neglected since gamma distribution deals with positive values only. As a
consequence, the analytical results produced are usually biased [4].
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In order to overcome the aforementioned problem, researchers started to analyze the original data
that contains zero values by using zero-inflated right-skewed models. In such models, the number of
zero values follows a binomial distribution, and the non-zero values follow right-skewed distributions
(e.g., lognormal, gamma, Pareto and others). Hasan and Krishnamoorthy [5] proposed confidence
intervals (CIs) for the mean and a percentile based on zero-inflated lognormal data. Wang and Li [6]
proposed generalized CIs for the mean of zero-inflated Pareto distribution based on fiducial inference.
Bugallo and Esteban et al. [7] predicted wild fires in Spain based on a zero-inflated negative binomial
mixed model, and they used the parametric bootstrap method to estimate mean squared errors and
constructed prediction intervals. More specifically, zero-inflated gamma distribution is one of the
most commonly used models to analyze real precipitation data. In this regard, Vännman [8] derived
the distribution of the estimated mean and the standardized statistic for the zero-inflated gamma
distribution, and subsequently obtained a CI for the mean based on large sample approximation.
Muralidharan and Kale [9] provided maximum likelihood estimates for the three parameters in the
zero-inflated gamma distribution and derived the asymptotic distribution. They further obtained a 95%
CI for the mean. Wang et al. [4] proposed CIs for the means of gamma distributions containing
zero values based on fiducial inference, parametric bootstrap and the method of variance of estimates
recovery (MOVER). Kaewprasert, Niwitpong S-A and Niwitpong S [10] proposed CIs for the common
mean of several zero-inflated gamma distributions based on fiducial inference and the highest posterior
density methods.

In practical applications, it is frequently necessary to compare the mean difference or ratio of
means between two or more zero-inflated semicontinuous distributions, given the approximation of
this distribution to many scientific datasets. For instance, Zou, Taleban and Huo [11] employed the
MOVER method to construct CIs for the mean difference of two zero-inflated lognormal distributions,
illustrating the methodology using economically healthy data. Ren, Liu and Pu [12] proposed an exact
fiducial inference approach to construct simultaneous CIs for the mean difference of multiple zero-
inflated gamma distributions. They applied this method to daily precipitation data across different
periods or regions. Kaewprasert, Niwitpong S-A and Niwitpong S [13] constructed credible and
highest posterior density intervals for the mean and the difference between the means of delta-gamma
distributions. More recently, Kaewprasert, Niwitpong S-A and Niwitpong S [14] introduced eight
Bayesian methods for constructing CIs for the ratio of means in zero-inflated gamma distributions.
They applied these methods to analyze rainfall datasets from northern Thailand. However, when
examining the fluctuations of zero-inflated semicontinuous data in various regions or periods, neither
the mean difference nor the ratio of means can effectively capture these dynamics as they do not account
for the influence of variance.

To potentially address this problem, the coefficient of variation (CV) is a classical and valuable
statistical metric for comparing variabilities can be considered. CV is a relative measure of variability
that quantifies the magnitude of a standard deviation in relation to the corresponding mean. It is defined
as the ratio of the standard deviation to the mean of the distribution. Notably, the CV is a standardized
and dimensionless measure, enabling comparisons of the magnitude of changes across different
population data even if they possess disparate units of measurement, as highlighted by Albatineh,
Kibria and Zogheib [15]. Previous researches, such as the study conducted by Ananthakrishnan and
Soman [16], has explored the relationship between CVs of rainfall series and the statistical distribution
of daily rainfall. Puggard, Niwitpong S-A and Niwitpong S [17] proposed CIs based on the generalized
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CI, MOVER, large-sample, Bayesian credible interval and highest posterior density interval to estimate
the common CV for several Birnbaum-Saunders distributions. Buntao and Niwitpong S-A [18]
investigated the difference between the CV of two delta-lognormal distributions. To our knowledge,
although there are many published works focused on constructing CIs for CVs of various situations,
there is no work that mainly focuses on constructing CIs for the difference between two CVs of zero-
inflated gamma distributions. The fact motivated us to develop appropriate methods in such cases. In
addition, despite the CIs for the difference between two CVs of zero-inflated lognormal distribution
analyze rainfall data, in special cases, such as the data analyzed in this article, zero-inflated gamma
distribution is a more suitable model to be used.

In this study, our main focus is on the construction of CIs for the difference between two zero-
inflated gamma CVs. We consider four fundamental methods for estimating gamma parameters and
three methods for estimating the number of zero values in the dataset. Thereafter, 12 combinations of
each method are constructed by MOVER. The four basic methods for estimating gamma parameters are
the fiducial inference method proposed by Krishnamoorthy and Wang [19] (denoted as Fiducial-1),
another fiducial inference method introduced by Ren, Liu and Pu [12] (denoted as Fiducial-2), the
Box-Cox transformation method (denoted as BC) and the parametric bootstrap method (denoted as
PB). Fiducial inference, initially proposed by Fisher [20], is widely employed for constructing CIs,
requiring only sample information. The BC method, as suggested by Gao and Tian [21], was originally
developed to construct CIs for the difference and ratio of two gamma means. In this work, we extend the
concepts to construct CIs for the difference between two zero-inflated gamma CVs. The PB method,
which has been demonstrated to perform favorably in constructing one-sided and two-sided CIs for
the mean of zero-inflated normal distributions with small sample sizes, was compared against the
percentile-t bootstrap interval, the maximum likelihood method for biasing and the likelihood ratio test
method [22]. Binomial distribution is the model that has been proven to be appropriate to fit the number
of zero values in the dataset. To this end, we introduce three different methods to estimate the binomial
parameter. These methods are respectively the fiducial inference method proposed by Krishnamoorthy
and Wang [19] (denoted as Fiducial-1), another fiducial inference method introduced by Ren, Liu and
Pu [12] (denoted as Fiducial-2) and an exact estimation of the CI proposed by Wilson [23] (denoted as
Wilson).

The MOVER method, first introduced by Zou and Donner [24], was employed to construct a
universal CI for the difference of two parameters. Tang [25] applied the MOVER method to construct
a general framework for CIs of difference or ratio effect parameters under stratified sampling. Li,
Tang and Wong [26] studied the performance of various unconditional MOVER methods, which
combined two independent CIs of a single Poisson rate into their ratio CIs. Donner and Zou [27]
utilized the MOVER method to construct CIs as a function of the mean and standard deviation of a
normal distribution, with simulations demonstrating that the CIs constructed using MOVER performed
comparably to exact CIs.

