Research article

Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows

  • Received: 09 December 2021 Revised: 20 March 2022 Accepted: 24 March 2022 Published: 27 April 2022
  • MSC : 35Q35, 76D03

  • We are concerned with the initial value problem of non-isothermal incompressible nematic liquid crystal flows in $ \Bbb R^3 $. Through some time-weighted a priori estimates, we prove the global existence of a strong solution provided that $ \Big(\|\sqrt{\rho_0}u_0\|_{L^2}^2+\|\nabla d_0\|_{L^2}^2\Big)\Big(\|\nabla u_0\|_{L^2}^2+\|\nabla^2d_0\|_{L^2}^2\Big) $ is reasonably small, which extends the corresponding Li's (Methods Appl. Anal. 2015 [4]) and Ding-Huang-Xia's (Filomat 2013 [2]) results to the whole space $ \Bbb R^3 $ and non-isothermal case. Furthermore, we also derive the algebraic decay estimates of the solution.

    Citation: Zhongying Liu, Yang Liu, Yiqi Jiang. Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows[J]. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695

    Related Papers:

  • We are concerned with the initial value problem of non-isothermal incompressible nematic liquid crystal flows in $ \Bbb R^3 $. Through some time-weighted a priori estimates, we prove the global existence of a strong solution provided that $ \Big(\|\sqrt{\rho_0}u_0\|_{L^2}^2+\|\nabla d_0\|_{L^2}^2\Big)\Big(\|\nabla u_0\|_{L^2}^2+\|\nabla^2d_0\|_{L^2}^2\Big) $ is reasonably small, which extends the corresponding Li's (Methods Appl. Anal. 2015 [4]) and Ding-Huang-Xia's (Filomat 2013 [2]) results to the whole space $ \Bbb R^3 $ and non-isothermal case. Furthermore, we also derive the algebraic decay estimates of the solution.



    加载中


    [1] Y. Cho, H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math Soc., 45 (2008), 645–681. http://dx.doi.org/10.4134/JKMS.2008.45.3.645 doi: 10.4134/JKMS.2008.45.3.645
    [2] S. Ding, J. Huang, F. Xia, Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum, Filomat, 27 (2013), 1247–1257. http://dx.doi.org/10.2298/FIL1307247D doi: 10.2298/FIL1307247D
    [3] C. He, J. Li, B. Lv, Global well-posedness and exponential stability of 3D Navier-Stokes equations with density-dependent viscosity and vacuum in unbounded domains, Arch. Rational Mech. An., 239 (2021), 1809–1835. http://dx.doi.org/10.1007/s00205-020-01604-5 doi: 10.1007/s00205-020-01604-5
    [4] J. Li, Global strong solutions to incompressible nematic liquid crystal flow, Methods Appl. Anal., 22 (2015), 201–220. http://dx.doi.org/10.4310/MAA.2015.v22.n2.a4 doi: 10.4310/MAA.2015.v22.n2.a4
    [5] X. Li, Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two, Discrete Cont. Dyn. Syst., 37 (2017), 4907–4922. http://dx.doi.org/10.3934/dcds.2017211 doi: 10.3934/dcds.2017211
    [6] L. Li, Q. Liu, X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, Nonlinearity, 30 (2017), 4062. http://dx.doi.org/10.1088/1361-6544/aa8426 doi: 10.1088/1361-6544/aa8426
    [7] P. Lions, Mathematical topics in fluid mechanics: Volume 2. Compressible models, Oxford University Press on Demand, 1996.
    [8] Q. Liu, S. Liu, W. Tan, X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differ. Equations, 261 (2016), 6521–6569. http://dx.doi.org/10.1016/j.jde.2016.08.044 doi: 10.1016/j.jde.2016.08.044
    [9] Y. Liu, Global regularity to the 2D non-isothermal inhomogeneous nematic liquid crystal flows, Appl. Anal., 2020 (2020), 1–21 http://dx.doi.org/10.1080/00036811.2020.1819534 doi: 10.1080/00036811.2020.1819534
    [10] B. Lv, Z. Xu, X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pure. Appl., 108 (2017), 41–62. http://dx.doi.org/10.1016/j.matpur.2016.10.009 doi: 10.1016/j.matpur.2016.10.009
    [11] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162.
    [12] P. Oswald, P. Pieranski, Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, Boca Raton: CRC Press, 2005. http://dx.doi.org/10.1201/9780203023013
    [13] A. Sonnet, E. Virga, Dissipative ordered fluids: Theories for liquid crystals, Springer Science & Business Media, 2012.
    [14] H. Xu, H. Yu, Global regularity to the Cauchy problem of the 3D heat conducting incompressible Navier-Stokes equations, J. Math. Anal. Appl., 464 (2018), 823–837. http://dx.doi.org/10.1016/j.jmaa.2018.04.037 doi: 10.1016/j.jmaa.2018.04.037
    [15] H. Xu, H. Yu, Global strong solutions to the 3D inhomogeneous heat-conducting incompressible fluids, Appl. Anal., 98 (2019), 622–637. http://dx.doi.org/10.1080/00036811.2017.1399362 doi: 10.1080/00036811.2017.1399362
    [16] Y. Wang, Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum, Discrete Cont. Dyn. B, 25 (2020), 4317–4333. http://dx.doi.org/10.3934/dcdsb.2020099 doi: 10.3934/dcdsb.2020099
    [17] H. Wen, S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real World Appl., 12 (2011), 1510–1531. http://dx.doi.org/10.1016/j.nonrwa.2010.10.010 doi: 10.1016/j.nonrwa.2010.10.010
    [18] X. Zhong, Global strong solution for 3D viscous incompressible heat conducting Navier-Stokes flows with nonnegative density, J. Differ. Equations, 263 (2017), 4978–4996. http://dx.doi.org/10.1016/j.jde.2017.06.004 doi: 10.1016/j.jde.2017.06.004
    [19] X. Zhong, Global strong solutions for nonhomogeneous heat conducting Navier-Stokes equations, Math. Method. Appl. Sci., 41 (2018), 127–139. http://dx.doi.org/10.1002/mma.4600 doi: 10.1002/mma.4600
    [20] X. Zhong, Global existence and large time behavior of strong solutions for 3D nonhomogeneous heat conducting Navier-Stokes equations, J. Math. Phys., 61 (2020), 111503. http://dx.doi.org/10.1063/5.0012871 doi: 10.1063/5.0012871
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1698) PDF downloads(79) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog