Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Blow-up of solutions to the coupled Tricomi equations with derivative type nonlinearities

  • Received: 14 February 2022 Revised: 12 April 2022 Accepted: 15 April 2022 Published: 27 April 2022
  • MSC : 35L70, 58J45

  • This paper is concerned with blow-up results of solutions to coupled system of the Tricomi equations with derivative type nonlinearities. Upper bound lifespan estimates of solutions to the Cauchy problem with small initial values are derived by using the test function method (see the proof of Theorem 1.1) and iteration argument (see the proof of Theorem 1.2), respectively. Our main new contribution is that lifespan estimates of solutions to the problem in the sub-critical and critical cases which are connected with the Glassey conjecture are established. To the best knowledge of authors, the results in Theorems 1.1 and 1.2 are new.

    Citation: Jiangyan Yao, Sen Ming, Wei Han, Xiuqing Zhang. Blow-up of solutions to the coupled Tricomi equations with derivative type nonlinearities[J]. AIMS Mathematics, 2022, 7(7): 12514-12535. doi: 10.3934/math.2022694

    Related Papers:

    [1] Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307
    [2] Jincheng Shi, Jianye Xia, Wenjing Zhi . Blow-up of energy solutions for the semilinear generalized Tricomi equation with nonlinear memory term. AIMS Mathematics, 2021, 6(10): 10907-10919. doi: 10.3934/math.2021634
    [3] Xiongmei Fan, Sen Ming, Wei Han, Zikun Liang . Lifespan estimate of solution to the semilinear wave equation with damping term and mass term. AIMS Mathematics, 2023, 8(8): 17860-17889. doi: 10.3934/math.2023910
    [4] Jincheng Shi, Yan Zhang, Zihan Cai, Yan Liu . Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: Global existence versus blow-up. AIMS Mathematics, 2022, 7(1): 247-257. doi: 10.3934/math.2022015
    [5] Mengyang Liang, Zhong Bo Fang, Su-Cheol Yi . Blow-up analysis for a reaction-diffusion equation with gradient absorption terms. AIMS Mathematics, 2021, 6(12): 13774-13796. doi: 10.3934/math.2021800
    [6] Xinyue Zhang, Haibo Chen, Jie Yang . Blow up behavior of minimizers for a fractional p-Laplace problem with external potentials and mass critical nonlinearity. AIMS Mathematics, 2025, 10(2): 3597-3622. doi: 10.3934/math.2025166
    [7] Zhiqiang Li . The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory. AIMS Mathematics, 2022, 7(7): 12913-12934. doi: 10.3934/math.2022715
    [8] Takiko Sasaki, Shu Takamatsu, Hiroyuki Takamura . The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative. AIMS Mathematics, 2023, 8(11): 25477-25486. doi: 10.3934/math.20231300
    [9] Jin Hong, Shaoyong Lai . Blow-up to a shallow water wave model including the Degasperis-Procesi equation. AIMS Mathematics, 2023, 8(11): 25409-25421. doi: 10.3934/math.20231296
    [10] Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810
  • This paper is concerned with blow-up results of solutions to coupled system of the Tricomi equations with derivative type nonlinearities. Upper bound lifespan estimates of solutions to the Cauchy problem with small initial values are derived by using the test function method (see the proof of Theorem 1.1) and iteration argument (see the proof of Theorem 1.2), respectively. Our main new contribution is that lifespan estimates of solutions to the problem in the sub-critical and critical cases which are connected with the Glassey conjecture are established. To the best knowledge of authors, the results in Theorems 1.1 and 1.2 are new.



    In this work, we consider the following Cauchy problem of coupled Tricomi equations with derivative type nonlinearities

    {uttt2mΔu=|vt|p,(t,x)[0,T)×Rn,vttt2mΔv=|ut|q,(t,x)[0,T)×Rn,u(0,x)=εu0(x),ut(0,x)=εu1(x),xRn,v(0,x)=εv0(x),vt(0,x)=εv1(x),xRn, (1.1)

    where m>0, n1. The initial values possess compact supports

    supp(u0,u1,v0,v1){xRn||x|R}, (1.2)

    where R2 is a constant.

    Firstly, we recall some known results related to the single Tricomi equation

    {uttt2mΔu=f(u,ut),(t,x)[0,T)×Rn,u(0,x)=εu0(x),ut(0,x)=εu1(x),xRn, (1.3)

    where f(u,ut)=|u|p, |ut|p, |ut|p+|u|q. Lin and Tu [27] study blow-up dynamics of problem (1.3) with f(u,ut)=|u|p by using the test function method and iteration argument in the sub-critical case. An iteration procedure together with slicing method is employed to prove formation of singularity of solution in the critical case. He et al. [11] investigate blow-up result of solution by constructing the Riccati type differential inequality. Lucentea and Palmieri [29] establish blow-up dynamics for the Tricomi equation with derivative type nonlinearity f(u,ut)=|ut|p in the sub-critical and critical cases by utilizing the integral representation formula. Upper bound lifespan estimates of solution are obtained by using the test function method (see [22]). For the Tricomi equation with combined nonlinearities f(u,ut)=|ut|p+|u|q, blow-up results and lifespan estimates of solution are established by employing the iteration argument (see [1]). Hamouda and Hamza [6] study properties of solution to the liner Cauchy problem corresponding to problem (1.3). Formation of singularities of solution are obtained by constructing ordinary differential inequality. More detailed illustration related to the study of the Tricomi equation can be found in [10,12,13,33,40].

    Equation (1.3) reduces to the well known semilinear wave equation when m=0, namely

    {uttΔu=f(u,ut),(t,x)[0,T)×Rn,u(0,x)=εu0(x),ut(0,x)=εu1(x),xRn. (1.4)

    Problem (1.4) is concerned with the Strauss conjecture when f(u,ut)=|u|p (see [41]). We note the critical exponent pS(1)=. For n2, pS(n) is the positive root of quadratic equation

    (n1)p2+(n+1)p+2=0.

    The critical exponent pS(n) for n2 divides the interval (1,) into two parts. For p(1,pS(n)], the solution blows up in finite time (see [7,9,16,17,20,21,25,30,31,42,43,44]). While the solution exists globally (in time) when p(pS(n),) (see [2,4,23,24,26,28,45]). For f(u,ut)=|ut|p, Eq (1.4) is related to the Glassey conjecture [3], where the critical exponent is characterized by pG(n)=n+1n1. Concretely, Lai and Tu [19] investigate problem (1.4) with space dependent damping μ(1+|x|)βut(β>2) and f(u,ut)=|u|p,|ut|p, respectively. Blow-up results and lifespan estimates of solutions are obtained by using the test function method. For problem (1.4) involving mixed nonlinearities f(u,ut)=|ut|p+|u|q, Han and Zhou [8] obtain upper bound lifespan estimates of solution to the Cauchy problem by constructing proper test function and the ordinary differential inequalities. Lai and Takamura [18] illustrate blow-up results and upper bound lifespan estimates of solution to the problem with time dependent damping term μ(1+t)βut(β>1) by making use of a multiplier and iteration argument. Formation of singularities for solution to problem (1.4) with scale invariant damping μ1+tut are investigated by applying the test function approach (see [5]).

    Recently, blow-up dynamics of the Cauchy problem for coupled system of semilinear wave equations

    {uttΔu=f1(v,vt),(t,x)[0,T)×Rn,vttΔv=f2(u,ut),(t,x)[0,T)×Rn,u(0,x)=εu0(x),ut(0,x)=εu1(x),xRn,v(0,x)=εv0(x),vt(0,x)=εv1(x),xRn, (1.5)

    attracts extensive attention (see [15,32,35,36,37,38,39]). Using the test function method, Ikeda et al. [15] obtain blow-up results and lifespan estimates of solutions to problem (1.5) with power nonlinear terms f1(v,vt)=|v|p, f2(u,ut)=|u|q, derivative nonlinear terms f1(v,vt)=|vt|p, f2(u,ut)=|ut|q and mixed nonlinear terms f1(v,vt)=|v|p, f2(u,ut)=|ut|q, respectively. Palmieri and Takamura [38] discuss the coupled system of semilinear wave equations (1.5) with time dependent weak damping terms and power nonlinearities. Upper bound lifespan estimates of solutions are derived by utlizing the iteration argument. Palmieri and Takamura [35] consider the coupled system of semilinear time dependent damped wave equations of derivative type nonlinearities in the scattering case. Upper bound lifespan estimates of solutions in the sub-critical case are obtained by taking advantage of the Kato lemma. While in the critical case, an iteration procedure based on the slicing method is employed. Formation of singularities of solutions to problem (1.5) with time dependent damping and mixed nonlinear terms in the scattering case are established through the iteration argument (see [37]). Ikeda et al. [14] study the Cauchy problem for coupled system of semilinear Tricomi equations

    {uttt2m1Δu=f1(v,vt),(t,x)[0,T)×Rn,vttt2m2Δv=f2(u,ut),(t,x)[0,T)×Rn,u(0,x)=εu0(x),ut(0,x)=εu1(x),xRn,v(0,x)=εv0(x),vt(0,x)=εv1(x),xRn, (1.6)

    where the nonlinear terms are power type nonlinearities f1(v,vt)=|v|p and f2(u,ut)=|u|q. Blow-up dynamics and lifespan estimates of solutions are obtained by constructing test functions which are related to the Gauss hypergeometric functions.

    Inspired by the results in [14,15,22,29], we consider blow-up dynamics of the Cauchy problem for coupled Tricomi equations (1.1). For the Cauchy problem of single Tricomi equation with derivative nonlinear term, upper bound lifespan estimates of solution are established by using the test function method (see [22]) and integral representation formula (see [29]), respectively. Concerning the Cauchy problem for coupled semilinear wave equations and coupled Tricomi equations with power type nonlinearities, formation of singularities are established by employing the test function method (see [14,15]). We obtain blow-up results and upper bound lifespan estimates of solutions to problem (1.1) by using test function method and iteration argument, respectively. It is worth to mention that the test function utilized in the proof of Theorem 1.1 is different from the test functions employed in [14,15], which are related to the Gauss hypergeometric functions. Lucente and Palmieri [29] establish upper bound lifespan estimate of solution to the Cauchy problem for single Tricomi equation by using integral representation formula and constructing ordinary differential inequality. While in this paper, we combine the integral representation formula with iteration method to present the proof of Theorem 1.2. The results obtained in this paper can be regarded as an extended work in [14,15,22,29]. To our best knowledge, the results in Theorems 1.1 and 1.2 are new. In addition, we present a comparison for lifespan estimates in Theorems 1.1 and 1.2 in a special case (see Remark 1.1).

    Throughout this paper, we use the following expressions

    FGG(n,m,p,q)=(n1)(m+1)2+m2+p+1pq1,ΛGG(n,m,p,q)=p+1pq1(n12+m2(m+1))m(p+1)(pq1)(m+1),ΩGG(n,p,q)=max{FGG(n,0,p,q),FGG(n,0,q,p)}.

    C denotes the positive constant independent of ε, which may vary from line to line. AB stands for ACB, where C is a positive constant.

    From the local existence result of solution to the Cauchy problem of single Tricomi equation with derivative type nonlinearity |ut|p in Theorem 2 in [22], we can obtain the existence and uniqueness of solutions to the coupled system (1.1) by using the Banach fixed point theorem. We omit the details for simplicity.

    The main results in this paper are described as follows.

    Theorem 1.1. Assume that the initial data u0,v0H1(Rn), u1,v1H11m+1(Rn) satisfy

    (2m+1)mm+1Γ(12+m2(m+1))Γ(12m2(m+1))u0+u1>0,
    (2m+1)mm+1Γ(12+m2(m+1))Γ(12m2(m+1))v0+v1>0,

    where Γ(s)=+0zs1ezdz is the Gamma function for s>0. Suppose that (u,v) are a pair of solutions to problem (1.1) which satisfy

    supp(u,v){(t,x)[0,T)×Rn||x|R+tm+1m+1}.