The rest of the article is organized as follows. Section two presents the definition of the difference
between two zero-inflated gamma CVs. Section three investigates the construction of CIs for the
difference between two zero-inflated gamma CVs. Section four presents simulation experiments
designed to compare the coverage probabilities and average lengths of the proposed methods. Section
five applies the developed methodologies to analyze real monthly rainfall data from Beijing and
Zhengzhou. Finally, in section six, the conclusions drawn from this study are summarized.
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2. The coefficients of variation (CV) difference of zero-inflated gamma distributions

Suppose that Xi = (Xi1, Xi2, . . . , Xini), i = 1, 2 are the ith group of samples from the zero-inflated
gamma distribution as follows:

Xi ∼ gi(x; δi, ai, bi) = δiI(x = 0) + (1 − δi)I(x > 0) f (x; ai, bi), (2.1)

where δi is the proportion of zero values, I(·) is the indicator function and f (x; ai, bi) is the probability
density function (pdf) of the gamma distribution with shape parameter ai and scale parameter bi given
by

f (x; ai, bi) =

1
bai

i
xai−1e−

1
bi

x

Γ(ai)
. (2.2)

Let Ni(0) =
∑ni

j=1 I(Xi j = 0). It can be easily seen that Ni(0) ∼ bin(ni, δi) and Ni(1) = ni −Ni(0), and δi is
the binomial parameter. Moreover, ni(1) and ni(0) denote the numbers of positive and zero observations,
respectively.

The mean and variance of Xi from zero-inflated gamma distribution are E(Xi) = (1 − δi)aibi and
Var(Xi) = (1 − δi)aib2

i , respectively. Therefore, the coefficient of variation (CV) of Xi is denoted as

ηi = CV(Xi) =

√
Var(Xi)
E(Xi)

=

√
1

(1 − δi)ai
. (2.3)

From (2.3), we can see that the CV of a zero-inflated gamma distributed random variable depends on
the shape parameter ai and the binomial parameter δi, but does not depend on the scale parameter bi.
In this paper, we aim to construct CIs for the CV difference of two independent zero-inflated gamma
distributions as follows:

γ = η1 − η2 =

√
1

(1 − δ1)a1
−

√
1

(1 − δ2)a2
. (2.4)

3. CIs for the CV difference of zero-inflated gamma distributions

3.1. Fiducial-1 method

Fiducial inference is widely used for constructing CIs because it only requires the sample
information. Due to the fact that the cubic root of the sample from the gamma distribution
approximately distributed as the normal distribution, Krishnamoorthy and Wang [19] proposed
approximate fiducial quantities for gamma distribution based on the normal distribution. Suppose
that the first part of Xi(i = 1, 2) are nonzero samples: Xi j > 0 for j = 1, 2, . . . , ni(1); Xi j = 0 for

j = ni(1) +1, ni(1) + 2, . . . , ni. Let Yi j = X
1
3
i j, Xi j > 0 and Xi j ∼ gamma(ai, bi), then Yi j’s are approximately

normally distributed as N(µi, σ
2
i ), where

µi = (biai)
1
3 (1 −

1
9ai

) (3.1)

and

σ2
i =

b
1
3
i

9a
1
3
i

. (3.2)
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Denote the sample mean and variance of Yi are

Y i =
1

ni(1)

ni(1)∑
j=1

Yi j, S 2
i =

1
ni(1) − 1

ni(1)∑
j=1

(Yi j − Y i)
2
. (3.3)

Assume
Y i

d
−→ µi + Zi

σi
√ni(1)

, S 2
i

d
−→ σ2

i
Qi

ni(1) − 1
, (3.4)

where
d
−→ is distributed as Zi ∼ N(0, 1) and Qi ∼ χ2

ni(1)−1. Replace (Y i, S 2
i ) with their observed values

(yi, s
2
i ), then the fiducial quantities for µi and σ2

i are

Gµi = yi +
Zi
√

ni(1) − 1
√

Qi

si
√ni(1)

(3.5)

and

Gσ2
i

=
(ni(1) − 1)s2

i

Qi
. (3.6)

Take (3.5) and (3.6) into (3.1) and (3.2), then we can obtain that the fiducial quantities for ai, bi are

Gai =
1
9
{(1 +

G2
µi

2Gσ2
i

) + [(1 +
G2
µi

2Gσ2
i

)
2

− 1]
1
2 } (3.7)

and
Gbi = 27G

1
2
ai(G

2
σi

)
2
3 . (3.8)

Then, we introduce the estimation for binomial parameter δi proposed by Li, Zou and Tian [28];
that is

Gδi =
ni(0) +

Z2
Wi
2

ni + Z2
Wi

−
ZWi

ni + Z2
Wi

[ni(0)(1 −
ni(0)

ni
) +

Z2
Wi

4
]

1
2

, (3.9)

where ZWi =
Ni(0)−niδi
√

niδi(1−δi)
∼ N(0, 1), ∼ stands for convergence distribution. The distribution of Gδi does

not depend on any unknown parameters. When Ni(0) = ni(0), the observed value of Gδi is equal to δi.
Therefore, the fiducial quantity for the CV difference of two independent zero-inflated gamma

distribution is

Gγ = Gη1 −Gη2 =

√
1

(1 −Gδ1)Ga1

−

√
1

(1 −Gδ2)Ga2

. (3.10)

The CI of 100(1 − α)% for γ is denoted as [Gγ;( α2 ),Gγ;(1− α2 )], where Gγ;( α2 ) and Gγ;(1− α2 ) are
the 100(α2 ), 100(1 − α

2 ) quartiles for Gγ’s distribution, respectively.
The CV difference of two independent zero-inflated gamma distributions can be calculated in the

following algorithm:
Algorithm 1:
Step1: Determine ni(0) and ni(1), where ni(0) is a realization of Ni(0) ∼ bin(ni, δi), ni(1) = ni−ni(0), i = 1, 2.
Step2: For nonzero sample of size ni(1) from gamma(ai, bi), calculate the transformed sample mean yi

and variance s2
i .
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Step3: Generate random variables Zi ∼ N(0, 1) and Qi ∼ χ2
ni(1)−1, and then calculate Gµiand Gσ2

i

using (3.5) and (3.6).
Step4: Calculate Gai using (3.7).
Step5: Generate random variable ZWi ∼ N(0, 1), and calculate Gδi using (3.9).
Step6: Calculate Gγ using (3.10).
Step7: Repeat Steps 2–6 for 10,000 times.
Step8: Calculate the 100(1 − α)% CI for γ, denoted as [l f 1, u f 1].

3.2. Fiducial-2 method

Different from traditional fiducial inference, Ren, Liu and Pu [12] proposed an exact method to
fiducial inference for gamma parameters. To be specific, for the nonzero part of the zero-inflated
gamma distribution, there exists a relationship between the arithmetic mean (Xi) and the geometric
mean X̃i of Xi as follows:

Xi

X̃i
=

( 1
ni(1)

)
∑ni(1)

j=1 G−1(Ui j; ai, 1)

[
∏ni(1)

j=1 G−1(Ui j; ai, 1)]
1

ni(1)

, (3.11)

where G(x; ai, bi) is the cumulative distribution function of gamma(ai, bi),Ui j ∼ U(0, 1), for i = 1, 2
and j = 1, 2, . . . , ni(1). The fiducial quantity for the shape parameter ai (i.e., Gai) can be solved by the
sample observations using (3.11).

