We are concerned with the initial value problem of non-isothermal incompressible nematic liquid crystal flows in R3. Through some time-weighted a priori estimates, we prove the global existence of a strong solution provided that (‖√ρ0u0‖2L2+‖∇d0‖2L2)(‖∇u0‖2L2+‖∇2d0‖2L2) is reasonably small, which extends the corresponding Li's (Methods Appl. Anal. 2015 [
Citation: Zhongying Liu, Yang Liu, Yiqi Jiang. Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows[J]. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695
[1] | Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051 |
[2] | Qiang Li, Mianlu Zou . A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. AIMS Mathematics, 2022, 7(5): 9278-9287. doi: 10.3934/math.2022514 |
[3] | Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863 |
[4] | Xiufang Zhao, Ning Duan . On global well-posedness and decay of 3D Ericksen-Leslie system. AIMS Mathematics, 2021, 6(11): 12660-12679. doi: 10.3934/math.2021730 |
[5] | Qiang Li, Baoquan Yuan . Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations. AIMS Mathematics, 2020, 5(1): 619-628. doi: 10.3934/math.2020041 |
[6] | Xiufang Zhao . Decay estimates for three-dimensional nematic liquid crystal system. AIMS Mathematics, 2022, 7(9): 16249-16260. doi: 10.3934/math.2022887 |
[7] | Qiang Li, Baoquan Yuan . A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field. AIMS Mathematics, 2022, 7(3): 4168-4175. doi: 10.3934/math.2022231 |
[8] | Zhongying Liu . Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum. AIMS Mathematics, 2021, 6(11): 12085-12103. doi: 10.3934/math.2021701 |
[9] | Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in $ \mathbb R^3 $. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347 |
[10] | Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133 |
We are concerned with the initial value problem of non-isothermal incompressible nematic liquid crystal flows in R3. Through some time-weighted a priori estimates, we prove the global existence of a strong solution provided that (‖√ρ0u0‖2L2+‖∇d0‖2L2)(‖∇u0‖2L2+‖∇2d0‖2L2) is reasonably small, which extends the corresponding Li's (Methods Appl. Anal. 2015 [
The motion of incompressible non-isothermal nematic liquid crystal flows can be governed by the following simplified version of the Ericksen-Leslie equations (see [12,13])
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)−μΔu+∇p=−div(∇d⊙∇d),cv[(ρθ)t+div(ρuθ)]−κΔθ=2μ|D(u)|2+|Δd+|∇d|2d|2,dt+u⋅∇d=Δd+|∇d|2d,|d|=1,divu=0, | (1.1) |
which is equipped with the following initial conditions
(ρ,u,θ,d)(x,0)=(ρ0,u0,θ0,d0)(x)forx∈R3. | (1.2) |
Here, ρ, u, θ and d, p are the density, velocity, absolute temperature, macroscopic average of the nematic liquid crystal orientation field and pressure respectively. The ∇d⊙∇d denotes a matrix whose ij-th entry (1≤i,j≤N) is ∂xid⋅∂xjd. Indeed, ∇d⊙∇d=(∇d)⊤∇d, where (∇d)⊤ denotes the transpose of the 3×3 matrix ∇d. D(u) denotes the deformation tensor given by
D(u)=12(∇u+∇uT). |
The constant μ>0 is the viscosity coefficient. The positive constants cv and κ are respectively the heat capacity and ratio of the heat conductivity coefficient to the heat capacity.
The full Ericksen-Leslie model and the simplified version are macroscopic continuum descriptions of the time evolution of the materials, under the influence of both the flow velocity field u and the microscopic orientation configurations d of rod-like liquid crystals. Mathematically, system (1.1) is a strongly coupled system between the nonhomogeneous incompressible Navier-Stokes equations of fluid dynamics and the transported heat flows of harmonic maps. When d is a constant vector and |d|=1, (1.1) reduces to the nonhomogeneous heat-conducting Navier-Stokes equations, which have been discussed in numerous studies on the global well-posedness of strong solutions(please see [1,3,14,15,16,18,19,20] and references therein). Due to the strong coupling terms and strong nonlinear terms, the system (1.1) the well-posedness is harder to study than Navier-Stokes equations.
If we don't take into account (1.1)3, the system (1.1) becomes the classical inhomogeneous incompressible nematic liquid crystal flows. In the presence of a vacuum, under the following compatibility condition
−μΔu0−∇p0−λdiv(∇d0⊙∇d0)=√ρ0g | (1.3) |
for some (p0,g)∈H1×L2, Wen-Ding [17] first established the local existence and uniqueness of a strong solution. Later, Li [4] and Ding et al. [2] respectively investigated the global existence of a strong solution to the 3D initial boundary value problem and to the 3D Cauchy problem with reasonably small data; they extended Wen-Ding's result[17] to the global one. At the same time, Li [4] considered the case in 2D-bounded domains (see also [5]). It should be pointed out that the crucial techniques of proofs in [2,4,5] cannot be directly adapted to the situation for the Cauchy problem of the 2D equations. One reason is that when Ω=R2 becomes unbounded, the standard Sobolev embedding inequality is critical, and it seems difficult to bound the Lr-norm (r>2) of the velocity u just in terms of ‖√ρu‖L2(R2) and ‖∇u‖L2(R2). Motivated by [10], by introducing a weighted function to the density, as well as the Hardy-type inequality proposed in [7] by Lions, the ‖ραu‖Lr (r>2,α>0) could be controlled in terms of ‖√ρu‖L2(R2) and ‖∇u‖L2(R2).Thus, Liu et al. [6,8] generalized the results of [4,5] to the whole space R2.
Very recently, the author of [9] applied global well-posedness to the 2D Cauchy problem with a vacuum and large initial data. However, it is rather difficult to investigate the global well-posedness and dynamical behaviors of non-isothermal incompressible nematic liquid crystal flows with large initial data in R3 using the same method. Since the Sobolev embedding inequality is critical, we cannot derive the a priori estimates for the strong solutions with large initial data, which is the key to extending the global strong solution by Lemma 2.1. Fortunately, motivated by [4], the global strong solutions of the systems (1.1) and (1.2) can be established using some small norm of the initial. But the priori estimates of [4] depend on the boundness of the domain due to the Poincaré inequality, which fails to deal with the situation here. On the other hand, there are also other interesting studies on the large time behavior of solutions, which is absent in [2,4]. Thanks to [3], which established the global existence and large time behavior of strong solutions to the 3D Cauchy problem of Navier-Stokes equations using exponential time-weighted energy estimates. However, due to the strong coupling terms and strong nonlinear terms ∇d⊙∇d, u⋅∇d and |∇d|2d in the system (1.1), we cannot directly adapt their method to our case. Thus, the main purpose of the present study was to investigate the global existence and large time behavior of strong solutions with large oscillations and a vacuum to the problems (1.1) and (1.2), provided that the scaling invariant quantity is properly small which generalized the corresponding results [3,4] to the Cauchy problem of non-isothermal incompressible nematic liquid crystal flows.
Before formulating our main results, we will first explain the notations and conventions used throughout this paper. For simplicity, we set
∫fdx=∫R3fdx,μ=cv=κ=1. |
For 1≤r≤∞, k≥1, the Sobolev spaces are defined in a standard way.
{Lr=Lr(R3),Dk,r=Dk,r(R3)={v∈L1loc(R3)|Dkv∈Lr(R3)},Wk,p=Wk,p(R3),Hk=Wk,2,Dk=Dk,2. |
Our main results in this paper are listed in the following Theorem 1.1.
Theorem 1.1. Assume that the initial data (ρ0,u0,θ0,d0) satisfies
0≤ρ0≤ˉρ,ρ0∈L32∩H1∩W1,6,(u0,θ0)∈D1,2∩D2,2,∇d0∈H2,|d0|=1, | (1.4) |
and the compatibility condition
{−Δu0+∇p0+div(∇d0⊙∇d0)=√ρ0g1,−Δθ0−2|D(u0)|2−|Δd0+|∇d0|2d0|2=√ρ0g2, | (1.5) |
with p0∈H1 and g1,g2∈L2.Let K0 be the following constant
K0:=(‖√ρ0u0‖2L2+‖∇d0‖2L2)(‖∇u0‖2L2+‖∇2d0‖2L2). | (1.6) |
Then, there is a positive constant ϵ0, which depends only on ˉρ and initial data, such that if
K0≤ϵ0, | (1.7) |
then the problems (1.1) and (1.2) have a unique global solution (ρ,u,θ,d) on R3×(0,∞) satisfying
{0≤ρ∈C([0,∞);L32∩H1∩W1,6),ρt∈L∞([0,∞);L2∩L3),(u,θ)∈C(0,∞;D1,2∩D2,2)∩L2(0,∞;D2,6),(ut,θt)∈L2(0,∞;D1,2),(√ρut,√ρθt)∈L∞(0,∞;L2),∇p∈C([0,∞);L2)∩L2(0,∞;L2),∇d∈C([0,∞);H2)∩L2([0,∞);H3),dt∈C([0,∞);H1)∩L2([0,∞);H2). | (1.8) |
Moreover, there exists some positive constant C depending only on ˉρ and initial data such thatfor all t≥1,
{‖√ρu‖2L2+‖√ρθ‖2L2≤Ct−12,‖∇u‖2L2+‖∇θ‖2L2≤Ct−32,‖√ρut‖2L2+‖√ρθt‖2L2≤Ct−52,‖∇2u‖2L2+‖∇p‖2L2+‖∇2θ‖2L2≤Ct−52,‖∇2d‖2L2+‖dt‖2L2≤Ct−1,‖∇3d‖2L2+‖∇dt‖2L2≤Ct−2. | (1.9) |
Remark 1.1. When temperature field θ≡0, System (1.1) reduces to the classical incompressible nematic liquid crystal flows. Compared to [4] for the 3D-bounded domain, some new difficulties occur. First, Poincare's inequality fails for 3D Cauchy problem, which is key to estimating ‖u‖L2; one way to overcome this is to estimate ‖√ρu‖L2 and ‖∇u‖L2. Furthermore, the higher-order estimates of the smooth solution is independent on T, which is different from [4]. Since the corresponding estimates in [4] depend on T, we have improved the priori estimates of [4]. In particular, we also extend the priori estimates of [4] to the non-isothermal case. To the best of our knowledge, Theorem 1.1 is the first result on global well-posedness for a model of multi-dimensional non-isothermal incompressible nematic liquid crystal flows in a vacuum.
Remark 1.2. Using the time-weighted a priori estimates, we extend Zhong's corresponding result [19] to incompressible nematic liquid crystal flows by studying the global well-posedness of the Cauchy problem of inhomogeneous heat-conducting Navier-Stokes equations. Moreover, we derive the algebraic decay estimates of the solution, which is lacking in [19].
Remark 1.3. As mentioned above, He et al. [3] obtained the exponential decay-in-time property for the 3D Cauchy problem of inhomogeneous Navier-Stokes equations with a vacuum [that is, (1.1) with d=1 and θ=0]; however, it seems impossible to derive such a decay property due to the sructural characteristics of (1.1), especially given that ρ0∈L32(R3) is required. Thus, the the macroscopic average of the nematic liquid crystal orientation field acts as some significant roles on the large time behaviors of velocity and the temperature.
Remark 1.4. It should be noted that (1.6) is independent of the temperature. The results indicate that the global existence for inhomogeneous incompressible heat conducting models of viscous media is similar to the nonhomogeneous incompressible nematic liquid crystal flows, and therefore does not depend on further sophistication of the heat conducting model.
The framework of the proof of Theorem 1.1 is the continuation argument (see [4]). We should point out that the crucial techniques used in [4] cannot be adapted to the situation treated here, since their arguments depend heavily on the boundedness of the domains. Moreover, compared to [3,19], the proof of Theorem 1.1 is much more involved due to the strong coupling terms and strong nonlinear terms ∇d⊙∇d, u⋅∇d and |∇d|2d. To overcome the difficulties stated above, we need some new ideas. First, we attempted to get time-in-uniform (weighted) estimates on the L∞(0,T;L2)-norm of the gradient of velocity, absolute temperature and the gradient of the macroscopic average of the nematic liquid crystal orientation field. We found that the key way to control the terms ∫|u|2|∇2d|2dx, ∫|∇d|2|∇u|2dx and ∫|∇d|2|∇2d|2. Thus, we need to achieve higher integrability of the macroscopic average of the nematic liquid crystal orientation field. Motivated by [3,19], we assume the priori hypothesis (3.1). Hence, the key step is to complete the proof of the a priori hypothesis, that is, to show (3.2). Based on the regularity properties of the Stokes system and elliptic equations, we can obtain the desired bounds, provided that (1.7) is suitably small. Next, the crucial dissipation estimate of the form ∫T0‖∇θ‖2L2dt (see Lemma 3.5) is important to derive the time-weighted estimate of ‖√ρθt‖2L2. However, this argument fails for the situation here, since their estimates dependent on T. To overcome this difficulty, we multiply the momentum equation(1.1)2 by uθ to recover good bounds for the temperature θ [see (3.81)]. Once these key estimates are obtained, we can obtain the desired global high-order a priori estimates of the solution.
The rest of this paper is organized as follows. In Section 2, we collect some elementary facts and inequalities that will be used later. Section 3 is devoted to the a priori estimates. Finally, we will give the proof of Theorem 1.1 in Section 4.
We begin with the local existence and uniqueness of strong solutions whose proof can be performed by using standard energy methods (see [1,17]).
Lemma 2.1. Assume that (ρ0,u0,θ0,d0) satisfies (1.4) and (1.5). Then there existsa small time T0>0 and a unique strong solution (ρ,u,θ,d,p) to the problems (1.1) and (1.2) in R3×(0,T) satisfying (1.8).
Next, we have some regularity results for the Stokes equations, which have been proven in [3].
Lemma 2.2. For r∈(1,∞), if F∈L65∩Lr, there exists somepositive constant C depending only on r such that the unique weaksolution (u,p)∈D1×L2to the following Stokes system
{−div(2μD(u))+∇p=F,inR3,divu=0,inR3,u(x)→0.as|x|→∞, | (2.1) |
satisfies
‖∇u‖L2+‖p‖L2≤C‖F‖L65, | (2.2) |
and
‖∇2u‖Lr+‖∇p‖Lr≤C‖F‖Lr. | (2.3) |
Next, the following Gagliardo-Nirenberg inequalities will be stated(see [11] for the detailed proof).
Lemma 2.3. Assume that f∈H1 and g∈Lq∩D1,r with q>1 and r>3. Then for any p∈[2,6], thereexists a positive constant C, depending only on p, q and r, such that
‖f‖Lp≤C‖f‖6−p2pL2‖∇f‖3p−62pL2, | (2.4) |
‖g‖L∞≤C‖g‖q(r−3)3r+q(r−3)Lq‖∇g‖3r3r+q(r−3)Lr. | (2.5) |
In this section, we will establish some necessary a priori estimates, which together with the local existence (cf. Lemma 2.1) will complete the proof of Theorem 1.1. To this end, we let (ρ,u,d,θ,p) be a strong solutions of (1.1) and (1.2) in R3×[0,T]. For simplicity, we use the letters C, ci and Ci(i=1,2,…) to denote some positive constant that is dependent on ˉρ and initial data, but are independent of T. We also sometimes write C(α) to emphasize the dependence on α.
We first aim to get the following key a priori estimates on (ρ,u,d,θ,p).
Proposition 3.1. Assume that
K0≤ϵ0, |
there exists some small positive constant ϵ0 depending only on ˉρ and initial data such that if (ρ,u,d,θ,p) is a smooth solution of (1.1) and (1.2) on R3×(0,T] satisfying
sup0≤t≤T(‖√ρu‖2L2+‖∇d‖2L2)(‖∇u‖2L2+‖∇2d‖2L2)≤2K120, | (3.1) |
then the following estimate holds
sup0≤t≤T(‖√ρu‖2L2+‖∇d‖2L2)(‖∇u‖2L2+‖∇2d‖2L2)≤K120. | (3.2) |
Moreover, we have
sup0≤t≤T(‖∇u‖2L2+‖∇2d‖2L2)+∫T0(‖√ρut‖2L2+‖∇3d‖2L2+‖∇dt‖2L2)dt≤C. | (3.3) |
Proof of Proposition 3.1. (1) Multiplying the transport equation (1.1)1 by qρq−1 for ∀q>1, integrating by parts and using (1.1)5, we have
ddt‖ρ(t)‖qLq=0. |
It derives
‖ρ(t)‖Lq=‖ρ0‖Lq. | (3.4) |
(2) Multiplying (1.1)2 by u, and integrating by parts over R3, we have
12ddt∫ρ|u|2dx+∫|∇u|2dx=∫[Δd⋅∇d+∇(|∇d|22)]⋅u=−∫(u⋅∇)d⋅Δd≤C‖u‖L6‖∇d‖L3‖∇2d‖L2≤14‖∇u‖2L2+C‖∇d‖2L3‖∇2d‖2L2. | (3.5) |
Using the fact that |d|=1 and integrating by parts, we infer from (1.1)4 and Hölder's and Gagliardo-Nirenberg inequalities that
ddt∫|∇d|2dx+∫(|dt|2+|∇2d|2)dx=∫|dt−Δd|2dx=∫|u⋅∇d−|∇d|2d|2dx≤C‖u‖2L6‖∇d‖2L3+C‖∇d‖4L4≤C‖∇d‖2L3(‖∇u‖2L2+‖∇2d‖2L2), | (3.6) |
which together with (3.1) and (3.5) yield
ddt∫(12ρ|u|2+|∇d|2)dx+∫(34|∇u|2+|dt|2+|∇2d|2)dx≤C‖∇d‖2L3(‖∇u‖2L2+‖∇2d‖2L2)≤C‖∇d‖L2‖∇2d‖L2(‖∇u‖2L2+‖∇2d‖2L2)≤C1K140(‖∇u‖2L2+‖∇2d‖2L2). | (3.7) |
This gives rise to
12ddt(‖√ρu‖2L2+‖∇d‖2L2)+14‖∇u‖2L2+‖dt‖2L2+34‖∇2d‖2L2≤0, | (3.8) |
provided
K0≤ϵ1:=min{1,1(4C1)4}. |
Then, integrating (3.8) with respect to t, we arrive at
∫(ρ|u|2+|∇d|2)dx+∫t0∫(|∇u|2+|∇2d|2)dxdt≤C(‖√ρ0u0‖2L2+‖∇d0‖2L2) | (3.9) |
(3) Multiplying (1.1)2 by ut, and integrating by parts over R3, it follows that
12ddt∫|∇u|2dx+∫ρ|ut|2dx=−∫ρu⋅∇u⋅utdx+∫∇d⊙∇d:∇utdx=ddt∫∇d⊙∇d:∇udx−∫(∇d⊙∇d)t:∇u−∫ρ(u⋅∇)u⋅utdx≤ddt∫∇d⊙∇d:∇udx+C‖u‖L6‖∇u‖L3‖√ρut‖L2+C‖∇d‖L6‖∇dt‖L2‖∇u‖L3≤ddt∫∇d⊙∇d:∇udx+C‖∇u‖3L2‖∇2u‖L2+ε(‖√ρut‖2L2+‖∇dt‖2L2)+C‖∇2d‖2L2‖∇u‖L2‖∇2u‖L2 | (3.10) |
(4) Multiplying (1.1)4 by −∇Δd and then integrating by parts over R3, it follows from Hölder's and Gagliardo-Nirenberg inequalities that
12ddt‖∇2d‖L2+‖∇3d‖2L2=∫∇(u⋅∇d)⋅∇Δddx−∫∇(|∇d|2d)∇Δddx=∫(∇u⋅∇d)⋅∇Δddx+3∑i,j,k=1∫ui∂i∂jd⋅∂i∂2kddx−∫∇(|∇d|2d)⋅∇Δddx=∫(∇u⋅∇d)⋅∇Δddx+3∑i,j,k=1∫∂kui∂i∂jd⋅∂i∂kddx−∫∇(|∇d|2d)⋅∇Δddx≤C∫|∇u||∇d||∇Δd|dx+C∫|∇u||∇2d|2dx+C∫|∇d||∇2d||∇Δd|dx+C∫|∇d|3|∇Δd|dx≜4∑i=1Ii | (3.11) |
It follows from Hölder's, Young's and Gagliardo-Nirenberg inequalities that
I1≤C‖∇u‖L3‖∇d‖L6‖∇Δd‖L2≤C‖∇u‖12L2‖∇2u‖12L2‖∇2d‖L2‖∇3d‖L2≤δ‖∇3d‖2L2+C(δ)‖∇u‖L2‖∇2u‖L2‖∇2d‖2L2, | (3.12) |
I2≤C‖∇u‖L3‖∇2d‖2L3≤C‖∇u‖12L2‖∇2u‖12L2‖∇2d‖L2‖∇3d‖L2≤δ‖∇3d‖2L2+C(δ)‖∇u‖L2‖∇2u‖L2‖∇2d‖2L2, | (3.13) |
I3≤C‖∇d‖L6‖∇2d‖L3‖∇Δd‖L2≤C‖∇2d‖32L2‖∇3d‖32L2≤δ‖∇3d‖2L2+C(δ)‖∇2d‖6L2, | (3.14) |
I4≤C‖∇d‖2L6‖∇3d‖L2≤C‖∇2d‖3L2‖∇3d‖L2≤δ‖∇3d‖2L2+C(δ)‖∇2d‖6L2. | (3.15) |
(5) Notice that (ρ,u,d) satisfies the following Stokes system
{−Δu+∇p=−ρut−ρ(u⋅∇)u−div(∇d⊙∇d),x∈R3,divu=0,x∈R3,u(x)→0,|x|→∞. | (3.16) |
Applying the standard Lp-estimate to the above system ensures that for any p∈(1,∞),
‖∇2u‖Lp+‖∇p‖Lp≤C‖ρut‖Lp+C‖ρu⋅∇u‖Lp+C‖div(∇d⊙∇d)‖Lp, | (3.17) |
from which, after using (3.1), (3.17), and Gagliardo-Nirenberg inequality, we have
‖∇2u‖L2+‖∇p‖L2≤C‖ρut‖L2+C‖ρu⋅∇u‖L2+C‖div(∇d⊙∇d)‖L2≤C‖√ρut‖L2+C‖u‖L6‖∇u‖12L2‖∇u‖12L6+C‖∇d‖L6‖∇2d‖12L2‖∇2d‖12L6≤C‖√ρut‖L2+C‖∇u‖32L2‖∇2u‖12L2+C‖∇2d‖32L2‖∇3d‖12L2≤C‖∇2d‖32L2‖∇3d‖12L2+12‖∇2u‖L2+C‖√ρut‖L2+C‖∇u‖3L2. | (3.18) |
that is
‖∇2u‖L2+‖∇p‖L2≤C‖∇2d‖32L2‖∇3d‖12L2+C‖√ρut‖L2+C‖∇u‖3L2. | (3.19) |
Applying the gradient operator to (1.1)4, we get
∇dt−∇Δd=−∇(u⋅∇d)+∇(|∇d|2d). | (3.20) |
It follows from (3.20) that
‖∇dt‖2L2=∫|∇(Δd+|∇d|2d−u⋅∇d)|2dx≤2∫(|∇Δd|2+|∇(|∇d|2d+u⋅∇d)|2)dx≤2∫|∇Δd|2dx+C∫(|∇d|6+|∇d|2|∇2d|2)dx+C∫(|u|2|∇2d|2+|∇u|2|∇d|2)dx≤2‖∇3d‖2L2+C‖∇2d‖6L2+C‖∇d‖2L6‖∇2d‖2L3+C‖u‖2L6‖∇2d‖2L3+C‖∇u‖2L3‖∇d‖2L6≤2‖∇3d‖2L2+C‖∇2d‖6L2+C‖∇2d‖3L2‖∇3d‖L2+C‖∇u‖2L2‖∇2d‖L2‖∇3d‖L2+C‖∇u‖L2‖∇2u‖L2‖∇2d‖2L2≤(2+δ)(‖∇3d‖2L2+‖∇2u‖2L2)+C(δ)‖∇2d‖6L2+C(δ)‖∇u‖4L2‖∇2d‖2L2. | (3.21) |
By assumption, it follows from Hölder's and Young's inequalities that
|∫∇d⊙∇d:∇udx|≤14‖∇u‖2L2+‖∇d‖4L4. | (3.22) |
(6) Multiplying (3.20) by 4|∇d|2∇d and integrating by parts yields
ddt∫|∇d|4dx+4∫(|∇d|2|∇2d|2+2|∇d|2|∇(∇d)|2)dx=4∫|∇d|2∇d(−∇(u⋅∇d)+∇(|∇d|2d))dx≤C∫(|∇d|4|∇u|+|∇d|3|∇2d||u|+|∇d|4|∇2d|+|∇d|6)dx≤∫|∇d|2|∇2d|2dx+C∫(|∇u|2|∇d|2+|u|2|∇2d|2+|∇d|6)dx, |
and hence
ddt∫|∇d|4dx+3∫|∇d|2|∇2d|2dx≤C∫|∇u|2|∇d|2+|u|2|∇2d|2+|∇d|6dx≤δ(‖∇3d‖2L2+‖∇2u‖2L2)+C(δ)‖∇2d‖6L2+C(δ)‖∇u‖4L2‖∇2d‖2L2. | (3.23) |
Thus, by choosing some constant c1 suitably large such that
12|∇u|2−∇d⊙∇d:∇u+c1|∇d|4≥14(|∇u|2+|∇d|4), | (3.24) |
then applying (3.10)+(3.11)+(3.21)+(3.23)×c1 and using (3.22), (3.19) and (3.24), and Young's inequality, we then obtain
ddt∫(|∇u|2+|∇2d|2+|∇d|4)dx+∫(ρ|ut|2+|∇3d|2+|∇dt|2)dx≤C‖∇u‖3L2‖∇2u‖L2+ε‖√ρut‖2L2+C‖∇2d‖2L2‖∇u‖L2‖∇2u‖L2+δ‖∇3d‖2L2+C(δ)‖∇u‖L2‖∇2u‖L2‖∇2d‖2L2+C(δ)‖∇2d‖6L2+δ‖∇2u‖2L2+C(δ)‖∇u‖4L2‖∇2d‖2L2≤ε‖√ρut‖2L2+C‖∇u‖6L2+C‖∇u‖3L2‖∇2d‖3L2+C‖∇2d‖6L2+δ‖∇3d‖2L2+C‖∇2d‖4L2‖∇u‖2L2+C‖∇2d‖2L2‖∇u‖4L2≤ε‖√ρut‖2L2+δ‖∇3d‖2L2+C(‖∇u‖2L2+‖∇2d‖2L2)(‖∇u‖2L2+‖∇2d‖2L2)2. | (3.25) |
By using the Gronwall inequality, (3.9), and choosing δ, ε suitably small, and noticing that ‖√ρ0u0‖2L2+‖∇d0‖2L2≤sup0≤s≤t(‖√ρu‖2L2+‖∇d‖2L2), we have
sup0≤t≤T(‖∇u‖2L2+‖∇2d‖2L2+c1‖∇d‖4L4)+∫T0(‖√ρut‖2L2+‖∇3d‖2L2+‖∇dt‖2L2)dt≤exp{∫T0(‖∇u‖2L2+‖∇2d‖2L2)2dt}(‖∇u0‖2L2+‖∇2d0‖2L2)≤exp{C(‖√ρ0u0‖2L2+‖∇d0‖2L2)sup0≤t≤T(‖∇u‖2L2+‖∇2d‖2L2)}(‖∇u0‖2L2+‖∇2d0‖2L2)≤exp{CK120}(‖∇u0‖2L2+‖∇2d0‖2L2)≤C(‖∇u0‖2L2+‖∇2d0‖2L2), | (3.26) |
provided K0≤ϵ1. Thus, we have
sup0≤t≤T(‖∇u‖2L2+‖∇2d‖2L2)+∫T0(‖√ρut‖2L2+‖∇3d‖2L2+‖∇dt‖2L2)dt≤C(‖∇u0‖2L2+‖∇2d0‖2L2). | (3.27) |
(7) Combining (3.8) and (3.27), we have
sup0≤t≤T(‖√ρu‖2L2+‖∇d‖2L2)(‖∇u‖2L2+‖∇2d‖2L2)≤C2K0≤K120, | (3.28) |
provided
K0≤ϵ2:=min{ϵ1,1C22}. |
As a consequence, we directly obtain (3.2). The proof of Proposition 3.1 is finished.
Lemma 3.1. Under the conditions of Proposition 3.1, it holds that for i∈{0,1}
sup0≤t≤Tt‖∇2d‖2L2+∫T0t(‖∇dt‖2L2+‖∇3d‖2L2)dt≤C, | (3.29) |
sup0≤t≤T(t12‖√ρu‖2L2)+∫T0t12‖∇u‖2L2dt≤C, | (3.30) |
sup0≤t≤Tt‖∇u‖2L2+∫T0t‖√ρut‖2L2dt≤C. | (3.31) |
Proof. 1) Using Hölder's and Gagliardo-Nirenberg inequalities, we have
ddt‖∇2d‖2L2+‖∇dt‖2L2+‖∇3d‖2L2≤C‖∇(u⋅∇d)‖2L2+C‖∇(|∇d|2d)‖2L2≤C(‖∇u‖2L2+‖∇2d‖2L2)‖∇d‖2L∞+C‖∇d‖4L6‖∇d‖2L6+C(‖u‖2L6+‖∇d‖2L6)‖∇2d‖2L3≤C(‖∇u‖2L2+‖∇2d‖2L2)‖∇2d‖L2‖∇3d‖L2+C‖∇2d‖4L2‖∇2d‖2L2≤12‖∇3d‖2L2+C(‖∇u‖4L2+‖∇2d‖4L2)‖∇2d‖2L2, |
which yields
ddt(t‖∇2d‖2L2)+t‖∇dt‖2L2+t2‖∇3d‖2L2≤‖∇2d‖2L2+C(‖∇u‖4L2+‖∇2d‖4L2)(t‖∇2d‖2L2). |
This along with Gronwall's inequality, (3.9) and (3.27) yields the desired (3.29).
2) It follows from (3.5) that
ddt‖√ρu‖2L2+‖∇u‖2L2≤C‖∇d‖2L3‖∇2d‖2L2. | (3.32) |
Multiplying the above inequality by t12 and integrating it over [0,T], we have
sup0≤t≤T(t12‖√ρu‖2L2)+∫T0t12‖∇u‖2L2dt≤C∫T0t12‖∇d‖2L3‖∇2d‖2L2dt+Csup0≤t≤T‖√ρu‖2L2∫10t−12dt+C∫T1‖∇u‖2L2dt≤Csup0≤t≤T‖∇d‖L2sup0≤t≤T(t‖∇2d‖2L2)12∫T0‖∇2d‖2L2dt+C≤C. | (3.33) |
Multiplying (3.25) by t, we obtain the desired (3.31) after using Gronwall's inequality. Then, we completed the proof of Lemma 3.1.