    Then, there exists a small positive constantε0=ε0(n,m,p,q,R,u0,u1,v0,v1) such that the lifespan estimates satisfy

    T(ε){Cε˜F1GG(n,m,p,q),˜FGG(n,m,p,q)>0,exp(Cε(pq1)),˜FGG(n,m,p,q)=0,pq,exp(Cε(p1)),˜FGG(n,m,p,q)=0,p=q, (1.7)

    where ˜FGG=max{FGG(n,m,p,q),FGG(n,m,q,p)} and ε(0,ε0].

    Theorem 1.2. Assume that the initial data u0,v0C20(Rn), u1,v1C10(Rn) are non-negative functions. Suppose that (u,v) are a pair of solutions to problem (1.1) which satisfy

    supp(u,v){(t,x)[0,T)×Rn||x|R+tm+1m+1}.

    Then, the lifespan estimates satisfy

    T(ε){Cε˜Λ1GG(n,m,p,q),˜ΛGG(n,m,p,q)>0,exp(Cε(pq1)),˜ΛGG(n,m,p,q)=0,pq,exp(Cε(p1)),˜ΛGG(n,m,p,q)=0,p=q, (1.8)

    where ˜ΛGG=max{(m+1)ΛGG(n,m,p,q),(m+1)ΛGG(n,m,q,p}.

    Remark 1.1. Direct calculation shows ˜FGG(n,m,p,q)=m+˜ΛGG(n,m,p,q). Therefore, the first lifespan estimate in (1.7) is better than the the first lifespan estimate in (1.8) in the sub-critical case. We conjecture that the curve in the pq plane which satisfies ˜FGG(n,m,p,q)=0 is the critical curve. We will verify this conjecture in our future work. We observe that Ikeda et al. [15] obtain the following upper bound lifespan estimates of solutions to problem (1.1) with m=0, namely

    T(ε){CεΩ1GG(n,p,q),ΩGG(n,p,q)>0,exp(Cε(pq1)),ΩGG(n,p,q)=0,pq,exp(Cε(p1)),ΩGG(n,p,q)=0,p=q. (1.9)

    It is worth to mention that the lifespan estimates in (1.7) and the lifespan estimates in (1.8) are coincide with the lifespan estimates in (1.9) when m=0.

    Remark 1.2. Problem (1.1) is equivalent to the Cauchy problem for single Tricomi equation when p=q, which has been studied in [22,29]. Lifespan estimates of solutions in (1.7) and (1.8) in the case p=q are coincide with the lifespan estimates of solutions in [22,29].

    Firstly, we illustrate the definition of weak solutions.

    Definition 2.1. Assume that the pair of functions (u,v) satisfy

    (u,v)(C([0,T);H1(Rn))C1([0,T);H11m+1(Rn)))2,
    (ut,vt)Lqloc([0,T)×Rn)×Lploc([0,T)×Rn).

    Then, (u,v) are called weak solutions of problem (1.1) on [0,T) if

         εRnu1(x)Ψ(0,x)dx+T0Rn|vt|pΨ(t,x)dxdt=T0Rn(tu(t,x)tΨ(t,x)+t2mu(t,x)Ψ(t,x))dxdt,     εRnv1(x)Ψ(0,x)dx+T0Rn|ut|qΨ(t,x)dxdt=T0Rn(tv(t,x)tΨ(t,x)+t2mv(t,x)Ψ(t,x))dxdt, (2.1)

    where Ψ(t,x)C0([0,T)×Rn) and T(1,T(ε)). Here, T(ε) represents the upper bound lifespan estimate of solutions to problem (1.1), which satisfies

    T(ε)=sup{T>0, there exist a pair of energy solutions to problem (1.1)}.

    Lemma 2.2. The cut off function η(t)C([0,)) is defined by

    η(t)={1,t12,decreasing,t(12,1),0,t1,

    which satisfies|η(t)|,|ηLet \eta_{T}(t) = \eta(t/T) and k > 1. It holds that

    \partial_{t}\eta_{T}^{2k} = \frac{2k}{T}\eta_{T}^{2k-1}\eta',
    \partial^{2}_{t}\eta_{T}^{2k} = \frac{2k(2k-1)}{T^{2}}\eta_{T}^{2k-2}|\eta'|^{2}+ \frac{2k}{T^{2}}\eta_{T}^{2k-1}\eta''.

    Suppose that the function \theta(t)\in C^{\infty}([0, \infty)) satisfies

    \theta(t) = \left \{\begin{array}{ll} 0, \quad\quad\quad\, t < \frac{1}{2}, \\ \eta(t), \quad\quad t\geq\frac{1}{2}, \end{array} \right. \quad \quad \quad\theta_{M}(t) = \theta(\frac{t}{M}).

    The proof of Lemma 2.2 is easy, we omit the details.

    Lemma 2.3. (Lemma 4 in [22]) Let m > -\frac{1}{2} and \gamma = \frac{m}{2(m+1)}. Assume that

    y(t) = t^{m+1/2}K_{\gamma+1/2}(\dfrac{t^{m+1}}{m+1}),

    where K_{\upsilon}(\cdot) stands for modified Bessel function.It holds that y(t)\in C^{1}([0, \infty)) \cap C^{\infty}(0, \infty) which satisfies

    \begin{equation} y''(t)-\dfrac{2m}{t}y'(t)-t^{2m}y(t) = 0. \end{equation} (2.2)

    Moreover, y(t) possesses the following properties:

    (1) y(t) > 0, y'(t) < 0,

    (2) \lim\limits_{t\rightarrow0^{+}}y(t) = 2^{\gamma-\frac{1}{2}}(m+1)^{\gamma+\frac{1}{2}}\Gamma(\gamma+\frac{1}{2}) = c_{0}(\gamma) > 0,

    (3) \lim\limits_{t\rightarrow0^{+}}\dfrac{y'(t)}{t^{2m}} = -c_{0}(-\gamma) < 0,

    (4) y(t) = \sqrt{\dfrac{(m+1)\pi}{2}}t^{\frac{m}{2}}\exp(-\dfrac{t^{m+1}}{m+1})\times(1+O(t^{-(m+1)})), for large t > 0 ,

    (5) y'(t) = -\sqrt{\dfrac{(m+1)\pi}{2}}t^{\frac{3m}{2}}\exp(-\dfrac{t^{m+1}}{m+1})\times(1+O(t^{-(m+1)})), for large t > 0 .