For the binomial distribution part, the transformed parameter converges to the standard normal
distribution; that is

2

√
ni + 2 +

1
ni

(arcsin
√
δ̃i − arcsin

√
δi)

d
−→ N(0, 1), (3.12)

where δ̃i =
ni(0)+0.5

ni+1 , i = 1, 2. Then, the fiducial quantity for the parameter δi is

Gδi = sin2(arcsin
√
δ̃obs

i −
Zi

2
√

ni + 2 + 1
ni

), (3.13)

where Zi ∼ N(0, 1) and δ̃obs
i is the observed value of δ̃i.

Once Gai and Gδi are obtained, the fiducial quantity Gγ can be calculated using (3.10), and the CI
of 100(1 − α)% for γ can be further obtained.

The algorithm for estimating the CV difference of two independent zero-inflated gamma
distributions in Fiducial-2 method is as follows:
Algorithm 2:
Step1: Determine ni(0) and ni(1), where ni(0) is a realization of Ni(0) ∼ bin(ni, δi), ni(1) = ni−ni(0), i = 1, 2.
Step2: For nonzero sample of size ni(1) from gamma(ai, bi), calculate the arithmetric mean Xi and the
geometric mean X̃i.
Step3: Generate random variables Ui j ∼ U(0, 1) and calculate Gai using (3.11).
Step4: Generate random variable Zi ∼ N(0, 1) and calculate Gδi using (3.13).
Step5: Calculate Gγ using (3.10).
Step6: Repeat Steps 2–6 for 10,000 times.
Step7: Calculate the 100(1 − α)% CI for γ, denoted as [l f 2, u f 2].
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3.3. Box-Cox transformation (BC) method

Box-Cox transformation (BC) is a statistical technique used to stabilize variance and/or normalize
the distribution of a variable. For the samples distributed as gamma distribution, Gao and Tian [21]
proposed to convert it into a normal distribution through BC transformation as follows:

Yi j = X(λi)
i j =

Xi j
λi−1
λi

, λi > 0,
log(Xi j), λi = 0,

(3.14)

where Xi j ∼ gamma(ai, bi) and Yi j ∼ N(µi, σ
2
i ), for i = 1, 2 and j = 1, . . . , ni(1). The estimation

of parameter λi can be derived through the maximum likelihood estimation (MLE) method, denoted
as λ̂i. Under two different values of λ̂i, the parameters in the gamma distribution exhibit different
relationships with those in the normal distribution.

If λ̂i , 0, the relationships can be expressed as

Γ(Gai + λ̂i)Gbi
λ̂i

Γ(Gai)
= λ̂iGµi + 1 (3.15)

and
Γ(Gai + 2λ̂i)Gbi

2λ̂i

Γ(Gai)
= (G2

µi
+ Gσ2

i
)λ̂2

i + 2λ̂iGµi + 1. (3.16)

If λ̂i = 0, the relationships can be expressed as

Gµi = ψ(Gai) + log(Gbi) (3.17)

and
Gσ2

i
= ψ(1)(Gai), (3.18)

where Γ(·) is the gamma function ψ(·) is the digamma function, and ψ(1)(·) is the trigamma function.
Due to the fact that the fiducial quantities Gµi and Gσ2

i
can be calculated using (3.5) and (3.6), the

fiducial quantity Gai can be obtained according to the different expressions in the above scenarios.
For the binomial distribution part, we choose to use the fiducial quantity Gδi in (3.9), and Gγ can be

similarly obtained using (3.10). Furthermore, the CI of 100(1 − α)% for γ can be obtained.
The algorithm for estimating the CV difference of two independent zero-inflated gamma

distributions in the BC method is as follows:
Algorithm 3:
Step1: Determine ni(0) and ni(1), where ni(0) is a realization of Ni(0) ∼ bin(ni, δi), ni(1) = ni−ni(0), i = 1, 2.
Step2: For nonzero sample of size ni(1) from gamma(ai, bi), perform BC transformation in (3.14), and
calculate λ̂i by the MLE.
Step3: Generate random variables Zi ∼ N(0, 1) and Qi ∼ χ2

ni(1)−1, and then calculate Gµi and Gσ2
i

using (3.5) and (3.6).
Step4: Calculate Gai using (3.15) and (3.16), or (3.17) and (3.18).
Step5: Generate random variable ZWi ∼ N(0, 1), and calculate Gδi using (3.9).
Step6: Calculate Gγ using (3.10).
Step7: Repeat Steps 2–6 for 10,000 times.
Step8: Calculate the 100(1 − α)% CI for γ, denoted as [lbc, ubc].
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3.4. Parametric bootstrap (PB) method

Parametric bootstrap (PB) method is a resampling technique used to estimate the sampling
distribution of a statistic by generating new samples from a parametric model. In our study, based
on the sample Xi j, i = 1, 2, j = 1, 2, . . . , ni from the zero-inflated gamma distribution, we can calculate
the MLE of δi (denoted as δ̂i). Then, PB samples of size ni are generated based on Bin(ni, δ̂i), and the
MLE of δ̂i (denoted as δ̂∗i ) can be calculated. For gamma(ai, bi), we use the positive part of samples
with size ni(1) to compute the MLEs of ai, bi (denoted as âi, b̂i). Finally, PB samples are generated by
gamma(âi, b̂i) and the MLE of âi (denoted as â∗i ) can be obtained.

The CV difference between two zero-inflated gamma distributions can be calculated by the
following equation:

GPB =

√
1

(1 − δ̂∗1)â∗1
−

√
1

(1 − δ̂∗2)â∗2
. (3.19)

The CI of 100(1 − α)% for PB is denoted as [GPB;( α2 ),GPB;(1− α2 )], where GPB;( α2 ) and GPB;(1− α2 ) are
the 100(α2 ), 100(1 − α

2 ) quartiles for GPB’s distribution, respectively.
The PB method for constructing CI of the CV difference of two independent zero-inflated gamma

distributions is implemented as follows:
Algorithm 4:
Step1: Determine ni(0) and ni(1), where ni(0) is a realization of Ni(0) ∼ bin(ni, δi), ni(1) = ni−ni(0), i = 1, 2.
Step2: Compute the MLE δ̂i.
Step3: Generate bootstrap samples of size ni from bin(ni, δ̂i), and calculate the MLE δ̂∗i .
Step4: For nonzero samples of size ni(1) from gamma(ai, bi), calculate the MLE âi.
Step5: Generate bootstrap samples of size ni(1) from gamma(âi, b̂i), and calculate the MLE â∗i .
Step6: Calculate GPB using (3.19).
Step7: Repeat Steps 2–6 for 10,000 times.
Step8: Calculate the 100(1 − α)% CI for PB, denoted as [lpb, upb].