Lemma 3.2. Under the assumption of Theorem 1.1, it holds that for i∈{1,2}
sup0≤t≤Tti(‖√ρut‖2L2+‖∇dt‖2L2)+∫T0ti(‖∇ut‖2L2+‖∇2dt‖2L2)dt≤C, | (3.34) |
sup0≤t≤Tt‖dt‖2L2+∫T0t‖∇dt‖2L2dt≤C, | (3.35) |
sup0≤t≤Tti(‖∇2u‖2L2+‖∇p‖2L2+‖∇3d‖2L2)+∫T0t32(‖∇2u‖2L2+‖∇p‖2L2)dt≤C. | (3.36) |
Proof. (1) Differentiating (1.1)2 with respect to the time variable t gives
ρutt+ρu⋅∇ut−Δut+∇pt=−ρt(ut+u⋅∇u)−ρut⋅∇u−div(∇d⊙∇d)t. | (3.37) |
Multiplying the above equality by ut and integrating the resulting equality by parts over R3, we deduce after using (1.1)1 that
12ddt∫ρ|ut|2dx+∫|∇ut|2dx=∫[(∇d⊙∇d)t:∇ut−ρ(ut⋅∇)u⋅ut+div(ρu)(ut+u⋅∇u)⋅ut]dx=∫{(∇d⊙∇d)t:∇ut−ρ(ut⋅∇)u⋅ut−ρu⋅∇(|ut|2)+ρu⋅∇(u⋅∇u⋅ut)}dx≤C∫ρ|u|(|u||∇u||∇ut|+|∇u|2|ut|+|u||∇2u||ut|)dx+C∫ρ|u||∇ut||ut|dx+C∫ρ|ut|2|∇u|dx+C∫|∇d||∇dt||∇ut|dx≜4∑i=1I2i. | (3.38) |
The terms on the right-hand side of (3.38) can be bounded as follows. It follows from Hölder's, Young's and Gagliardo-Nirenberg inequalities that
I21≤C‖u‖L6(‖∇u‖L2‖∇u‖L6‖ut‖L6+‖u‖L6‖∇2u‖L2‖ut‖L6)+C‖u‖2L6‖∇u‖L6‖∇ut‖L2≤C‖∇u‖2L2‖∇2u‖L2‖∇ut‖L2≤16‖∇ut‖2L2+C‖∇u‖4L2‖∇2u‖2L2,I22+I23≤C‖√ρut‖L2(‖∇ut‖L2‖u‖L∞+‖ut‖L6‖∇u‖L3)≤C‖√ρut‖L2‖∇ut‖L2‖∇u‖12L2‖∇2u‖12L2≤16‖∇ut‖2L2+C‖∇u‖L2‖∇2u‖L2‖√ρut‖2L2,I24≤C‖∇dt‖L2‖∇ut‖L2‖∇d‖L∞≤C‖∇dt‖L2‖∇ut‖L2‖∇2d‖12L2‖∇3d‖12L2≤16‖∇ut‖2L2+C‖∇dt‖2L2‖∇2d‖L2‖∇3d‖L2. |
Substituting I21−I24 into (3.38), we have
12ddt‖√ρut‖2L2+12‖∇ut‖2L2≤C‖∇u‖L2‖∇2u‖L2‖√ρut‖2L2+C‖∇u‖4L2‖∇2u‖2L2+C‖∇dt‖2L2‖∇2d‖L2‖∇3d‖L2. | (3.39) |
(2) Differentiating (3.20) with respect to the time variable t gives
∇dtt−Δ∇dt=−∇(u⋅∇d)t+∇(|∇d|2d)t. | (3.40) |
Multiplying (3.40) by ∇dt, and integrating the resulting equality over R3, we find that
12ddt‖∇dt‖2L2+‖∇2dt‖2L2≤C∫|∇ut||∇d||∇dt|dx+C∫|∇u||∇dt|2dx+C∫|ut||∇2d||∇dt|dx+C∫|∇d|2|dt||∇2dt|dx+C∫|∇d||∇dt||∇2dt|dx≜5∑i=1I4i. | (3.41) |
Applying Hölder's and Gagliardo-Nirenberg inequalities, and (3.27), we have
I31≤C‖∇ut‖L2‖∇dt‖L3‖∇d‖L6≤C‖∇ut‖L2‖∇dt‖12L2‖∇2dt‖12L2‖∇2d‖L2≤14‖∇ut‖2L2+14‖∇2dt‖2L2+C‖∇dt‖2L2‖∇2d‖4L2,I42≤C‖∇u‖L3‖∇dt‖L2‖∇dt‖L6≤C‖∇u‖12L2‖∇2u‖12L2‖∇dt‖L2‖∇2dt‖L2≤116‖∇2dt‖2L2+C‖∇u‖L2‖∇2u‖L2‖∇dt‖2L2,I33≤C‖ut‖L6‖∇2d‖L2‖∇dt‖L3≤C‖∇ut‖L2‖∇2d‖L2‖∇dt‖12L2‖∇2dt‖12L2≤14‖∇ut‖2L2+116‖∇2dt‖2L2+C‖∇2d‖4L2‖∇dt‖2L2,I34≤C‖∇d‖2L6‖dt‖L6‖∇2dt‖L2≤C‖∇2d‖2L2‖∇dt‖L2‖∇2dt‖L2≤116‖∇2dt‖2L2+C‖∇2d‖4L2‖∇dt‖2L2,I35≤C‖∇2dt‖L2‖∇dt‖L3‖∇d‖L6≤C‖∇2dt‖32L2‖∇dt‖12L2‖∇2d‖L2≤116‖∇2dt‖2L2+C‖∇dt‖2L2‖∇2d‖4L2. |
Inserting the estimates of I4i(i=1,…,5) into (3.41), it follows that
ddt‖∇dt‖2L2+‖∇2dt‖2L2≤14‖∇ut‖2L2+C(‖∇2d‖4L2+‖∇u‖L2‖∇2u‖L2)‖∇dt‖2L2. | (3.42) |
Now, the inequality of (3.42) added to (3.39), we infer that
ddt(‖√ρut‖2L2+‖∇dt‖2L2)+‖∇ut‖2L2+‖∇2dt‖2L2≤C(‖∇u‖2L2+‖∇2d‖2L2+‖∇2u‖2L2+‖∇3d‖2L2)(‖∇dt‖2L2+‖√ρut‖2L2)+C‖∇u‖4L2‖∇2u‖2L2. | (3.43) |
(3) It follows from (3.20) and Hölder's and Gagliardo-Nirenberg inequalities that
‖∇2u‖2L2+‖∇p‖2L2≤C‖ρut‖2L2+C‖ρu⋅∇u‖2L2+C‖div(∇d⊙∇d)‖2L2≤C‖√ρut‖2L2+C‖u‖2L6‖∇u‖L2‖∇2u‖L2+C‖∇d‖2L∞‖∇2d‖2L2≤C‖√ρut‖2L2+C‖∇u‖3L2‖∇2u‖L2+C‖∇2d‖3L2‖∇3d‖L2≤12‖∇2u‖2L2+C‖√ρut‖2L2+C‖∇u‖6L2+C‖∇2d‖3L2‖∇3d‖L2, |
that is
‖∇2u‖2L2+‖∇p‖2L2≤C‖√ρut‖2L2+C‖∇u‖6L2+C‖∇2d‖3L2‖∇3d‖L2, | (3.44) |
which given (3.9), (3.3), (3.29) and (3.55) yields
∫T0(‖∇2u‖2L2+‖∇p‖2L2)dt≤C∫T0(‖√ρut‖2L2+‖∇u‖6L2+‖∇2d‖3L2‖∇3d‖L2)dt≤C∫T0(‖∇u‖2L2+‖∇2d‖2L2+‖∇3d‖2L2)dt+C≤C, | (3.45) |
and
∫T0t32(‖∇2u‖2L2+‖∇p‖2L2)dt≤C∫T0t32(‖√ρut‖2L2+‖∇u‖6L2+‖∇2d‖3L2‖∇3d‖L2)dt≤Csup0≤t≤Tt‖∇2d‖2L2(∫T0‖∇2d‖2L2dt)12(∫T0t‖∇3d‖2L2dt)12+Csup0≤t≤Tt32‖∇u‖2L2∫T0‖∇u‖2L2dt+C≤C. | (3.46) |
Thus, multiplying (3.43) by ti and using Gronwall's inequality, by (3.9), (3.27) and (3.45), we immediately arrive at
sup0≤t≤Tti(‖√ρut‖2L2+‖∇dt‖2L2)+∫T0ti(‖∇ut‖2L2+‖∇2dt‖2L2)dt≤C. | (3.47) |
(4) We infer from (3.20), Hölder's and Gagliardo-Nirenberg inequalities and |d|=1 that
‖∇3d‖2L2≤C(‖∇dt‖2L2+‖|∇u||∇d|‖2L2+‖|u||∇2d|‖2L2+‖|∇d|3‖2L2+‖|∇2d||∇d|‖2L2)≤C(‖∇dt‖2L2+C‖∇u‖2L2‖∇d‖2L∞+‖u‖2L6‖∇2d‖2L3+‖∇d‖6L6+‖∇2d‖2L3‖∇d‖2L6)≤C‖∇dt‖2L2+C‖∇u‖2L2‖∇2d‖L2‖∇3d‖L2+C‖∇u‖2L2‖∇2d‖L2‖∇3d‖L2+C‖∇2d‖6L2+C‖∇2d‖3L2‖∇3d‖L2≤12‖∇3d‖2L2+C‖∇dt‖2L2+C‖∇u‖2L2‖∇2d‖4L2+C‖∇u‖4L2‖∇2d‖2L2+C‖∇2d‖6L2. |
that is
‖∇3d‖2L2≤C‖∇dt‖2L2+C‖∇u‖2L2‖∇2d‖4L2+C‖∇u‖4L2‖∇2d‖2L2+C‖∇2d‖6L2, | (3.48) |
which together with (3.9), (3.29), (3.55) and (3.60) yields that
sup0≤t≤Tti‖∇3d‖2L2)≤C. | (3.49) |
(5) Differentiating (1.1)4 with respect to t, multiplying the resulting equality by dt and then integrating by parts over R3, we arrive at
12ddt∫|dt|2dx+∫|∇dt|2dx≤C∫|ut||∇d||dt|dx+C∫|∇dt||∇d||dt|dx+C∫|∇d|2|dt|2dx≜3∑i=1I3i. | (3.50) |
Applying Hölder's and Gagliardo-Nirenberg inequalities, we derive
I41≤C‖dt‖L2‖ut‖L6‖∇d‖L3≤C‖dt‖L2‖∇ut‖L2‖∇d‖12L2‖∇2d‖12L2≤14‖∇ut‖2L2+C‖dt‖2L2, | (3.51) |
I42+I43≤C‖∇dt‖L2‖∇d‖L∞‖dt‖L2+C‖dt‖L2‖dt‖L6‖∇d‖2L6≤C‖∇dt‖L2‖∇2d‖12L2‖∇3d‖12L2‖dt‖L2+C‖dt‖L2‖∇dt‖L2‖∇2d‖2L2≤12‖∇dt‖2L2+C(‖∇2d‖4L2+‖∇2d‖L2‖∇3d‖L2)‖dt‖2L2. | (3.52) |
Hence, one gets
ddt‖dt‖2L2+‖∇dt‖2L2≤14‖∇ut‖2L2+C(‖∇2d‖4L2+‖∇2d‖L2‖∇3d‖L2)‖dt‖2L2. | (3.53) |
Multiplying it by t and applying Gronwall's inequality, we have
sup0≤t≤Tt‖dt‖2L2+∫T0t‖∇dt‖2L2dt≤C. | (3.54) |
Finally, combining (3.46), (3.49) and (3.47), we have the desired (3.36). Thus, we finished the proof of Lemma 3.2.
Lemma 3.3. Under the assumption of Theorem 1.1, it holds that
sup0≤t≤Tt32‖∇u‖2L2+∫T0t32‖√ρut‖2L2dt≤C, | (3.55) |
sup0≤t≤Tt52‖√ρut‖2L2+∫T0t52‖∇ut‖2L2dt≤C, | (3.56) |
sup0≤t≤Tt52(‖∇2u‖2L2+‖∇p‖2L2)+∫T0t32(‖∇2u‖2L2+‖∇p‖2L2)dt≤C. | (3.57) |
Proof. 1) Given (3.25), one obtains from (3.44) that
12ddt‖∇u‖2L2+‖√ρut‖2L2≤ddt∫∇d⊙∇d:∇udx+C‖u‖L6‖∇u‖L3‖√ρut‖L2+C‖∇d‖L3‖∇dt‖L2‖∇u‖L6≤ddt∫∇d⊙∇d:∇udx+14‖√ρut‖2L2+δ‖∇2u‖2L2+C‖∇u‖6L2+C‖∇d‖L2‖∇2d‖L2‖∇dt‖2L2≤ddt∫∇d⊙∇d:∇udx+(14+δ)‖√ρut‖2L2+C‖∇u‖6L2+C‖∇2d‖3L2‖∇3d‖L2+C‖∇d‖L2‖∇2d‖L2‖∇dt‖2L2 | (3.58) |
Multiplying it by t32, integrating it over [0,T] and then choosing δ reasonably small, we derive
sup0≤t≤T(t32‖∇u‖2L2)+∫T0t32‖√ρut‖2L2dt≤Csup0≤t≤Tt32‖∇u‖L2‖∇d‖L3‖∇d‖L6+C∫T0t12‖∇u‖2L2dt+C∫T0t12‖∇u‖L2‖∇d‖L3‖∇d‖L6dt+C∫T0t32‖∇u‖6L2dt+C∫T0t32‖∇2d‖3L2‖∇3d‖L2dt+C∫T0t32‖∇2d‖L2‖∇dt‖2L2dt≤12sup0≤t≤Tt32‖∇u‖2L2+Csup0≤t≤Tt32‖∇2d‖3L2+Csup0≤t≤Tt12‖∇2d‖L2∫T0‖∇2d‖2L2dt+Csup0≤t≤Tt‖∇u‖4L2∫T0t12‖∇u‖2L2dt+Csup0≤t≤Tt12‖∇2d‖L2∫T0t‖∇dt‖2L2dt++Csup0≤t≤T(t‖∇3d‖L2t12‖∇2d‖L2)∫T0‖∇2d‖2L2dt+C≤C. | (3.59) |
2) Multiplying (3.39) by t52 and using Gronwall's inequality, we infer from (3.39) that
sup0≤t≤T(t52‖√ρut‖2L2)+∫T0t52‖∇ut‖2L2dt≤C∫T0t32‖√ρut‖2L2dt+C∫T0t52‖∇u‖4L2‖∇2u‖2L2dt+C∫T0t52‖∇dt‖2L2‖∇2d‖L2‖∇3d‖L2dt≤Csup0≤t≤T(t32‖∇u‖2L2t‖∇u‖2L2)∫T0‖∇2u‖2L2dt+C+Csup0≤t≤T(t2‖∇3d‖2L2t‖∇2d‖2L2)12∫T0t‖∇dt‖2L2dt≤C. | (3.60) |
Combining (3.60), (3.59) and (3.44), we have the desired (3.57).
Lemma 3.4. Under the assumption of Theorem 1.1, it holds that
sup0≤t≤T(‖∇ρ‖L2∩L6+‖ρt‖L2∩L3)+∫T0(t52‖∇2u‖2L6+t52‖∇p‖2L6+t2‖∇4d‖2L2)dt≤C. | (3.61) |
Proof. (1) It follows from Lemma 2.2 and Gagliardo-Nirenberg and Hölder's inequalities that for r∈(3,6),
‖∇2u‖Lr≤C‖ρut‖Lr+C‖ρu⋅∇u‖Lr+C‖div(∇d⊙∇d)‖Lr≤C‖√ρut‖6−r2rL2‖√ρut‖3r−62rL6+C‖u‖L6‖∇u‖L6r6−r+C‖∇d‖L∞‖∇2d‖Lr≤C‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+C‖∇u‖6(r−1)5r−6L2‖∇u‖4r−65r−6W1,r+C‖∇2d‖3rL2‖∇3d‖2r−3rL2≤C‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+C‖∇u‖6r−6rL2+12‖∇2u‖Lr+C‖∇2d‖3rL2‖∇3d‖2r−3rL2, |
which directly deduces that
‖∇2u‖Lr≤C‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+C‖∇u‖6r−6rL2+C‖∇2d‖3rL2‖∇3d‖2r−3rL2. | (3.62) |
On the one hand, it follows from (3.9), (3.3) and (3.56) that for 0<t≤1,
∫10‖∇u‖L∞dt≤C∫10(‖∇u‖L2+‖∇2u‖Lr)dt≤Csup0≤t≤1(t‖√ρut‖2L2)6−r4r(∫10t‖∇ut‖2L2dt)3r−64r(∫10t−2rr+6dt)r+64r+Csup0≤t≤1(‖∇u‖2L2)2r−3r∫10‖∇u‖2L2dt+C∫10‖∇3d‖2L2dt+C≤C. | (3.63) |
On the other hand, using (3.56), (3.36), (3.29) and (3.55), we obtain that
∫T0t12‖∇2u‖Lr≤C∫T1(‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+C‖∇u‖6r−6rL2+‖∇2d‖3rL2‖∇3d‖2r−3rL2)dt≤Csup1≤t≤T(t52‖√ρut‖2L2)(∫T1t52‖∇ut‖2L2dt)3r−64r(∫T1t−3r−64rdt)r+64r+Csup1≤t≤T{(t‖∇2d‖2L2)32r(t2‖∇3d‖2L2)r−32r}(∫T1t‖∇3d‖2L2dt)12(∫T1t−2r−3r)12+Csup1≤t≤T(t32‖∇u‖2L2)6r−62r∫T1t−8r−92rdt≤C, | (3.64) |
which leads to
∫T1‖∇u‖L∞dt≤C∫T1‖∇u‖2r−65r−6L2‖∇2u‖3r5r−6Lrdt≤Csup1≤t≤T(t32‖∇u‖2L2)2r−610r−12(∫T0t12‖∇2u‖Lr)3r5r−6(t−6r−94r−12dt)2r−65r−6≤C. | (3.65) |
Combining (3.63) and (3.65), one obtains
∫T0‖∇u‖L∞dt≤C. | (3.66) |
(2) Differentiating the continuity equation (1.1)1 with respect to xi gives rise to
(ρxi)t+∇ρxi⋅u+∇ρ⋅uxi=0. | (3.67) |
Multiplying (3.67) by s|ρxi|s−2ρxi (s={2,6}) and integrating the resulting equation over R3 gives
ddt‖∇ρ‖L2∩L6≤C‖∇u‖L∞‖∇ρ‖L2∩L6. | (3.68) |
It follows from Gronwall's inequality and (3.66) that
‖∇ρ‖L2∩L6≤C‖∇ρ0‖L2∩L6. | (3.69) |
Noticing the following facts
‖ρt‖L2∩L3≤C‖u‖L6(‖∇ρ‖L3+‖∇ρ‖L6)≤C‖∇u‖L2‖∇ρ‖L2∩L6≤C‖∇ρ0‖L2∩L6. | (3.70) |
(3) Taking ∇ operator to (1.1)4, we get
−∇2Δd=∇2(|∇d|2d−u⋅∇d−dt). | (3.71) |
Using the L2-estimates of an elliptic system, we derive
‖∇4d‖L2≤C(‖∇2dt‖L2+‖∇2(u⋅∇d)‖L2+‖∇2(|∇d|2d)‖L2)≤C‖∇2dt‖L2+C‖|∇2u||∇d|‖L2+C‖|∇u||∇2d|‖L2+C‖|u||∇3d|‖L2+C‖|∇d|2|∇2d|‖L2+C‖|∇2d|2‖L2+C‖|∇d||∇3d|‖L2≤C‖∇dt‖L2+C‖∇d‖L∞‖∇2u‖L2+C‖∇u‖L3‖∇2d‖L6+C‖u‖L6‖∇3d‖L3+C‖∇d‖2L6‖∇2d‖L6+C‖∇2d‖L∞‖∇2d‖L2+C‖∇d‖L6‖∇3d‖L3≤C‖∇2d‖12L2‖∇3d‖12L2‖∇2u‖L2+C‖∇u‖12L2‖∇2u‖12L2‖∇3d‖L2+C(‖∇u‖2L2+‖∇2d‖2L2)‖∇3d‖L2+C‖∇2dt‖L2+12‖∇4d‖L2, | (3.72) |
which yields to
‖∇4d‖2L2≤C‖∇2d‖L2‖∇3d‖L2‖∇2u‖2L2+C‖∇u‖L2‖∇2u‖L2‖∇3d‖2L2+C(‖∇u‖4L2+‖∇2d‖4L2)‖∇3d‖2L2+C‖∇2dt‖2L2, | (3.73) |
multiplying t2 by (3.73), and integrating the resultant in (0,T), and using (3.3), (3.21), (3.31), (3.34)and (3.36), one obtains
∫T0t2‖∇4d‖2L2dt≤C. | (3.74) |
(4) According to (3.17), we have
‖∇2u‖2L6+‖∇p‖2L6≤C‖ρut‖2L6+C‖ρu⋅∇u‖2L6+C‖div(∇d⊙∇d)‖2L6≤C‖ut‖2L6+C‖u‖2L∞‖∇u‖2L6+C‖∇d‖2L∞‖∇2d‖2L6≤C‖∇ut‖2L2+C‖∇u‖L2‖∇2u‖3L2+C‖∇2d‖L2‖∇3d‖3L2. | (3.75) |
This together with (3.34), (3.36), (3.36) and (3.3) gives
∫T0t2(‖∇2u‖2L6+‖∇p‖2L6)dt≤C∫T0t2(‖∇ut‖2L2+‖∇u‖L2‖∇2u‖3L2+‖∇2d‖L2‖∇3d‖3L2)dt≤Csup0≤t≤T(t2‖∇2u‖2L2)∫T0(‖∇u‖2L2+‖∇2u‖2L2)dt+Csup0≤t≤T(t2‖∇3d‖2L2)∫T0(‖∇2d‖2L2+‖∇3d‖2L2)dt+C≤C, | (3.76) |
and
∫T0t52(‖∇2u‖2L6+‖∇p‖2L6)dt≤C∫T0t52(‖∇ut‖2L2+‖∇u‖L2‖∇2u‖3L2+‖∇2d‖L2‖∇3d‖3L2)dt≤Csup0≤t≤T(t52‖∇2u‖2L2)∫T0(‖∇u‖2L2+‖∇2u‖2L2)dt+Csup0≤t≤T(t2‖∇3d‖2L2)(∫T0‖∇2d‖2L2dt)12(∫T0t‖∇3d‖2L2dt)12+C≤C. | (3.77) |
This ends the proof of Lemma 3.4.
Lemma 3.5. Under the assumption of Theorem 1.1, it holds that for i∈{0,1},
sup0≤t≤T(ti2‖√ρθ‖2L2)+∫T0ti2‖∇θ‖2L2dt≤C, | (3.78) |
sup0≤t≤T(t3i2‖∇θ‖2L2)+∫T0t3i2‖√ρθt‖2L2dt≤C. | (3.79) |
Proof. 1) Multiplying (1.1)3 by θ and integrating by parts, one obtains
12ddt∫ρ|θ|2dx+∫|∇θ|2dx=∫|D(u)|2θdx+∫(Δd+|∇d|2d)⋅(Δd+|∇d|2d)θdx≤C∫|∇u|2θdx+C∫|∇d||∇3d|θdx+∫|∇d|4θdx+C∫|∇θ||∇d||∇2d|dx+C∫|∇d|2|∇2d|θdx=:5∑i=1Ri. | (3.80) |
In fact, multiplying (1.1)2 by uθ and integrating the resulting equation over R3 gives
R1≤C∫ρ|ut||u||θ|dx+C∫ρ|u|2|∇u||θ|dx+C∫|u||∇u||∇θ|dx+C∫p|u||∇θ|dx+C∫|∇d|2|∇u||θ|dx+C∫|∇d|2|u||∇θ|dx≤120‖∇θ‖2L2+C‖√ρut‖2L2+C∫|u|2|∇u|2dx+C∫ρ|u|2|θ|2dx+C∫|p|2|u|2dx+C∫|∇d|2|∇u||θ|dx+C∫|∇d|2|u||∇θ|dx≤120‖∇θ‖2L2+C‖u‖2L6‖∇u‖2L3+C‖√ρu‖L2‖u‖L6‖θ‖2L6+C‖p‖2L3‖u‖2L6+C‖√ρut‖2L2+C‖∇d‖L∞‖∇d‖L3‖u‖L6‖∇θ‖L2+C‖∇d‖L∞‖∇d‖L3‖∇u‖L2‖θ‖L6≤120‖∇θ‖2L2+C‖∇u‖3L2‖∇2u‖L2+C‖√ρu‖L2‖∇u‖L2‖∇θ‖2L2+C‖√ρut‖2L2+C‖p‖L2‖p‖L6‖∇u‖2L2+C‖∇3d‖L2‖∇2d‖2L2‖∇u‖L2≤(120+CK140)‖∇θ‖2L2+C‖p‖L2‖∇p‖L2‖∇u‖2L2+C‖√ρut‖2L2+C‖∇u‖6L2+C‖∇2d‖6L2+C‖∇2u‖2L2‖∇u‖23L2+C‖∇3d‖2L2‖∇2d‖L2≤(120+C3K140)‖∇θ‖2L2+C‖√ρut‖2L2+C‖∇2u‖2L2‖∇u‖23L2+C‖∇u‖163L2+C‖∇3d‖2L2‖∇2d‖L2+C‖∇2d‖9L2+C‖∇2d‖L2‖∇u‖2L2, | (3.81) |
where we have used the following fact that
‖p‖L2‖∇p‖L2≤C(‖ρut‖L65+‖ρu⋅∇u‖L65+‖div(∇d⊙∇d)‖L65)⋅(‖ρut‖L2+‖ρu⋅∇u‖L2+‖div(∇d⊙∇d)‖L2)≤C(‖√ρu‖L2+‖√ρu⋅∇u‖L2+‖∇d‖L3‖∇2d‖L2)⋅(‖ρut‖L2+‖ρu⋅∇u‖L2+‖∇d‖L6‖∇2d‖L3)≤C‖√ρut‖2L2+C‖u‖2L6‖∇u‖2L3+C‖∇d‖2L3‖∇2d‖2L2+C‖∇d‖2L6‖∇2d‖2L3≤C‖√ρut‖2L2+C‖∇u‖3L2‖∇2u‖L2+C‖∇2d‖2L2+C‖∇3d‖2L2+C‖∇2d‖6L2≤C‖√ρut‖2L2+C‖∇2u‖2L2‖∇u‖23L2+C‖∇u‖163L2+C‖∇2d‖2L2+C‖∇3d‖2L2‖∇2d‖L2+C‖∇u‖6L2+C‖∇2d‖9L2. | (3.82) |
It follows from (3.9), (3.3), Hölder's inequality and the Gagliardo-Nirenberg inequality that
R2≤C‖∇3d‖L2‖∇d‖L3‖θ‖L6≤120‖∇θ‖2L2+C‖∇2d‖L2‖∇3d‖2L2,R3≤C‖θ‖L6‖∇d‖L3‖|∇d|3‖L2≤C‖∇θ‖L2‖∇d‖H1‖∇d‖3L6≤120‖∇θ‖2L2+C‖∇2d‖6L2,R4≤C‖∇θ‖L2‖∇2d‖L6‖∇d‖L3≤120‖∇θ‖2L2+C‖∇3d‖2L2‖∇2d‖L2,R5≤C‖θ‖L6‖|∇d|2‖L3‖∇2d‖L6≤C‖∇θ‖L2‖∇d‖2L6‖∇3d‖L2≤120‖∇θ‖2L2+C‖∇3d‖2L2‖∇2d‖L2. |
Collecting the above estimates, choosing δ to be reasonably small and applying K0≤ϵ3:=min{ϵ2,(14C3)4}, we get that
ddt‖√ρθ‖2L2+‖∇θ‖2L2≤C‖√ρut‖2L2+C‖∇2u‖2L2‖∇u‖23L2+C‖∇3d‖2L2‖∇2d‖L2+C‖∇u‖163L2+C‖∇2d‖9L2+C‖∇2d‖L2‖∇u‖2L2. | (3.83) |
Integrating the above inequality with respect to t, after using (3.9), (3.3) and (3.45) one obtains that
sup0≤t≤T‖√ρθ‖2L2+∫T0‖∇θ‖2L2dt≤C. | (3.84) |
(2) Multiplying (3.83) by t12, we derive from (3.3), (3.55), (3.56), (3.29), (3.45), (3.31) and (3.84) that
sup0≤t≤T(t12‖√ρθ‖2L2)+∫T0t12‖∇θ‖2L2dt≤C∫T0t−12‖√ρθ‖2L2dt+C∫T0t12‖√ρut‖2L2dt+C∫T0t12‖∇2u‖2L2‖∇u‖23L2dt+C∫T0t12‖∇u‖163L2dt+C∫T0t12‖∇2d‖9L2dt+C∫T0t12‖∇2d‖L2‖∇u‖2L2dt≤Csup0≤t≤T‖√ρθ‖2L2∫10t−12dt+C∫T1‖∇θ‖2L2dt+C∫10‖√ρut‖2L2dt+C∫T1t−2(t52‖∇ut‖2L2)dt+Csup0≤t≤T(t32‖∇u‖2L2)13∫T0‖∇2u‖2L2dt+Csup0≤t≤T(t32‖∇u‖2L2)13sup0≤t≤T‖∇u‖83L2∫T0‖∇u‖2L2dt+Csup0≤t≤T(t‖∇2d‖2L2)12sup0≤t≤T‖∇2d‖6L2∫T0‖∇2d‖2L2dt+Csup0≤t≤T(t32‖∇u‖2L2)13∫T0‖∇2u‖2L2dt≤C. | (3.85) |
(3) In view of the standard estimate for an elliptic system, one obtains
‖∇2θ‖2L2≤C(‖√ρθt‖2L2+‖ρu⋅∇θ‖2L2+‖∇u‖4L4+‖|Δd+|∇d|2d|‖4L4)≤C‖√ρut‖2L2+C‖u‖2L6‖∇θ‖2L3+C‖∇u‖L2‖∇2u‖3L2+C‖∇2d‖L2‖∇3d‖3L2+C‖∇d‖4L∞‖∇d‖4L4≤12‖∇2θ‖2L2+‖√ρθt‖2L2+C‖∇u‖4L2‖∇θ‖2L2+C‖∇u‖L2‖∇2u‖3L2+C‖∇2d‖L2‖∇3d‖3L2+C‖∇2d‖5L2‖∇3d‖2L2, |
which leads to
‖∇2θ‖2L2≤‖√ρθt‖2L2+C‖∇u‖4L2‖∇θ‖2L2+C‖∇u‖L2‖∇2u‖3L2+C‖∇2d‖L2‖∇3d‖3L2+C‖∇2d‖5L2‖∇3d‖2L2. | (3.86) |
(4) Multiplying (1.1)3 by θt and integrating by parts, we have
12ddt∫|∇θ|2dx+∫ρ|θt|2dx=−∫ρu⋅∇θθtdx+2∫|D(u)|2θtdx+∫|Δd+|∇d|2d|2θtdx=K1+K2+K3. | (3.87) |
By using (3.4), (3.86) and Hölder's, Young's and the Gagliardo-Nirenberg inequalities, we have
K1≤C‖u‖L∞‖√ρθt‖L2‖∇θ‖L2≤C‖∇u‖12L2‖∇2u‖12L2‖√ρθt‖L2‖∇θ‖L2≤δ‖√ρθt‖2L2+C‖∇θ‖2L2‖∇u‖L2‖∇2u‖L2≤δ‖√ρθt‖2L2+C‖∇θ‖4L2+C‖∇u‖2L2‖∇2u‖2L2,K2=2ddt∫|D(u)|2θdx−2∫(|D(u)|2)tθdx≤2ddt∫|D(u)|2θdx+C‖∇ut‖L2‖∇u‖L3‖θ‖L6≤2ddt∫|D(u)|2θdx+C‖∇ut‖2L2+C‖∇u‖L2‖∇2u‖L2‖∇θ‖2L2≤2ddt∫|D(u)|2θdx+C‖∇ut‖2L2+C‖∇θ‖4L2+C‖∇u‖2L2‖∇2u‖2L2,K3=ddt∫|Δd+|∇d|2d|2θdx−∫(|Δd+|∇d|2d|2)tθdx≤ddt∫|Δd+|∇d|2d|2θdx+C‖θ‖L∞(‖∇2d‖L2+‖∇d‖2L4)⋅(‖∇2dt‖L2+‖dt‖L6‖∇d‖L2‖∇d‖L3+‖∇d‖L6‖∇dt‖L3)≤ddt∫|Δd+|∇d|2d|2θdx+C‖∇θ‖12L2‖∇2θ‖12L2(‖∇2d‖L2+‖∇2d‖32L2)⋅(‖∇2dt‖L2+‖∇dt‖L2‖∇2d‖12L2+‖∇2d‖2L2‖∇dt‖L2)≤ddt∫|Δd+|∇d|2d|2θdx+C‖∇θ‖L2‖∇2θ‖L2‖∇2d‖2L2+C‖∇2dt‖2L2+C‖∇dt‖L2‖∇2d‖L2≤ddt∫|Δd+|∇d|2d|2θdx+δ‖∇2θ‖2L2+C‖∇θ‖2L2‖∇2d‖4L2+C‖∇2dt‖2L2+C‖∇dt‖2L2‖∇2d‖L2≤ddt∫|Δd+|∇d|2d|2θdx+δ‖√ρθt‖2L2+C‖∇u‖4L2‖∇θ‖2L2+C‖∇u‖L2‖∇2u‖3L2+C‖∇2d‖L2‖∇3d‖3L2+C‖∇2d‖5L2‖∇3d‖2L2+C‖∇θ‖2L2‖∇2d‖4L2+C‖∇2dt‖2L2+C‖∇dt‖2L2‖∇2d‖L2. |
Inserting Ki(i=1,2,3) into (3.87) and choosing δ suitably small, we get
ddt(‖∇θ‖2L2−ψ(t))+‖√ρθt‖2L2≤C‖∇θ‖4L2+C‖∇u‖2L2‖∇2u‖2L2+C‖∇ut‖2L2+C‖∇u‖4L2‖∇θ‖2L2+C‖∇u‖L2‖∇2u‖3L2+C‖∇2d‖L2‖∇3d‖3L2+C‖∇2d‖5L2‖∇3d‖2L2+C‖∇θ‖2L2‖∇2d‖4L2+C‖∇2dt‖2L2+C‖∇dt‖2L2‖∇2d‖L2, | (3.88) |
where
ψ(t):=4∫|D(u)|2θdx+2∫|Δd+|∇d|2d|2θdx | (3.89) |
satisfies
ψ(t)≤C‖θ‖L6(‖∇u‖L2‖∇u‖L3+‖∇2d‖L2‖∇2d‖L3+‖|∇d|2‖L3‖|∇d|2‖L2)≤C‖∇θ‖L2(‖∇u‖32L2‖∇2u‖L2+‖∇2d‖32L2‖∇3d‖L2+C‖∇2d‖52L2)≤12‖∇θ‖2L2+C‖∇u‖3L2‖∇2u‖2L2+C‖∇2d‖3L2‖∇3d‖2L2+C‖∇2d‖5L2. | (3.90) |
Then, the desired (3.79) follows from Gronwall's inequality, (3.29), (3.36), (3.34), (3.85), (3.86), (3.88) and (3.90).
Lemma 3.6. Under the assumption of Theorem 1.1, it holds that
sup0≤t≤T(t52‖√ρθt‖2L2)+∫T0t52‖∇θt‖2L2dt≤C, | (3.91) |
sup0≤t≤Tt52‖∇2θ‖2L2+∫T0(t32‖∇2θ‖2L2+t52‖∇2θ‖2L6)dt≤C. | (3.92) |
Proof. (1) Applying the operator ∂t to (1.1)3 and a series of direct computations yields
ρθtt+ρu⋅∇θt−Δθt=div(ρu)θt+div(ρu)u⋅∇θ−ρut⋅∇θ+2(|D(u)|2)t+(|Δd+|∇d|2d|2)t. | (3.93) |
Multiplying (3.93) by θt in L2 and integrating by parts over R3 yields
12ddt∫ρ|θt|2dx+∫|∇θt|2dx=−2∫ρu⋅∇θtθtdx−∫ρu⋅∇(u⋅∇θθt)dx−∫ρut⋅∇θθtdx+2∫(|D(u)|2)tθtdx+∫(|Δd+|∇d|2d|2)tθtdx=:5∑i=1Zi. | (3.94) |
It follows from (3.4), Hölder's inequality and the Gagliardo-Nirenberg inequality that
Z1≤C‖u‖L∞‖√ρθt‖L2‖∇θt‖L2≤C‖∇u‖12L2‖∇2u‖12L2‖√ρθt‖L2‖∇θt‖L2≤δ‖∇θt‖2L2+C‖∇u‖L2‖∇2u‖L2‖√ρθt‖2L2≤δ‖∇θt‖2L2+C‖∇u‖2L2‖∇2u‖2L2+C‖√ρθt‖4L2,Z2≤C∫(ρ|u||∇u||∇θ||θt|+ρ|u|2|∇2θ||θt|+ρ|u|2|∇θ||∇θt|)dx≤C‖u‖L∞‖∇u‖L6‖√ρθt‖L2‖∇θ‖L3+C‖u‖2L6‖∇2θ‖L2‖θt‖L6+C‖u‖2L6‖∇θt‖L2‖∇θ‖L6≤C‖∇u‖12L2‖∇2u‖32L2‖√ρθt‖L2‖∇θ‖12L2‖∇2θ‖12L2+C‖∇u‖2L2‖∇2θ‖L2‖∇θt‖L2≤C‖∇u‖L2‖∇2u‖3L2+C‖√ρθt‖2L2‖∇θ‖L2‖∇2θ‖L2+δ‖∇θt‖2L2+C‖∇u‖4L2‖∇2θ‖2L2≤C‖∇u‖L2‖∇2u‖3L2+C‖√ρθt‖4L2+‖∇θ‖2L2‖∇2θ‖2L2+δ‖∇θt‖2L2+C‖∇u‖4L2‖∇2θ‖2L2,Z3≤C‖√ρθt‖L3‖ut‖L6‖∇θ‖L2≤C‖√ρut‖12L2‖√ρθt‖12L6‖∇ut‖L2‖∇θ‖L2≤C‖∇ut‖2L2+C‖√ρθt‖L2‖∇θt‖L2‖∇θ‖2L2≤δ‖∇θt‖2L2+C‖∇ut‖2L2+C‖√ρθt‖2L2‖∇θ‖4L2,Z4≤C‖∇u‖L3‖∇ut‖L2‖θt‖L6≤C‖∇u‖12L2‖∇2u‖12L2‖∇ut‖L2‖∇θt‖L2≤δ‖∇θt‖2L2+C‖∇u‖L2‖∇2u‖L2‖∇ut‖2L2,Z5≤C∫|θt|(|∇2d||∇2dt|+|∇2d||∇d||∇dt|+|∇d|2|∇2dt|+|∇2d||∇d|2|dt|+|∇d|3|∇dt|+|∇d|4|dt|)dx≤C‖∇θt‖L2(‖∇2d‖L3‖∇2dt‖L2+‖∇2d‖L2‖∇d‖L6‖∇dt‖L6+‖∇2dt‖L2‖∇d‖2L6+‖∇d‖2L4‖∇2d‖L6‖dt‖L6+‖∇d‖2L6‖∇2dt‖L2+‖∇d‖3L6‖∇dt‖L3+‖dt‖L6‖|∇d|2‖L3‖|∇d|2‖L3)≤δ‖∇θt‖2L2+C‖∇2d‖L2‖∇3d‖L2‖∇2dt‖2L2+C‖∇2d‖4L2‖∇2dt‖2L2+C‖∇2d‖3L2‖∇3d‖2L2‖∇dt‖2L2+C‖∇2d‖6L2‖∇dt‖2L2+C‖∇2d‖6L2‖∇2dt‖2L2+C‖∇dt‖2L2‖∇2d‖8L2. |
Substituting Zi(i=1,2,⋯,5) into (3.94) and choosing δ suitably small, we have
ddt∫ρ|θt|2dx+∫|∇θt|2dx≤C‖√ρθt‖4L2+C‖∇u‖2L2‖∇2u‖2L2+C‖∇u‖L2‖∇2u‖3L2+C‖∇θ‖2L2‖∇2θ‖2L2+C‖∇u‖4L2‖∇2θ‖2L2+C‖∇ut‖2L2+C‖√ρθt‖2L2‖∇θ‖4L2+C‖∇u‖L2‖∇2u‖L2‖∇ut‖2L2+C‖∇2d‖L2‖∇3d‖L2‖∇2dt‖2L2+C‖∇2d‖4L2‖∇2dt‖2L2+C‖∇2d‖3L2‖∇3d‖2L2‖∇dt‖2L2+C‖∇2d‖6L2‖∇dt‖2L2+C‖∇2d‖6L2‖∇2dt‖2L2+C‖∇dt‖2L2‖∇2d‖8L2≤C‖√ρθt‖4L2+C‖∇u‖2L2‖∇2u‖2L2+C‖∇u‖L2‖∇2u‖3L2+C(‖∇θ‖2L2+‖∇u‖4L2)‖√ρθt‖2L2+C‖∇θ‖4L2‖∇u‖4L2+C(‖∇θ‖2L2+‖∇u‖4L2)(‖∇2d‖L2‖∇3d‖3L2+‖∇2d‖5L2‖∇3d‖2L2)+C‖∇ut‖2L2+C‖√ρθt‖2L2‖∇θ‖4L2+C‖∇u‖L2‖∇2u‖L2‖∇ut‖2L2+C‖∇2d‖L2‖∇3d‖L2‖∇2dt‖2L2+C‖∇2d‖4L2‖∇2dt‖2L2+C‖∇2d‖3L2‖∇3d‖2L2‖∇dt‖2L2+C‖∇2d‖6L2‖∇dt‖2L2+C‖∇2d‖6L2‖∇2dt‖2L2+C‖∇dt‖2L2‖∇2d‖8L2. | (3.95) |
(2) Multiplying the above inequality by t52, integrating the result with respect to t and using Gronwall's inequality, we have
sup0≤t≤T(t52‖√ρθt‖2L2)+∫T0t52‖∇θt‖2L2dt≤C∫T0t32‖√ρθt‖2L2dt+Csup1≤t≤T(t32‖∇u‖2L2)∫T1t32‖∇2u‖2L2dt+Csup0≤t≤T(t52‖∇2u‖2L2)∫T0(‖∇2u‖2L2+‖∇u‖2L2)dt+Csup1≤t≤T(t32‖∇u‖2L2)2sup1≤t≤T‖∇θ‖2L2∫T1‖∇θ‖2L2dt+Csup0≤t≤T(t2‖∇3d‖2L2)∫T0(t‖∇3d‖2L2+‖∇2d‖2L2)dt+Csup0≤t≤T(t‖∇2d‖2L2)52∫T0‖∇3d‖2L2dt+C∫10‖∇ut‖2L2dt+C∫T1t52‖∇ut‖2L2dt+Csup0≤t≤T(t‖∇θ‖2L2)∫T0t32‖√ρθt‖2L2dt+Csup0≤t≤T(t‖∇u‖2L2)12sup0≤t≤T(t2‖∇2u‖2L2)12∫T0t‖∇ut‖2L2dt+Csup0≤t≤T{(t‖∇3d‖2L2)12+(t‖∇2d‖2L2)12}∫T0t2‖∇2dt‖2L2dt+Csup0≤t≤T(t‖∇2d‖2L2)12sup0≤t≤T(t2‖∇dt‖2L2)∫T0‖∇3d‖2L2dt+Csup0≤t≤T(t2‖∇dt‖2L2)sup0≤t≤T(t‖∇2d‖2L2)12∫T0‖∇2d‖2L2dt+Csup0≤t≤T(t‖∇2d‖2L2)32∫T0t‖∇dt‖2H1dt+C≤C. | (3.96) |
(3) It follows from (3.9), (3.55), (3.29), (3.36), (3.31), (3.78) and (3.79) that
sup0≤t≤T(t52‖∇2θ‖2L2)≤C+Csup0≤t≤T(t32‖∇u‖2L2)sup0≤t≤T(t‖∇u‖2L2)+Csup0≤t≤T(t‖∇2u‖2L2)12sup0≤t≤T(t2‖∇2u‖2L2)+Csup0≤t≤T(t‖∇3d‖2L2)12sup0≤t≤T(t2‖∇3d‖2L2)+Csup0≤t≤T(t‖∇2d‖2L2)12sup0≤t≤T(t2‖∇3d‖2L2)≤C, | (3.97) |
and
∫T0t32‖∇2θ‖2L2dt≤C∫T0t32‖√ρθt‖2L2dt+Csup0≤t≤T(t32‖∇θ‖2L2)∫T0‖∇u‖2L2dt+Csup0≤t≤Tt52‖∇2u‖2L2∫T0(‖∇u‖2L2+‖∇2u‖2L2)dt+Csup0≤t≤T(t‖∇2d‖2L2)12Csup0≤t≤T(t2‖∇3d‖2L2)12∫T0‖∇3d‖2L2dt+Csup0≤t≤T(t‖∇2d‖2L2)sup0≤t≤T(t‖∇2d‖2L2)12∫T0‖∇3d‖2L2dt≤C. | (3.98) |
Additionally,
∫T0t52‖∇2θ‖2L6dt≤C∫T0t52(‖ρθt‖2L6+‖ρu⋅∇θ‖2L6+‖∇u‖4L12+‖|Δd+|∇d|2d|‖4L12)dt≤C∫T0t52(‖∇θt‖2L2+‖u‖2L∞‖∇θ‖2L6+‖|∇2d||∇3d|‖2L2+‖|∇2d||∇d|3‖2L2)dt≤C∫T0t52‖∇u‖L2‖∇2u‖L2‖∇2θ‖2L2dt+C∫T0t52‖∇2d‖L2‖∇3d‖L2‖∇4d‖2L2dt+C∫T0t52‖∇2d‖5L2‖∇3d‖3L2dt+C≤Csup0≤t≤T(t2‖∇2u‖2L2)12∫T0t32‖∇2θ‖2L2dt+Csup0≤t≤T(t‖∇3d‖2L2)12∫T0t2‖∇4d‖2L2dt+Csup0≤t≤T{(t‖∇3d‖2L2)12(t‖∇2d‖2L2)}∫T0t‖∇3d‖2L2dt+C≤C. | (3.99) |
Thus, we completed the proof of the lemma.
Based on Lemma 2.1, there exists a T0>0 such that the magneto-micropolar systems (1.1) and (1.2) have a unique local strong solution (ρ,u,θ,d,p) in R3×[0,T0]. To prove Theorem 1.1, it suffices to show that the local solution can be extended to be a global one. To do this, we assume from now that K0≤ϵ0 holds.
Set
T∗=sup{T|(ρ,u,θ,d,p)isastrongsolutionon[0,T]}. | (4.1) |
We claim that
T∗=∞. | (4.2) |
Otherwise, assume that T∗<∞. By virtue of Lemmas 3.1 and 3.6 and Proposition 3.1, it holds that (ρ,u,θ,d,p)|t=T∗ satisfies (1.4) and (1.5). Thus, Lemma 2.1 implies that there exists some T∗∗>T∗, such that (ρ,u,θ,d,p) can be extended to a strong solution of (1.1) and (1.2) in R3×[0,T∗∗), which contradicts (4.1). Hence, (4.2) holds.