    We introduce the following test function

    \begin{equation} \Psi(t, x) = -t^{-2m}\partial_{t}(\eta_{M}^{2k}(t)y(t))\phi(x), \end{equation} (2.3)

    where

    \begin{equation} \phi(x) = \left\{ \begin{aligned} &\int_{S^{n-1}}e^{x\cdot w}dw, \quad\quad n\geq2, \\ &e^{x}+e^{-x}, \quad\quad\quad\quad\, n = 1.\nonumber\\ \end{aligned} \right. \end{equation}

    It holds that \Delta\phi(x) = \phi(x) and

    \begin{equation} 0 < \phi(x)\lesssim (1+|x|)^{-\frac{n-1}{2}}e^{|x|}. \end{equation} (2.4)

    We note \Psi(t, x)\in C_{0}^{\infty}([0, \infty)\times\mathbb{R}^{n}) and

    \Psi(0, x) = \lim\limits_{t\rightarrow0^{+}}\Psi(t, x) = c_{0}(-\gamma)\phi(x)\geq0.

    Applying the first equality in (2.1) and (2.3), we obtain

    \begin{equation} \begin{aligned} &\ \ \ \ \varepsilon \int_{\mathbb{R}^{n}}u_{1}(x)c_{0}(-\gamma)\phi dx +\int_{0}^{T}\int_{\mathbb{R}^{n}}|v_{t}|^{p}(-t^{-2m})\eta_{M}^{2k}\partial_{t}y\phi dxdt\\& +\int_{0}^{T}\int_{\mathbb{R}^{n}}|v_{t}|^{p}(-t^{-2m})\partial_{t}\eta_{M}^{2k}y\phi dxdt\\ & = \int_{0}^{T}\int_{\mathbb{R}^{n}}\partial_{t}u\partial_{t}(t^{-2m}\partial_{t}(\eta_{M}^{2k}y)\phi)dxdt -\int_{0}^{T}\int_{\mathbb{R}^{n}}\nabla u\nabla \phi\partial_{t}(\eta_{M}^{2k}y)dxdt\\ & = \int_{0}^{T}\int_{\mathbb{R}^{n}}u_{t}t^{-2m}(-2mt^{-1}\partial_{t}\eta_{M}^{2k}y -2mt^{-1}\eta_{M}^{2k}\partial_{t}y+\partial_{t}^{2}\eta_{M}^{2k}y\\ & + 2\partial_{t}\eta_{M}^{2k}\partial_{t}y+ \eta_{M}^{2k}\partial_{t}^{2}y)\phi dxdt-\int_{0}^{T}\int_{\mathbb{R}^{n}}\nabla u\nabla \phi\partial_{t}(\eta_{M}^{2k}y)dxdt\\ & = -\varepsilon c_{0}(\gamma) \int_{\mathbb{R}^{n}}u_{0}(x)\phi dx-2m\int_{0}^{T}\int_{\mathbb{R}^{n}} u_{t}t^{-2m-1}\partial_{t}\eta_{M}^{2k}y\phi dxdt\\ & + \int_{0}^{T}\int_{\mathbb{R}^{n}}u_{t}t^{-2m}(\partial_{t}^{2}\eta_{M}^{2k}y+2\partial_{t}\eta_{M}^{2k}\partial_{t}y)\phi dxdt\\ & + \int_{0}^{T}\int_{\mathbb{R}^{n}}u_{t}t^{-2m}\eta_{M}^{2k}(\partial_{t}^{2}y-\frac{2m}{t}\partial_{t}y -t^{2m}y)\phi dxdt. \end{aligned} \end{equation} (2.5)

    Using (2.2), (2.5) and the fact \partial_{t}\eta_{M}(t) < 0 , we conclude

    \begin{equation} \begin{aligned} &\ \ \ \ \varepsilon c_{1}+ \int_{0}^{T}\int_{\mathbb{R}^{n}}|v_{t}|^{p}t^{-2m}\eta_{M}^{2k}|\partial_{t}y|\phi dxdt\\ &\leq -2m\int_{0}^{T}\int_{\mathbb{R}^{n}} u_{t}t^{-2m-1}\partial_{t}\eta_{M}^{2k}y\phi dxdt+ \int_{0}^{T}\int_{\mathbb{R}^{n}}u_{t}t^{-2m}\partial_{t}^{2}\eta_{M}^{2k}y \phi dxdt\\ & + \int_{0}^{T}\int_{\mathbb{R}^{n}}2u_{t}t^{-2m}\partial_{t}\eta_{M}^{2k}\partial_{t}y\phi dxdt\\ & = I_{1}+I_{2}+I_{3}, \end{aligned} \end{equation} (2.6)

    where c_{1} = c_{0}(\gamma) \int_{\mathbb{R}^{n}}u_{0}(x)\phi dx+c_{0}(-\gamma)\int_{\mathbb{R}^{n}}u_{1}(x)\phi dx > 0.