3.5. MOVER method

The method of variance estimates recovery (MOVER) was proposed for constructing CIs for
function of parameters, such as the difference or ratio between two parameters. Based on MOVER, the
lower and upper confidence limits for θ1 + θ2 are

L = θ̂1 + θ̂2 −

√
(θ̂1 − l1)

2
+ (θ̂2 − l2)

2
(3.20)

and

U = θ̂1 + θ̂2 −

√
(u1 − θ̂1)

2
+ (u2 − θ̂2)

2
. (3.21)

Similarly, the lower and upper confidence limits for θ1 − θ2 are

L
′

= θ̂1 − θ̂2 −

√
(θ̂1 − l1)

2
+ (u2 − θ̂2)

2
(3.22)

and

U
′

= θ̂1 − θ̂2 +

√
(u1 − θ̂1)

2
+ (θ̂2 − l2)

2
. (3.23)
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θ̂1 and θ̂2 are independent estimators, and (l1, u1) and (l2, u2) are 100(1 − α)% confidence limits for
parameters θ1 and θ2.

For the CV of zero-inflated gamma distribution, we can perform a log-transformation, i.e., log(ηi) =

log(
√

1
(1−δi)ai

) = −1
2 [log(1 − δi) + log(ai)]. Denote θi1 , log(1 − δi) and θi2 , log(ai), and we can obtain

the CI for log(ηi) according to (3.20), (3.21) and ηi = exp[−1
2 (θi1 + θi2)].

For the CV difference of two independent zero-inflated gamma distribution, we can first obtain the
MLE of two CV s, i.e., η̂i =

√
1

(1−δ̂i)âi
, i = 1, 2, then the CI for the CV difference can be calculated

using (3.22) and (3.23).
In the preceding sections, we have presented four methods (Fiducial-1, Fiducial-2, BC, PB) for

constructing CIs of the CV s difference between zero-inflated gamma distributions. These methods
involve four distinct approaches for constructing the pivot quantity for the shape parameter ai and
two different approaches (Fiducial-1, Fiducial-2) for constructing the pivot quantity for the binomial
parameter δi. Additionally, we introduce another exact estimation of the CI for δi proposed by
Wilson [23], given as follows:

[δil, δiu] = [
δ̂i +

Z2
α
2

2ni
− Z α

2

√
δ̂i(1−δ̂i)

ni
+

Z2
α
2

4n2
i

1 +
Z2
α
2

ni

,
δ̂i +

Z2
α
2

2ni
+ Z α

2

√
δ̂i(1−δ̂i)

ni
+

Z2
α
2

4n2
i

1 +
Z2
α
2

ni

], (3.24)

where δ̂i =
ni(0)

ni
and Z α

2
represents the upper α

2 quartiles of the standard normal distribution.
Consequently, there are a total of four interval estimates for θi2 and three interval estimates for θi1.
In this way, we can obtain twelve MOVER combination methods for constructing CIs of the CV
difference.

4. Simulation experiments

To judge the accuracies of the proposed methods, we conduct Monte Carlo simulation studies to
compare each method according to the following measurements.

Coverage probability (CP): The ratio of true parameters falling within the CIs.
Average length (AL): The average length of all estimated CIs.
Left error rate (ERL): The percentage of a true parameter of interest falls to the left of the lower

confidence limits (Lcl).
Right error rate (ERR): The percentage of a true parameter of interest falls to the right of the upper

confidence limits (Ucl).
The formulas are shown in below:

CP =
C(Lcl ≤ γ ≤ Ucl)

t
, (4.1)

AL =

∑t
i=1(Ucli − Lcli)

t
, (4.2)

ERL =
C(γ ≤ Lcl)

t
, (4.3)
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ERR =
C(Ucl ≤ γ)

t
, (4.4)

where C(Lcl ≤ γ ≤ Ucl) refers to the number of experiments where the difference γ falls within the CIs
and t is the number of experiments, which is chosen to be 1, 000. To evaluate the performances of CIs,
we tend to favor those CIs with coverage probabilities equal to or greater than the nominal level, and
at the same time, with relatively short interval lengths. Left and right tail error rates of the CIs are also
considered. In general, we tend to favor those CIs with balanced tail error rates.

In the simulation studies, we set sample sizes (n1, n2) to be 10, 20, 50 and 132, proportion of zero
values (δ1, δ2) to be from 0.1 to 0.6, shape parameters (a1, a2) to be two and five, nominal level α to
be 0.05 and the run size t to be 1000. As the problem we consider here is scale invariant [19], the scale
parameter is set to be one for all scenarios. In addition, as sample sizes for the practical problems in
section five are 132 and 132, we illustrate our proposed CIs work properly for these situations in the
simulation studies.

Five estimation methods proposed by Fiducial-1 (F1), Fiducial-2 (F2), BC transform, PB and
Wilson (Wil) are introduced in this article. Different combinations of these methods are obtained by
MOVER. For example, in Tables 1–3, F1F2 means that a is estimated by F1 and δ is estimated by F2.
The values in bold in the tables correspond to the method whose coverage possibility is closest to 0.95
for each set of parameters. The results show that the MOVER comprised by F2 and F2 produced the
most satisfactory results according to coverage probabilities. To this end, MOVER with F2F2 will be
further investigated in the following.

Tables 4–6 illustrate F1, F2, BC transformation, PB and the MOVER method comprised by F2 and
F2. From the results, we can conclude that:

1) F1, F2, BC and MOVER CIs produce satisfactory results according to coverage probabilities for
small to large sample sizes.

2) Among these four methods, the average interval lengths for F1 are shortest for small to moderate
sample sizes. As the sample sizes get large, the average interval lengths become similar for all four
methods.

3) All these four methods produce well balanced CIs.

4) Coverage probabilities for PB CIs are conservative for small to moderate sample sizes. As the
sample sizes get larger, the coverage probabilities get close to nominal level.

5) The computational costs for MOVER are comparable to those of the F2 approach, whereas F1
demonstrates the most efficient time. Time comparison for all these five methods, including F1, F2, BC
transformation, PB and the MOVER method comprised by F2 and F2 (1,000 times running measured
in seconds), are illustrated in Figure 1.

All the simulation results and time comparisons are conducted using R, and the codes can be shared
upon request.
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Table 1. CP of the MOVER methods for small proportion of zeros.

