We are concerned with the initial value problem of non-isothermal incompressible nematic liquid crystal flows in $ \Bbb R^3 $. Through some time-weighted a priori estimates, we prove the global existence of a strong solution provided that $ \Big(\|\sqrt{\rho_0}u_0\|_{L^2}^2+\|\nabla d_0\|_{L^2}^2\Big)\Big(\|\nabla u_0\|_{L^2}^2+\|\nabla^2d_0\|_{L^2}^2\Big) $ is reasonably small, which extends the corresponding Li's (Methods Appl. Anal. 2015 [
Citation: Zhongying Liu, Yang Liu, Yiqi Jiang. Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows[J]. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695
We are concerned with the initial value problem of non-isothermal incompressible nematic liquid crystal flows in $ \Bbb R^3 $. Through some time-weighted a priori estimates, we prove the global existence of a strong solution provided that $ \Big(\|\sqrt{\rho_0}u_0\|_{L^2}^2+\|\nabla d_0\|_{L^2}^2\Big)\Big(\|\nabla u_0\|_{L^2}^2+\|\nabla^2d_0\|_{L^2}^2\Big) $ is reasonably small, which extends the corresponding Li's (Methods Appl. Anal. 2015 [
[1] | Y. Cho, H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math Soc., 45 (2008), 645–681. http://dx.doi.org/10.4134/JKMS.2008.45.3.645 doi: 10.4134/JKMS.2008.45.3.645 |
[2] | S. Ding, J. Huang, F. Xia, Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum, Filomat, 27 (2013), 1247–1257. http://dx.doi.org/10.2298/FIL1307247D doi: 10.2298/FIL1307247D |
[3] | C. He, J. Li, B. Lv, Global well-posedness and exponential stability of 3D Navier-Stokes equations with density-dependent viscosity and vacuum in unbounded domains, Arch. Rational Mech. An., 239 (2021), 1809–1835. http://dx.doi.org/10.1007/s00205-020-01604-5 doi: 10.1007/s00205-020-01604-5 |
[4] | J. Li, Global strong solutions to incompressible nematic liquid crystal flow, Methods Appl. Anal., 22 (2015), 201–220. http://dx.doi.org/10.4310/MAA.2015.v22.n2.a4 doi: 10.4310/MAA.2015.v22.n2.a4 |
[5] | X. Li, Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two, Discrete Cont. Dyn. Syst., 37 (2017), 4907–4922. http://dx.doi.org/10.3934/dcds.2017211 doi: 10.3934/dcds.2017211 |
[6] | L. Li, Q. Liu, X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, Nonlinearity, 30 (2017), 4062. http://dx.doi.org/10.1088/1361-6544/aa8426 doi: 10.1088/1361-6544/aa8426 |
[7] | P. Lions, Mathematical topics in fluid mechanics: Volume 2. Compressible models, Oxford University Press on Demand, 1996. |
[8] | Q. Liu, S. Liu, W. Tan, X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differ. Equations, 261 (2016), 6521–6569. http://dx.doi.org/10.1016/j.jde.2016.08.044 doi: 10.1016/j.jde.2016.08.044 |
[9] | Y. Liu, Global regularity to the 2D non-isothermal inhomogeneous nematic liquid crystal flows, Appl. Anal., 2020 (2020), 1–21 http://dx.doi.org/10.1080/00036811.2020.1819534 doi: 10.1080/00036811.2020.1819534 |
[10] | B. Lv, Z. Xu, X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pure. Appl., 108 (2017), 41–62. http://dx.doi.org/10.1016/j.matpur.2016.10.009 doi: 10.1016/j.matpur.2016.10.009 |
[11] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162. |
[12] | P. Oswald, P. Pieranski, Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, Boca Raton: CRC Press, 2005. http://dx.doi.org/10.1201/9780203023013 |
[13] | A. Sonnet, E. Virga, Dissipative ordered fluids: Theories for liquid crystals, Springer Science & Business Media, 2012. |
[14] | H. Xu, H. Yu, Global regularity to the Cauchy problem of the 3D heat conducting incompressible Navier-Stokes equations, J. Math. Anal. Appl., 464 (2018), 823–837. http://dx.doi.org/10.1016/j.jmaa.2018.04.037 doi: 10.1016/j.jmaa.2018.04.037 |
[15] | H. Xu, H. Yu, Global strong solutions to the 3D inhomogeneous heat-conducting incompressible fluids, Appl. Anal., 98 (2019), 622–637. http://dx.doi.org/10.1080/00036811.2017.1399362 doi: 10.1080/00036811.2017.1399362 |
[16] | Y. Wang, Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum, Discrete Cont. Dyn. B, 25 (2020), 4317–4333. http://dx.doi.org/10.3934/dcdsb.2020099 doi: 10.3934/dcdsb.2020099 |
[17] | H. Wen, S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real World Appl., 12 (2011), 1510–1531. http://dx.doi.org/10.1016/j.nonrwa.2010.10.010 doi: 10.1016/j.nonrwa.2010.10.010 |
[18] | X. Zhong, Global strong solution for 3D viscous incompressible heat conducting Navier-Stokes flows with nonnegative density, J. Differ. Equations, 263 (2017), 4978–4996. http://dx.doi.org/10.1016/j.jde.2017.06.004 doi: 10.1016/j.jde.2017.06.004 |
[19] | X. Zhong, Global strong solutions for nonhomogeneous heat conducting Navier-Stokes equations, Math. Method. Appl. Sci., 41 (2018), 127–139. http://dx.doi.org/10.1002/mma.4600 doi: 10.1002/mma.4600 |
[20] | X. Zhong, Global existence and large time behavior of strong solutions for 3D nonhomogeneous heat conducting Navier-Stokes equations, J. Math. Phys., 61 (2020), 111503. http://dx.doi.org/10.1063/5.0012871 doi: 10.1063/5.0012871 |