    Taking k\geq q' = \frac{q}{q-1}, we obtain

    \begin{equation} \begin{aligned} I_{1}& = -2m\int_{0}^{T}\int_{\mathbb{R}^{n}} u_{t}t^{-2m-1}\partial_{t}\eta_{M}^{2k}y\phi dxdt\\& \lesssim M^{-1}\int_{\frac{M}{2}}^{M}\int_{\{|x|\leq R+\frac{t^{\;m+1}}{m+1}\}}|u_{t}t^{-\frac{2m}{q}}\theta_{M}^{2k-2}|\partial_{t}y|^{\frac{1}{q}}\phi^{\frac{1}{q}}| |t^{-\frac{2m(q-1)}{q}}|\partial_{t}y|^{-\frac{1}{q}}y\phi^{\frac{q-1}{q}}|dxdt\\& \lesssim M^{-1}(\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}}(\int_{\frac{M}{2}}^{M}\int_{\{|x|\leq R+\frac{t^{m+1}}{m+1}\}}t^{-2m}|\partial_{t}y|^{-\frac{1}{q-1}}|y|^{\frac{q}{q-1}}\phi dxdt)^{\frac{q-1}{q}}\\& \lesssim M^{-1}(\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}}\\& \times (\int_{\frac{M}{2}}^{M}\int_{0}^{R+\frac{t^{\;m+1}}{m+1}} \;t^{-2m-\frac{3m}{2(q-1)}\;\;+\frac{mq}{2(q-1)}}\;\;(1+r)^{\frac{n-1}{2}} \exp(r-\frac{t^{m+1}}{m+1})drdt)^{\frac{q-1}{q}}\\& \lesssim M^{-1}[M^{\frac{(n-1)(m+1)}{2}\;\;\;+1-2m-\frac{3m}{2(q-1)}\;\;+\frac{mq}{2(q-1)}}\;\;]^{\frac{q-1}{q}} (\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}}\\& \lesssim M^{-1-\frac{3}{2}m+\frac{m}{2q}+(\frac{(m+1)(n-1)}{2}\;\;\;+1)\frac{q-1}{q}}(\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}}, \end{aligned} \end{equation} (2.7)
    \begin{equation} \begin{aligned} I_{2}& = \int_{0}^{T}\int_{\mathbb{R}^{n}}u_{t}t^{-2m}\partial_{t}^{2}\eta_{M}^{2k}y\phi dxdt\\ & \lesssim M^{-2}\int_{\frac{M}{2}}^{M}\int_{\{|x|\leq R+\frac{t^{\;m+1}}{m+1}\;\}}|u_{t}t^{-\frac{2m}{q}}\theta_{M}^{2k-2}|\partial_{t}y|^{\frac{1}{q}}\phi^{\frac{1}{q}}| |t^{-\frac{2m(q-1)}{q}}|\partial_{t}y|^{-\frac{1}{q}}y\phi^{\frac{q-1}{q}}|dxdt\\& \lesssim M^{-2}(\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}} (\int_{\frac{M}{2}}^{M}\int_{\{|x|\leq R+\frac{t^{m+1}}{m+1}\}}t^{-2m}|y|^{\frac{q}{q-1}}|\partial_{t}y|^{-\frac{1}{q-1}}\phi dxdt)^{\frac{q-1}{q}}\\ &\lesssim M^{-2-\frac{3m}{2}+\frac{m}{2q}+(\frac{(m+1)(n-1)}{2}\;\;\;+1)\frac{q-1}{q}}(\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}}, \end{aligned} \end{equation} (2.8)
    \begin{equation} \begin{aligned} I_{3}& = \int_{0}^{T}\int_{\mathbb{R}^{n}}2u_{t}t^{-2m}\partial_{t}\eta_{M}^{2k}\partial_{t}y\phi dxdt\\ & \lesssim M^{-1}\int_{\frac{M}{2}}^{M}\int_{\{|x|\leq R+\frac{t^{\;m+1}}{m+1}\}}|u_{t}t^{-\frac{2m}{q}}\theta_{M}^{2k-2}|\partial_{t}y|^{\frac{1}{q}}\phi^{\frac{1}{q}}| |t^{-\frac{2m(q-1)}{q}}|\partial_{t}y|^{\frac{q-1}{q}}\phi^{\frac{q-1}{q}}|dxdt\\& \lesssim M^{-1}(\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}}(\int^{M}_{\frac{M}{2}}\int_{\{|x|\leq R+\frac{t^{m+1}}{m+1}\}}|\partial_{t}y|\phi t^{-2m}dxdt)^{\frac{q-1}{q}}\\ &\lesssim M^{-1-\frac{m}{2}+\frac{m}{2q}+(\frac{(m+1)(n-1)}{2}\;\;\;+1)\frac{q-1}{q}}(\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}}, \end{aligned} \end{equation} (2.9)

    where we have used the estimates in Lemma 2.3 and (2.4).

    From (2.6)–(2.9), we arrive at

    \begin{equation} \begin{aligned} &\ \ \ \ \varepsilon c_{1}+ \int_{0}^{T}\int_{\mathbb{R}^{n}}|v_{t}|^{p}t^{-2m}\eta_{M}^{2k}|\partial_{t}y|\phi dxdt\\ &\lesssim M^{-1-\frac{m}{2}+\frac{m}{2q}+(\frac{(m+1)(n-1)}{2}\;\;\;+1)\frac{q-1}{q}}(\int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{q}}. \end{aligned} \end{equation} (2.10)

    Similarly, making use of the second equality in (2.1) and (2.3) with k\geq p' yields

    \begin{equation} \begin{aligned} &\ \ \ \ \varepsilon c_{2}+ \int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\eta_{M}^{2k}|\partial_{t}y|\phi dxdt\\ &\lesssim M^{-1-\frac{m}{2}+\frac{m}{2p}+(\frac{(m+1)(n-1)}{2}\;\;\;+1)\frac{p-1}{p}} (\int_{0}^{T}\int_{\mathbb{R}^{n}}|v_{t}|^{p}t^{-2m}\theta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{\frac{1}{p}}, \end{aligned} \end{equation} (2.11)

    where c_{2} = c_{0}(\gamma) \int_{\mathbb{R}^{n}}v_{0}(x)\phi dx+c_{0}(-\gamma)\int_{\mathbb{R}^{n}}v_{1}(x)\phi dx > 0.

    Combining (2.10) and (2.11), we have

    \begin{equation} \begin{aligned} &\ \ \ \ (\varepsilon c_{1}+ \int_{0}^{T}\int_{\mathbb{R}^{n}}|v_{t}|^{p}t^{-2m}\eta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{pq} \\ &\lesssim M^{pq(\frac{(n-1)(m+1)}{2}\;\;\;-\frac{m}{2})-p+\frac{m}{2}-\frac{(n-1)(m+1)}{2}\;\;\;-1}\int_{0}^{T}\int_{\mathbb{R}^{n}}|v_{t}|^{p}t^{-2m}\eta_{M}^{2k}|\partial_{t}y|\phi dxdt, \end{aligned} \end{equation} (2.12)
    \begin{equation} \begin{aligned} &\ \ \ \ (\varepsilon c_{2}+ \int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\eta_{M}^{2k}|\partial_{t}y|\phi dxdt)^{pq} \\ &\lesssim M^{pq(\frac{(n-1)(m+1)}{2}\;\;\;-\frac{m}{2})-q+\frac{m}{2}-\frac{(n-1)(m+1)}{2}\;\;\;-1} \int_{0}^{T}\int_{\mathbb{R}^{n}}|u_{t}|^{q}t^{-2m}\eta_{M}^{2k}|\partial_{t}y|\phi dxdt. \end{aligned} \end{equation} (2.13)

    We set

    Y[w](M) = \int_{1}^{M}(\int_{0}^{T}\int_{\mathbb{R}^{n}}w(t, x)\theta_{\sigma}^{2k}(t)dxdt)\sigma^{-1}d\sigma.

    It holds that

    \begin{equation} \left \{\begin{aligned} &Y[w](M)\lesssim \int_{0}^{T}\int_{\mathbb{R}^{n}}w(t, x)\theta_{M}^{2k}(t)dxdt, \\ &\dfrac{dY[w](M)}{dM} = M^{-1}\int_{0}^{T}\int_{\mathbb{R}^{n}}w(t, x)\theta_{M}^{2k}(t)dxdt.\nonumber\\ \end{aligned} \right. \end{equation}

    Let w(t, x) = |v_{t}|^{p}t^{-2m}|\partial_{t}y|\phi. We define Y(M) = Y[|v_{t}|^{p}t^{-2m}|\partial_{t}y|\phi](M). From (2.12), we have

    \begin{equation} \begin{aligned} (\varepsilon+Y(M))^{pq}\lesssim M^{pq(\frac{(n-1)(m+1)}{2}\;\;\;-\frac{m}{2})-p+\frac{m}{2}-\frac{(n-1)(m+1)}{2}\;\;\;-1}M\frac{dY(M)}{dM}. \end{aligned} \end{equation} (2.14)

    Solving the ordinary differential inequality (2.14), we have

    \begin{equation} T(\varepsilon)\leq\left \{ \begin{aligned} &C \varepsilon^{-F_{GG}^{-1}\;\;(n, m, p, q)}, \quad\quad\, \, \, F_{GG}(n, m, p, q) > 0 , \\ &\exp(C\varepsilon^{-(pq-1)}), \quad\quad F_{GG}(n, m, p, q) = 0. \end{aligned} \right. \end{equation} (2.15)

    For F_{GG}(n, m, p, q) = 0 and p = q, we obtain

    \partial_{t}^{2}(u+v)-t^{2m}\Delta(u+v) = |u_{t}|^{p}+|v_{t}|^{p}\geq2^{-p}|\partial_{t}(u+v)|^{p}.

    Therefore, we derive

    \begin{equation} \begin{aligned} T(\varepsilon)\leq\exp(C\varepsilon^{-(p-1)}) . \end{aligned} \end{equation} (2.16)

    On the other hand, we define Y_{1}(M) = {Y}[|u_{t}|^{q}t^{-2m}|\partial_{t}y|\phi](M) . From (2.13), we deduce

    (\varepsilon+Y_{1}(M))^{pq}\lesssim M^{pq(\frac{(n-1)(m+1)}{2}\;\;\;-\frac{m}{2})-q+\frac{m}{2}-\frac{(n-1)(m+1)}{2}\;\;\;-1}M\frac{dY_{1}(M)}{dM}.

    Direct computation gives rise to

    \begin{equation} T(\varepsilon)\leq\left \{ \begin{aligned} &C \varepsilon^{-F_{GG}^{-1}\;\;(n, m, q, p)}, \quad\quad\, \, \, \, F_{GG}(n, m, q, p) > 0 , \\ &\exp(C\varepsilon^{-(pq-1)}), \quad\quad\, F_{GG}(n, m, q, p) = 0, \, \, p\neq q, \\ &\exp(C\varepsilon^{-(p-1)}), \quad\quad\, \, \, F_{GG}(n, m, q, p) = 0, \, \, p = q. \end{aligned} \right. \end{equation} (2.17)

    Combining (2.15)–(2.17), we conclude the lifespan estimates in (1.7). This completes the proof of Theorem 1.1.

    In this section, we utilize the iterative method to characterize blow-up results of problem (1.1).

    Firstly, for Cauchy problem of the Tricomi equation

    \begin{equation} \left \{ \begin{aligned} &u_{tt}- t^{2m}u_{xx} = h(t, x), \quad\quad\quad\, \, t > 0, \, x\in\mathbb{R}, \\ &u(0, x) = u_{0}(x), \, \, u_{t}(0, x) = u_{1}(x), \, \, \, \, \, \, \, x\in \mathbb{R}, \end{aligned} \right. \end{equation} (3.1)

    we have the following integral representation formula.

    Lemma 3.1. (Proposition 2.1 in [29]) Let n = 1 and m > 0 . Suppose that u_{0}\in C_{0}^{2}(\mathbb{R}), u_{1}\in C_{0}^{1}(\mathbb{R}) and h(t, x)\in C([0, \infty), C^{1}(\mathbb{R})). Then, the solution u(t, x) to problem (3.1) can be represented by

    \begin{equation} \begin{aligned} u(t, x)& = a_{m}\varphi^{1-2\gamma}_{m}(t)\int_{x-\varphi_{m}(t)}^{x+\varphi_{m}(t)}u_{0}(y)(\varphi_{m}^{2}(t)-(y-x)^{2})^{\gamma-1}dy\\ & +b_{m}\int_{x-\varphi_{m}(t)}^{x+\varphi_{m}(t)}u_{1}(y)(\varphi_{m}^{2}(t)-(y-x)^{2})^{-\gamma}dy\\ & +c_{m}\int_{0}^{t}\int_{x-\varphi_{m}(t)+\varphi_{m}(b)}^{x+\varphi_{m}(t)-\varphi_{m}(b)}h(b, y)E(t, x;b, y;m)dydb, \end{aligned} \end{equation} (3.2)

    where

    \begin{equation} \begin{aligned} &\gamma = \frac{m}{2(m+1)}, \quad a_{m} = 2^{1-2\gamma}\frac{\Gamma(2\gamma)}{\Gamma^{2}(\gamma)}, \\ &b_{m} = 2^{2\gamma-1}(m+1)^{1-2\gamma}\frac{\Gamma(2-2\gamma)}{\Gamma^{2}(1-\gamma)}, \\ &c_{m} = 2^{2\gamma-1}(m+1)^{-2\gamma}, \quad \varphi_{m}(t) = \frac{t^{m+1}}{m+1}.\nonumber \end{aligned} \end{equation}