δ1 : δ2 = 0.1 : 0.1
F1F1 F1F2 F1Wil F2F1 F2F2 F2Wil BCF1 BCF2 BCWil PBF1 PBF2 PBWil

n1 : n2 a1 : a2

10:10 2:2 0.963 0.960 0.961 0.961 0.954 0.956 0.963 0.956 0.958 0.958 0.956 0.957
2:5 0.971 0.959 0.962 0.966 0.958 0.960 0.964 0.956 0.956 0.938 0.939 0.943
5:5 0.974 0.965 0.970 0.973 0.963 0.965 0.975 0.964 0.967 0.974 0.966 0.964

10:20 2:2 0.968 0.954 0.953 0.962 0.950 0.953 0.959 0.955 0.955 0.934 0.933 0.935
2:5 0.978 0.968 0.971 0.973 0.968 0.966 0.971 0.966 0.965 0.896 0.902 0.914
5:5 0.967 0.950 0.952 0.962 0.953 0.952 0.962 0.954 0.953 0.945 0.938 0.935

10:50 2:2 0.980 0.972 0.969 0.974 0.967 0.962 0.975 0.967 0.967 0.881 0.871 0.883
2:5 0.978 0.964 0.965 0.970 0.953 0.954 0.967 0.961 0.960 0.861 0.877 0.890
5:5 0.976 0.965 0.960 0.973 0.961 0.958 0.972 0.965 0.964 0.891 0.887 0.890

10:132 2:2 0.979 0.956 0.960 0.976 0.949 0.949 0.966 0.954 0.958 0.864 0.865 0.872
2:5 0.966 0.946 0.955 0.965 0.941 0.948 0.960 0.949 0.952 0.830 0.849 0.863
5:5 0.964 0.946 0.945 0.966 0.944 0.939 0.966 0.950 0.942 0.869 0.874 0.880

50:50 2:2 0.981 0.950 0.952 0.980 0.946 0.951 0.978 0.953 0.948 0.978 0.948 0.945
2:5 0.991 0.964 0.966 0.989 0.956 0.957 0.991 0.960 0.960 0.978 0.959 0.960
5:5 0.983 0.962 0.963 0.982 0.958 0.963 0.982 0.957 0.956 0.981 0.961 0.961

50:132 2:2 0.987 0.967 0.964 0.987 0.956 0.959 0.985 0.954 0.954 0.981 0.957 0.957
2:5 0.980 0.955 0.958 0.974 0.946 0.947 0.974 0.950 0.949 0.956 0.932 0.930
5:5 0.979 0.946 0.944 0.977 0.941 0.944 0.977 0.943 0.945 0.975 0.947 0.948

132:132 2:2 0.996 0.960 0.962 0.996 0.953 0.952 0.995 0.958 0.958 0.995 0.955 0.953
2:5 0.994 0.968 0.969 0.995 0.963 0.966 0.994 0.966 0.967 0.993 0.964 0.962
5:5 0.985 0.955 0.952 0.985 0.950 0.949 0.984 0.949 0.947 0.987 0.951 0.948
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Table 2. CP of the MOVER methods for moderate proportion of zeros.

δ1 : δ2 = 0.3 : 0.3
F1F1 F1F2 F1Wil F2F1 F2F2 F2Wil BCF1 BCF2 BCWil PBF1 PBF2 PBWil

n1 : n2 a1 : a2

10:10 2:2 0.980 0.966 0.961 0.977 0.958 0.962 0.986 0.964 0.967 0.973 0.963 0.962
2:5 0.978 0.958 0.958 0.976 0.951 0.953 0.980 0.955 0.961 0.947 0.941 0.941
5:5 0.981 0.969 0.968 0.980 0.969 0.965 0.987 0.973 0.971 0.979 0.973 0.972

10:20 2:2 0.995 0.969 0.970 0.993 0.968 0.969 0.992 0.965 0.970 0.968 0.938 0.935
2:5 0.973 0.942 0.946 0.970 0.941 0.941 0.969 0.944 0.941 0.884 0.869 0.871
5:5 0.986 0.959 0.961 0.985 0.959 0.959 0.989 0.964 0.964 0.973 0.942 0.946

10:50 2:2 0.985 0.950 0.947 0.985 0.939 0.944 0.980 0.958 0.954 0.930 0.882 0.887
2:5 0.976 0.950 0.953 0.977 0.950 0.948 0.965 0.951 0.953 0.856 0.830 0.836
5:5 0.988 0.959 0.958 0.988 0.958 0.959 0.991 0.969 0.970 0.936 0.887 0.887

10:132 2:2 0.981 0.950 0.952 0.980 0.945 0.942 0.980 0.949 0.954 0.907 0.838 0.841
2:5 0.978 0.958 0.956 0.977 0.953 0.952 0.977 0.963 0.964 0.864 0.833 0.838
5:5 0.991 0.958 0.963 0.989 0.960 0.961 0.993 0.972 0.974 0.913 0.866 0.865

50:50 2:2 0.999 0.949 0.948 0.999 0.943 0.939 0.999 0.943 0.941 0.999 0.943 0.942
2:5 0.997 0.955 0.953 0.996 0.945 0.944 0.994 0.951 0.957 0.993 0.954 0.953
5:5 1.000 0.953 0.955 1.000 0.952 0.954 1.000 0.953 0.951 1.000 0.950 0.952

50:132 2:2 1.000 0.956 0.958 1.000 0.953 0.947 1.000 0.951 0.948 1.000 0.939 0.941
2:5 0.999 0.967 0.969 0.999 0.958 0.961 0.999 0.960 0.958 0.996 0.940 0.947
5:5 0.999 0.953 0.952 0.999 0.947 0.949 0.999 0.951 0.949 0.999 0.944 0.944

132:132 2:2 1.000 0.952 0.948 1.000 0.944 0.944 1.000 0.950 0.949 1.000 0.944 0.945
2:5 1.000 0.952 0.950 1.000 0.943 0.948 1.000 0.946 0.944 1.000 0.944 0.944
5:5 1.000 0.964 0.961 1.000 0.959 0.958 1.000 0.962 0.963 1.000 0.957 0.961
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Table 3. CP of the MOVER methods for large proportion of zeros.

δ1 : δ2 = 0.6 : 0.6
F1F1 F1F2 F1Wil F2F1 F2F2 F2Wil BCF1 BCF2 BCWil PBF1 PBF2 PBWil

n1 : n2 a1 : a2

10:10 2:2 0.983 0.958 0.958 0.984 0.959 0.956 0.991 0.973 0.968 0.971 0.946 0.945
2:5 0.985 0.967 0.966 0.986 0.968 0.968 0.991 0.969 0.974 0.917 0.900 0.894
5:5 0.983 0.966 0.966 0.985 0.966 0.966 0.989 0.976 0.974 0.957 0.944 0.938

10:20 2:2 0.994 0.963 0.962 0.993 0.960 0.963 0.998 0.974 0.974 0.952 0.900 0.899
2:5 0.982 0.952 0.958 0.979 0.949 0.949 0.986 0.959 0.959 0.895 0.843 0.839
5:5 0.992 0.973 0.972 0.992 0.973 0.970 0.997 0.981 0.982 0.962 0.917 0.913

10:50 2:2 0.992 0.955 0.954 0.992 0.952 0.953 0.995 0.964 0.963 0.937 0.823 0.813
2:5 0.986 0.955 0.953 0.983 0.957 0.953 0.990 0.964 0.962 0.862 0.770 0.765
5:5 0.996 0.969 0.968 0.996 0.970 0.970 0.999 0.979 0.978 0.946 0.842 0.834