In this study, we were concerned with an initial value problem related to non-isothermal incompressible nematic liquid crystal flows in R3. Using some time-weighted a priori estimates, we have proven the global existence of a strong solution provided that (‖√ρ0u0‖2L2+‖∇d0‖2L2)(‖∇u0‖2L2+‖∇2d0‖2L2) is suitably small. Furthermore, we have also obtained the large time behavior of the solutions.
The work was supported by the NSF of China (11901288), Postdoctoral Science Foundation of China (2021M691219), Scientific Research Foundation of Jilin Provincial Education Department (JJKH20210 873KJ and JJKH20210883KJ), Natural Science Foundation of Changchun Normal University and doctoral research start-up fund project of Changchun Normal University.
The authors declare that there are no conflicts of interest.
[1] |
Y. Cho, H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math Soc., 45 (2008), 645–681. http://dx.doi.org/10.4134/JKMS.2008.45.3.645 doi: 10.4134/JKMS.2008.45.3.645
![]() |
[2] |
S. Ding, J. Huang, F. Xia, Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum, Filomat, 27 (2013), 1247–1257. http://dx.doi.org/10.2298/FIL1307247D doi: 10.2298/FIL1307247D
![]() |
[3] |
C. He, J. Li, B. Lv, Global well-posedness and exponential stability of 3D Navier-Stokes equations with density-dependent viscosity and vacuum in unbounded domains, Arch. Rational Mech. An., 239 (2021), 1809–1835. http://dx.doi.org/10.1007/s00205-020-01604-5 doi: 10.1007/s00205-020-01604-5
![]() |
[4] |
J. Li, Global strong solutions to incompressible nematic liquid crystal flow, Methods Appl. Anal., 22 (2015), 201–220. http://dx.doi.org/10.4310/MAA.2015.v22.n2.a4 doi: 10.4310/MAA.2015.v22.n2.a4
![]() |
[5] |
X. Li, Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two, Discrete Cont. Dyn. Syst., 37 (2017), 4907–4922. http://dx.doi.org/10.3934/dcds.2017211 doi: 10.3934/dcds.2017211
![]() |
[6] |
L. Li, Q. Liu, X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, Nonlinearity, 30 (2017), 4062. http://dx.doi.org/10.1088/1361-6544/aa8426 doi: 10.1088/1361-6544/aa8426
![]() |
[7] | P. Lions, Mathematical topics in fluid mechanics: Volume 2. Compressible models, Oxford University Press on Demand, 1996. |
[8] |
Q. Liu, S. Liu, W. Tan, X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differ. Equations, 261 (2016), 6521–6569. http://dx.doi.org/10.1016/j.jde.2016.08.044 doi: 10.1016/j.jde.2016.08.044
![]() |
[9] |
Y. Liu, Global regularity to the 2D non-isothermal inhomogeneous nematic liquid crystal flows, Appl. Anal., 2020 (2020), 1–21 http://dx.doi.org/10.1080/00036811.2020.1819534 doi: 10.1080/00036811.2020.1819534
![]() |
[10] |
B. Lv, Z. Xu, X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pure. Appl., 108 (2017), 41–62. http://dx.doi.org/10.1016/j.matpur.2016.10.009 doi: 10.1016/j.matpur.2016.10.009
![]() |
[11] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162. |
[12] | P. Oswald, P. Pieranski, Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments, Boca Raton: CRC Press, 2005. http://dx.doi.org/10.1201/9780203023013 |
[13] | A. Sonnet, E. Virga, Dissipative ordered fluids: Theories for liquid crystals, Springer Science & Business Media, 2012. |
[14] |
H. Xu, H. Yu, Global regularity to the Cauchy problem of the 3D heat conducting incompressible Navier-Stokes equations, J. Math. Anal. Appl., 464 (2018), 823–837. http://dx.doi.org/10.1016/j.jmaa.2018.04.037 doi: 10.1016/j.jmaa.2018.04.037
![]() |
[15] |
H. Xu, H. Yu, Global strong solutions to the 3D inhomogeneous heat-conducting incompressible fluids, Appl. Anal., 98 (2019), 622–637. http://dx.doi.org/10.1080/00036811.2017.1399362 doi: 10.1080/00036811.2017.1399362
![]() |
[16] |
Y. Wang, Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum, Discrete Cont. Dyn. B, 25 (2020), 4317–4333. http://dx.doi.org/10.3934/dcdsb.2020099 doi: 10.3934/dcdsb.2020099
![]() |
[17] |
H. Wen, S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real World Appl., 12 (2011), 1510–1531. http://dx.doi.org/10.1016/j.nonrwa.2010.10.010 doi: 10.1016/j.nonrwa.2010.10.010
![]() |
[18] |
X. Zhong, Global strong solution for 3D viscous incompressible heat conducting Navier-Stokes flows with nonnegative density, J. Differ. Equations, 263 (2017), 4978–4996. http://dx.doi.org/10.1016/j.jde.2017.06.004 doi: 10.1016/j.jde.2017.06.004
![]() |
[19] |
X. Zhong, Global strong solutions for nonhomogeneous heat conducting Navier-Stokes equations, Math. Method. Appl. Sci., 41 (2018), 127–139. http://dx.doi.org/10.1002/mma.4600 doi: 10.1002/mma.4600
![]() |
[20] |
X. Zhong, Global existence and large time behavior of strong solutions for 3D nonhomogeneous heat conducting Navier-Stokes equations, J. Math. Phys., 61 (2020), 111503. http://dx.doi.org/10.1063/5.0012871 doi: 10.1063/5.0012871
![]() |