    The kernel function E(t, x; b, y; m) is defined by

    \begin{equation} \begin{aligned} E(t, x;b, y;m) = \big((\varphi_{m}(t)+\varphi_{m}(b))^{2}-(y-x)^{2}\big)^{-\gamma} \times F\big(\gamma, \gamma;1;\frac{(\varphi_{m}(t)-\varphi_{m}(b))^{2}-(y-x)^{2}}{(\varphi_{m}(t)+\varphi_{m}(b))^{2}-(y-x)^{2}}\big), \nonumber \end{aligned} \end{equation}

    where F(a, b; c;z) stands for the Gauss hypergeometric function F(a, b; c;z) = \sum\limits_{n = 0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}}\frac{z^{n}}{n!} with the Pochhammer symbol (d)_{0} = 1 and (d)_{n} = \prod_{k = 1}^{n}(d+k-1) for n\in\mathbb{N} .

    Let (u, v) be a pair of solutions to problem (1.1). We set the space variable x = (z, w) , where z\in\mathbb{R} and w\in\mathbb{R}^{n-1} . We define U(t, z) = \int_{\mathbb{R}^{n-1}}u(t, z, w)dw, V(t, z) = \int_{\mathbb{R}^{n-1}}v(t, z, w)dw. Then, (U(t, z), V(t, z)) satisfy

    \begin{equation} \left \{ \begin{aligned} &U_{tt}- t^{2m}\Delta U = \int_{\mathbb{R}^{n-1}}|v_{t}(t, z, w)|^{p}dw, \quad \quad\quad t > 0, \, \, z\in\mathbb{R}, \\ &V_{tt}- t^{2m}\Delta V = \int_{\mathbb{R}^{n-1}}|u_{t}(t, z, w)|^{q}dw, \quad \quad\quad\, \, t > 0, \, \, z\in\mathbb{R}, \, \, \\ &U(0, z) = \varepsilon U_{0}(z), \, \, U_{t}(0, z) = \varepsilon U_{1}(z), \quad \quad\quad\quad\quad\, \, \, z\in \mathbb{R}, \\ &V(0, z) = \varepsilon V_{0}(z), \, \, V_{t}(0, z) = \varepsilon V_{1}(z), \quad \quad\quad\quad\quad\, \, \, \, \, \, z\in \mathbb{R}, \end{aligned} \right. \end{equation} (3.3)

    where

    \begin{equation} \begin{aligned} &U_{0}(z) = \int_{\mathbb{R}^{n-1}}u_{0}(z, w)dw, \quad U_{1}(z) = \int_{\mathbb{R}^{n-1}}u_{1}(z, w)dw, \\ &V_{0}(z) = \int_{\mathbb{R}^{n-1}}v_{0}(z, w)dw, \quad V_{1}(z) = \int_{\mathbb{R}^{n-1}}v_{1}(z, w)dw, \\ &\text{supp}\, (U_{0}(z), U_{1}(z), V_{0}(z), V_{1}(z))\subset(-R, R), \\ &\text{supp}\, (U(t, \cdot), V(t, \cdot)) \subset(-(R+\varphi_{m}(t)), R+\varphi_{m}(t)).\nonumber \end{aligned} \end{equation}

    From (3.2), we deduce that U(t, z) and V(t, z) can be represented as

    \begin{equation} \begin{aligned} U(t, z)& = a_{m}\varepsilon\varphi^{1-2\gamma}_{m}(t)\int_{z-\varphi_{m}(t)}^{z+\varphi_{m}(t)}U_{0}(y)(\varphi^{2}_{m}(t)-(y-z)^{2})^{\gamma-1}dy\\ & +b_{m}\varepsilon\int_{z-\varphi_{m}(t)}^{z+\varphi_{m}(t)}U_{1}(y)(\varphi^{2}_{m}(t)-(y-z)^{2})^{-\gamma}dy\\ & +c_{m}\int_{0}^{t}\int_{z-\varphi_{m}(t)+\varphi_{m}(b)}^{z+\varphi_{m}(t)-\varphi_{m}(b)} \int_{\mathbb{R}^{n-1}}| v_{t}(b, y, w)|^{p}dw E(t, z;b, y;m)dydb, \end{aligned} \end{equation} (3.4)
    \begin{equation} \begin{aligned} V(t, z)& = a_{m}\varepsilon\varphi^{1-2\gamma}_{m}(t)\int_{z-\varphi_{m}(t)}^{z+\varphi_{m}(t)}V_{0}(y)(\varphi^{2}_{m}(t)-(y-z)^{2})^{\gamma-1}dy\\ & +b_{m}\varepsilon\int_{z-\varphi_{m}(t)}^{z+\varphi_{m}(t)}V_{1}(y)(\varphi^{2}_{m}(t)-(y-z)^{2})^{-\gamma}dy\\ & +c_{m}\int_{0}^{t}\int_{z-\varphi_{m}(t)+\varphi_{m}(b)}^{z+\varphi_{m}(t)-\varphi_{m}(b)} \int_{\mathbb{R}^{n-1}}|u_{t}(b, y, w)|^{q}dwE(t, z;b, y;m)dydb. \end{aligned} \end{equation} (3.5)

    Here, we only present the proof of lower bound estimate for U(t, z) . The lower bound estimate for V(t, z) can be obtained in an analogous way.