10:132 2:2 0.995 0.963 0.962 0.996 0.957 0.961 0.995 0.971 0.972 0.912 0.756 0.749
2:5 0.986 0.965 0.965 0.986 0.957 0.961 0.989 0.963 0.966 0.861 0.751 0.743
5:5 0.990 0.959 0.964 0.989 0.956 0.957 0.999 0.978 0.971 0.924 0.788 0.774

50:50 2:2 1.000 0.966 0.965 1.000 0.958 0.961 1.000 0.961 0.958 1.000 0.974 0.970
2:5 1.000 0.964 0.965 1.000 0.965 0.959 1.000 0.964 0.957 1.000 0.959 0.954
5:5 1.000 0.952 0.953 1.000 0.954 0.951 1.000 0.955 0.954 1.000 0.962 0.965

50:132 2:2 1.000 0.955 0.955 1.000 0.949 0.955 1.000 0.952 0.953 1.000 0.950 0.944
2:5 1.000 0.962 0.964 1.000 0.958 0.959 1.000 0.958 0.959 1.000 0.944 0.947
5:5 1.000 0.959 0.957 1.000 0.957 0.954 1.000 0.957 0.951 1.000 0.941 0.942

132:132 2:2 1.000 0.966 0.964 1.000 0.963 0.962 1.000 0.965 0.961 1.000 0.965 0.964
2:5 1.000 0.941 0.940 1.000 0.941 0.940 1.000 0.940 0.942 1.000 0.943 0.943
5:5 1.000 0.955 0.956 1.000 0.954 0.954 1.000 0.958 0.956 1.000 0.956 0.959
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Table 4. CP, AL and tail error rates for small proportion of zeros.

δ1 : δ2 = 0.1 : 0.1
Fiducial-1 Fiducial-2 BC PB MOVER

CP AL CP AL CP AL CP AL CP AL
n1 : n2 a1 : a2 ERL ERR ERL ERR ERL ERR ERL ERR ERL ERR

10:10 2:2
0.952 1.256 0.946 1.237 0.947 1.287 0.949 0.902 0.954 1.314
0.023 0.025 0.027 0.027 0.025 0.028 0.023 0.028 0.023 0.023

2:5
0.949 1.084 0.948 1.068 0.952 1.092 0.937 0.769 0.958 1.127
0.024 0.027 0.025 0.027 0.018 0.030 0.003 0.060 0.022 0.020

5:5
0.955 0.867 0.952 0.854 0.952 0.856 0.956 0.590 0.963 0.909
0.023 0.022 0.023 0.025 0.028 0.020 0.021 0.023 0.019 0.018

10:20 2:2
0.951 1.041 0.938 1.025 0.951 1.055 0.931 0.796 0.950 1.071
0.027 0.022 0.033 0.029 0.022 0.027 0.004 0.065 0.026 0.024

2:5
0.967 0.949 0.964 0.932 0.958 0.959 0.900 0.711 0.968 0.961
0.014 0.019 0.019 0.017 0.016 0.026 0.003 0.097 0.017 0.015

5:5
0.944 0.710 0.942 0.701 0.951 0.703 0.933 0.519 0.953 0.731
0.035 0.021 0.036 0.022 0.028 0.021 0.005 0.062 0.029 0.018

10:50 2:2
0.970 0.913 0.960 0.903 0.963 0.928 0.870 0.702 0.967 0.914
0.014 0.016 0.022 0.018 0.013 0.024 0.001 0.129 0.018 0.015

2:5
0.963 0.882 0.953 0.872 0.960 0.899 0.878 0.665 0.953 0.872
0.022 0.015 0.030 0.017 0.016 0.024 0.000 0.122 0.031 0.016

5:5
0.957 0.620 0.952 0.613 0.960 0.616 0.882 0.457 0.961 0.624
0.022 0.021 0.029 0.019 0.018 0.022 0.001 0.117 0.022 0.017

10:132 2:2
0.959 0.878 0.944 0.869 0.954 0.892 0.864 0.666 0.949 0.866
0.023 0.018 0.038 0.018 0.016 0.030 0.001 0.135 0.029 0.022

2:5
0.954 0.857 0.941 0.848 0.947 0.866 0.848 0.647 0.941 0.839
0.021 0.025 0.031 0.028 0.018 0.035 0.000 0.152 0.031 0.028

5:5
0.946 0.603 0.945 0.596 0.943 0.594 0.878 0.436 0.944 0.593
0.031 0.023 0.035 0.020 0.028 0.029 0.000 0.122 0.033 0.023

50:50 2:2
0.953 0.448 0.942 0.441 0.942 0.448 0.945 0.416 0.946 0.449
0.023 0.024 0.029 0.029 0.027 0.031 0.027 0.028 0.027 0.027

2:5
0.957 0.378 0.953 0.373 0.962 0.377 0.961 0.351 0.956 0.379
0.021 0.022 0.028 0.019 0.020 0.018 0.013 0.026 0.027 0.017

5:5
0.958 0.296 0.958 0.293 0.959 0.292 0.963 0.274 0.958 0.299
0.025 0.017 0.024 0.018 0.023 0.018 0.022 0.015 0.024 0.018

50:132 2:2
0.964 0.368 0.953 0.363 0.950 0.367 0.955 0.347 0.956 0.366
0.019 0.017 0.027 0.020 0.021 0.029 0.009 0.036 0.026 0.018

2:5
0.957 0.336 0.945 0.331 0.947 0.335 0.932 0.316 0.946 0.333
0.018 0.025 0.028 0.027 0.016 0.037 0.007 0.061 0.027 0.027

5:5
0.945 0.241 0.940 0.238 0.941 0.239 0.945 0.226 0.941 0.242
0.032 0.023 0.033 0.027 0.029 0.030 0.014 0.041 0.033 0.026

132:132 2:2
0.960 0.265 0.954 0.262 0.953 0.267 0.956 0.256 0.953 0.264
0.022 0.018 0.027 0.019 0.023 0.024 0.023 0.021 0.025 0.022

2:5
0.969 0.225 0.963 0.222 0.961 0.226 0.960 0.217 0.963 0.223
0.013 0.018 0.016 0.021 0.020 0.019 0.014 0.026 0.019 0.018

5:5
0.948 0.175 0.947 0.173 0.943 0.174 0.947 0.169 0.950 0.175
0.027 0.025 0.027 0.026 0.028 0.029 0.028 0.025 0.025 0.025
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Table 5. CP, AL and tail error rates for moderate proportion of zeros.

δ1 : δ2 = 0.3 : 0.3
Fiducial-1 Fiducial-2 BC PB MOVER

CP AL CP AL CP AL CP AL CP AL
n1 : n2 a1 : a2 ERL ERR ERL ERR ERL ERR ERL ERR ERL ERR

10:10 2:2
0.952 1.960 0.941 1.991 0.953 2.245 0.959 1.242 0.958 2.139
0.023 0.025 0.029 0.030 0.022 0.024 0.023 0.018 0.022 0.020

2:5
0.947 1.718 0.943 1.740 0.953 1.960 0.933 1.049 0.951 1.876
0.029 0.024 0.032 0.025 0.019 0.028 0.005 0.062 0.028 0.021

5:5
0.957 1.389 0.957 1.377 0.968 1.475 0.964 0.802 0.969 1.487
0.026 0.017 0.026 0.017 0.017 0.016 0.021 0.015 0.020 0.011

10:20 2:2
0.965 1.562 0.961 1.575 0.964 1.704 0.921 1.073 0.968 1.665
0.015 0.020 0.020 0.019 0.017 0.019 0.000 0.079 0.016 0.016

2:5
0.939 1.396 0.936 1.391 0.941 1.515 0.857 0.941 0.941 1.446
0.026 0.035 0.028 0.036 0.021 0.037 0.000 0.143 0.026 0.033

5:5
0.949 1.094 0.955 1.081 0.962 1.150 0.935 0.705 0.959 1.144
0.031 0.020 0.027 0.018 0.021 0.016 0.001 0.064 0.026 0.015

10:50 2:2
0.943 1.412 0.932 1.420 0.952 1.667 0.873 0.974 0.939 1.450
0.029 0.028 0.039 0.029 0.022 0.026 0.000 0.127 0.034 0.027

2:5
0.951 1.292 0.946 1.292 0.943 1.485 0.821 0.877 0.950 1.311
0.020 0.029 0.026 0.028 0.013 0.044 0.000 0.179 0.024 0.026

5:5
0.960 0.937 0.956 0.928 0.970 1.009 0.875 0.605 0.958 0.955
0.024 0.016 0.028 0.016 0.018 0.011 0.000 0.125 0.027 0.015

10:132 2:2
0.949 1.295 0.942 1.309 0.955 1.479 0.833 0.874 0.945 1.321
0.024 0.027 0.029 0.029 0.013 0.032 0.000 0.167 0.027 0.028

2:5
0.956 1.282 0.951 1.287 0.960 1.485 0.826 0.860 0.953 1.286
0.021 0.023 0.025 0.024 0.018 0.022 0.000 0.174 0.024 0.023

5:5
0.958 0.915 0.961 0.917 0.971 0.974 0.850 0.570 0.960 0.918
0.023 0.019 0.021 0.018 0.015 0.013 0.000 0.150 0.021 0.019

50:50 2:2
0.949 0.618 0.937 0.609 0.941 0.613 0.939 0.565 0.943 0.623
0.022 0.029 0.028 0.035 0.030 0.029 0.029 0.032 0.025 0.032

2:5
0.953 0.518 0.944 0.512 0.951 0.513 0.954 0.475 0.945 0.524
0.018 0.029 0.024 0.032 0.018 0.031 0.008 0.038 0.026 0.029

5:5
0.951 0.407 0.944 0.404 0.948 0.401 0.955 0.370 0.952 0.414
0.027 0.022 0.030 0.026 0.025 0.027 0.024 0.021 0.028 0.020

50:132 2:2
0.953 0.501 0.946 0.494 0.944 0.500 0.935 0.467 0.953 0.501
0.022 0.025 0.023 0.031 0.016 0.040 0.011 0.054 0.021 0.026

2:5
0.963 0.462 0.953 0.456 0.952 0.460 0.941 0.430 0.958 0.460
0.016 0.021 0.022 0.025 0.018 0.030 0.008 0.051 0.021 0.021

5:5
0.946 0.330 0.944 0.327 0.955 0.326 0.942 0.306 0.947 0.332
0.029 0.025 0.031 0.025 0.023 0.022 0.014 0.044 0.029 0.024

132:132 2:2
0.958 0.361 0.935 0.356 0.943 0.362 0.942 0.346 0.944 0.360
0.017 0.025 0.027 0.038 0.023 0.034 0.024 0.034 0.024 0.032

2:5
0.949 0.306 0.941 0.303 0.942 0.305 0.941 0.294 0.943 0.306
0.026 0.025 0.036 0.023 0.030 0.028 0.028 0.031 0.037 0.020

5:5
0.960 0.237 0.956 0.235 0.954 0.235 0.957 0.228 0.959 0.238
0.021 0.019 0.023 0.021 0.021 0.025 0.021 0.022 0.021 0.020
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Table 6. CP, AL and tail error rates for middle proportion of zeros.

δ1 : δ2 = 0.3 : 0.3
Fiducial-1 Fiducial-2 BC PB MOVER

CP AL CP AL CP AL CP AL CP AL
n1 : n2 a1 : a2 ERL ERR ERL ERR ERL ERR ERL ERR ERL ERR

10:10 2:2
0.943 4.786 0.938 6.838 0.959 9.159 0.926 2.031 0.959 7.390
0.028 0.029 0.032 0.030 0.020 0.020 0.033 0.041 0.021 0.020

2:5
0.947 4.464 0.947 5.922 0.960 7.950 0.881 1.673 0.968 6.409
0.015 0.037 0.018 0.035 0.010 0.030 0.001 0.118 0.011 0.021

5:5
0.941 3.872 0.944 4.898 0.958 6.084 0.915 1.280 0.966 5.303
0.028 0.031 0.029 0.028 0.020 0.023 0.042 0.043 0.018 0.017

10:20 2:2
0.944 3.740 0.942 4.683 0.963 6.458 0.879 1.856 0.960 5.028
0.022 0.034 0.025 0.033 0.022 0.015 0.002 0.119 0.017 0.023

2:5
0.946 3.448 0.939 4.459 0.955 5.778 0.817 1.617 0.949 4.746
0.020 0.034 0.030 0.032 0.021 0.024 0.000 0.183 0.022 0.029

5:5
0.961 2.871 0.962 3.332 0.971 4.271 0.890 1.174 0.973 3.598
0.015 0.024 0.014 0.024 0.014 0.015 0.004 0.106 0.009 0.018

10:50 2:2
0.948 3.303 0.945 4.358 0.962 6.224 0.790 1.611 0.952 4.512
0.026 0.026 0.026 0.028 0.019 0.019 0.000 0.210 0.024 0.024

2:5
0.950 3.092 0.951 4.117 0.956 5.525 0.735 1.438 0.957 4.307
0.025 0.025 0.022 0.027 0.025 0.019 0.000 0.265 0.023 0.020

5:5
0.962 2.487 0.963 2.977 0.974 3.949 0.795 1.025 0.970 3.105
0.018 0.020 0.019 0.018 0.015 0.011 0.000 0.205 0.016 0.014

10:132 2:2
0.958 2.999 0.960 3.906 0.967 5.639 0.728 1.407 0.957 3.938
0.013 0.029 0.014 0.026 0.012 0.020 0.000 0.272 0.015 0.028

2:5
0.963 3.013 0.956 4.095 0.962 5.412 0.719 1.405 0.957 4.140
0.013 0.024 0.015 0.029 0.017 0.021 0.000 0.281 0.015 0.028

5:5
0.954 2.440 0.957 3.049 0.974 3.945 0.740 0.921 0.956 3.138
0.015 0.031 0.011 0.031 0.012 0.013 0.000 0.260 0.015 0.029

50:50 2:2
0.962 1.263 0.953 1.246 0.956 1.249 0.969 1.085 0.958 1.295
0.018 0.020 0.020 0.027 0.022 0.022 0.014 0.017 0.020 0.022

2:5
0.964 1.049 0.960 1.037 0.958 1.036 0.952 0.901 0.965 1.077
0.013 0.023 0.016 0.024 0.013 0.029 0.006 0.042 0.017 0.018

5:5
0.946 0.820 0.948 0.812 0.949 0.800 0.963 0.695 0.954 0.847
0.027 0.027 0.027 0.025 0.028 0.023 0.020 0.017 0.023 0.023

50:132 2:2
0.955 1.000 0.948 0.992 0.953 0.993 0.941 0.889 0.949 1.012
0.021 0.024 0.028 0.024 0.017 0.030 0.006 0.053 0.027 0.024

2:5
0.959 0.917 0.965 0.906 0.955 0.903 0.942 0.808 0.958 0.919
0.019 0.022 0.017 0.018 0.014 0.031 0.005 0.053 0.022 0.020

5:5
0.954 0.656 0.949 0.651 0.947 0.646 0.938 0.575 0.957 0.666
0.022 0.024 0.023 0.028 0.019 0.034 0.004 0.058 0.017 0.026

132:132 2:2
0.966 0.696 0.960 0.689 0.958 0.697 0.963 0.657 0.963 0.702
0.020 0.014 0.023 0.017 0.023 0.019 0.023 0.014 0.021 0.016

2:5
0.941 0.583 0.933 0.577 0.935 0.581 0.944 0.549 0.941 0.587
0.023 0.036 0.032 0.035 0.026 0.039 0.018 0.038 0.029 0.030

5:5
0.956 0.456 0.948 0.451 0.950 0.452 0.955 0.428 0.954 0.461
0.019 0.025 0.020 0.032 0.022 0.028 0.018 0.027 0.021 0.025
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Figure 1. Time Comparison for CI.

5. Empirical analysis

To illustrate the proposed CIs, we study the monthly precipitation data from the National
Meteorological Science Data Center for Beijing and Zhengzhou for 11 years, from 2009 to 2019. As
the density curves shown in Figure 2, the two precipitation data for Beijing and Zhengzhou contain a
large number of zeros, and the non-zero parts follow gamma distirbution well. The Akaike information
criterias (AICs) of several distributions to fit the non-zero part of the data sets are calculated and listed
in Table 7. AICs illustrated in Table 7 show that the data sets fit gamma distribution well, as the AICs
for gamma distribution is smallest among other distributions.

Figure 2. Density curves for rainfall data in Beijing and Zhengzhou.
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Table 7. AICs of different distributions to fit rainfall data in Beijing and Zhengzhou.

Gamma Normal Lognormal Cauchy Exponential Wibull t

Beijing 1116.668 1278.887 1139.087 1232.678 1131.436 1116.893 1231.427
Zhengzhou 1250.871 1391.725 1282.288 1378.279 1259.561 1252.355 1369.012

In addition, we use the goft package in R, which is usually used for data fitting and parameter
estimation. In the goft package, the gamma test function is used to check if the data follows gamma
distribution; p-values greater than 0.05 means failure to reject the null, which is the data following
gamma distribution. The gamma fit function estimates the parameters of the gamma distribution.
These two functions are used to check if the data follows gamma distribution and to estimate the
corresponding parameters in this study. The p-values of the non-zero part of the monthly precipitation
data of Beijing and Zhengzhou are 0.9682 and 0.4429, respectively, which means strong evidence to
support the data follows gamma distribution. As a consequence, the parameters of the two are estimated
by the gamma fit function as (0.64, 85.55), (0.72, 74.75), respectively. These results combined
with AICs in Table 7 indicate that gamma distribution is the most appropriate model among all the
considered models to analyze the data.

For the two data sets, the maximum likelihood estimates for each indicator were δ1=0.144,
a1=0.64, δ2 = 0.045, a2 = 0.72, and the difference in CV between the two data sets was 0.1511631. CIs
for the four basic methods, F1, F2, BC transformation, PB and the best combination of MOVER with
F2F2 are constructed. As shown in Table 8, the intervals are (−0.0823, 0.3278), (−0.0737, 0.3409),
(−0.0797, 0.3592), (−0.0624, 0.3377) and (−0.0661, 0.3427), and the corresponding interval lengths
are 0.4101, 0.4146, 0.4389, 0.4001 and 0.4088. All the CIs indicate a greater precipitation in Beijing
than that in Zhengzhou. We can see that the interval length for MOVER with F2F2 is shorter than the
interval length of F1, F2 and BC transformation, and is just slightly longer than the interval length of
PB. Since MOVER with F2F2 outperforms PB according to coverage probabilities and tail errors, one
can safely use MOVER with F2F2 to analyze such zero-inflated data in practical purposes.

Table 8. CI and interval length obtained by above five methods.

Methods Fiducial-1 Fiducial-2 BC PB MOVER(F2F2)

CI (-0.0823, 0.3278) (-0.0737, 0.3409) (-0.0797, 0.3592) (-0.0624, 0.3377) (-0.0661, 0.3427)
Interval length 0.4101 0.4146 0.4389 0.4001 0.4088

6. Conclusions

In this study, four inferential methods, F1, F2, BC transformation, PB and MOVER, were used to
construct CIs for the difference between two zero-inflated gamma CV s. The performances of all these
CIs were evaluated and compared by the Monte Carlo simulation.

Simulation studies have shown that the F1 CIs and the MOVER CIs combining F2 and F2 return
more satisfactory results than other CIs according to the criterions we used in this article. More
specifically, F1 CIs are well balanced and the coverage probabilities of such CIs are close to nominal
level, even for small sample sizes. MOVER CIs return more satisfactory results than F1 according
to coverage probabilities and interval length. In addition, the F1 method is more time efficient than
MOVER.
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For practical application purposes, one can safely use F1 for some specific situations (small sample
sizes, large proportion of zeros, time efficiency). If the sample size is large and the computational cost
is not a concern, MOVER consisting of F2F2 is the best choice as it returns more satisfactory results
for all criterion used in this study.

One potential future work is to focus on finding possible closed form estimations of gamma
parameters. In such a way, we should be able to construct exact CIs. Another possible future work is
to extend the current work to analyze censored data, such as the work proposed in [29].
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