    From the fact \varphi_{m}(t)-y+z\leq2\varphi_{m}(t) for y\in [z-\varphi_{m}(t), z+\varphi_{m}(t)] , we have

    \begin{equation} \begin{aligned} U(t, z)&\geq2^{\gamma-1}a_{m}\varepsilon\varphi^{-\gamma}_{m}(t)\int_{z-\varphi_{m}(t)}^{z+\varphi_{m}(t)}U_{0}(y)(\varphi_{m}(t)-z+y)^{\gamma-1}dy\\ & +2^{-\gamma}b_{m}\varepsilon\varphi^{-\gamma}_{m}(t)\int_{z-\varphi_{m}(t)}^{z+\varphi_{m}(t)}U_{1}(y)(\varphi_{m}(t)-z+y)^{-\gamma}dy\\ & +c_{m}\int_{0}^{t}\int_{z-\varphi_{m}(t)+\varphi_{m}(b)}^{z+\varphi_{m}(t)-\varphi_{m}(b)} \int_{\mathbb{R}^{n-1}}|\partial_{t} v(b, y, w)|^{p}dwE(t, z;b, y;m)dydb\\ & = \varepsilon I_{4}+I_{5}. \end{aligned} \end{equation} (3.6)

    We derive lower bound estimates for I_{4} and I_{5} on the characteristic line \varphi_{m}(t)-z = R for z\geq R . We note [-R, R]\subset[z-\varphi_{m}(t), z+\varphi_{m}(t)] . It holds that

    \begin{equation} \begin{aligned} I_{4}(t, z)& = \varphi^{-\gamma}_{m}(t)\int_{z-\varphi_{m}(t)}^{z+\varphi_{m}(t)}2^{\gamma-1}a_{m}U_{0}(y)(\varphi_{m}(t)-z+y)^{\gamma-1} +2^{-\gamma}b_{m}U_{1}(y)(\varphi_{m}(t)-z+y)^{-\gamma}dy\\ &\geq\varphi^{-\gamma}_{m}(t)\int_{-R}^{R}2^{2(\gamma-1)}a_{m}U_{0}(y)R^{\gamma-1} +2^{-2\gamma}b_{m}U_{1}(y)R^{-\gamma}dy\\ &\geq K(z+R)^{-\gamma}\|u_{0}+u_{1}\|_{L^{1}(\mathbb{R}^{n})}, \end{aligned} \end{equation} (3.7)

    where K = \min\{2^{2(\gamma-1)}a_{m}R^{\gamma-1}, 2^{-2\gamma}b_{m}R^{-\gamma}\}.

    Using the Hölder inequality, we achieve

    \begin{equation} \begin{aligned} |\partial_{t}V(b, y)|& = |\int_{\mathbb{R}^{n-1}}\partial_{t} v(b, y, w)dw|\\ & \leq (\int_{\mathbb{R}^{n-1}}|\partial_{t} v(b, y, w)|^{p}dw)^{\frac{1}{p}}(\int_{|w|\leq((R+\varphi_{m}(b))^{2}-y^{2})^{\frac{1}{2}}}1dw)^{\frac{p-1}{p}}\\ & \leq ((R+\varphi_{m}(b))^{2}-y^{2})^{\frac{n-1}{2}\cdot\frac{p-1}{p}}(\int_{\mathbb{R}^{n-1}}|\partial_{t} v(b, y, w)|^{p}dw)^{\frac{1}{p}}, \nonumber\\ \end{aligned} \end{equation}

    which implies

    \int_{\mathbb{R}^{n-1}}|\partial_{t} v(b, y, w)|^{p}dw\geq|\partial_{t}V(b, y)|^{p}((R+\varphi_{m}(b))^{2}-y^{2})^{-\frac{n-1}{2}(p-1)}.

    It follows that

    \begin{equation} \begin{aligned} I_{5}& = c_{m}\int_{0}^{t}\int_{z-\varphi_{m}(t)+\varphi_{m}(b)}^{z+\varphi_{m}(t)-\varphi_{m}(b)} \int_{\mathbb{R}^{n-1}}|\partial_{t} v(b, y, w)|^{p}dwE(t, z;b, y;m)dydb\\& \geq c_{m}\big(\int_{z-\varphi_{m}(t)}^{z}\int_{0}^{\varphi^{-1}_{m}(\varphi_{m}(t)-(z-y))} ((R+\varphi_{m}(b))^{2}-y^{2})^{-\frac{n-1}{2}(p-1)}|\partial_{t}V(b, y)|^{p} E(t, z;b, y;m)dbdy\\& +\int_{z}^{z+\varphi_{m}(t)}\int_{0}^{\varphi^{-1}_{m}(\varphi_{m}(t)-(y-z))} ((R+\varphi_{m}(b))^{2}-y^{2})^{-\frac{n-1}{2}(p-1)}|\partial_{t}V(b, y)|^{p} E(t, z;b, y;m)dbdy\big)\\& \geq c_{m}\int_{z-\varphi_{m}(t)}^{z}\int_{0}^{\varphi^{-1}_{m}(\varphi_{m}(t)-(z-y))} ((R+\varphi_{m}(b))^{2}-y^{2})^{-\frac{n-1}{2}(p-1)} |\partial_{t}V(b, y)|^{p} E(t, z;b, y;m)dbdy.\nonumber\\ \end{aligned} \end{equation}

    By shrinking the domain of integration, we obtain

    \begin{equation} \begin{aligned} I_{5}&\geq c_{m} \int_{R}^{z}\int_{\varphi_{m}^{-1}(y-R)}^{\varphi_{m}^{-1}(y+R)}((R+\varphi_{m}(b))^{2}-y^{2})^{-\frac{n-1}{2}(p-1)} |\partial_{t}V(b, y)|^{p}E(t, z;b, y;m)dbdy.\nonumber\\ \end{aligned} \end{equation}

    Since

    \begin{equation} \begin{aligned} (R+\varphi_{m}(b))^{2}-y^{2}& = (R+\varphi_{m}(b)+y)(R+\varphi_{m}(b)-y) \leq 4R(y+R), \nonumber \end{aligned} \end{equation}

    we have

    \begin{equation} \begin{aligned} I_{5}&\geq c_{m} \int_{R}^{z}\int_{\varphi_{m}^{-1}(y-R)}^{\varphi_{m}^{-1}(y+R)}(4R(y+R))^{-\frac{n-1}{2}(p-1)} |\partial_{t}V(b, y)|^{p}E(t, z;b, y;m)dbdy\\& = c_{m}(4R)^{-\frac{n-1}{2}(p-1)}\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(p-1)} \int_{\varphi_{m}^{-1}(y-R)}^{\varphi_{m}^{-1}(y+R)} |\partial_{t}V(b, y)|^{p} E(t, z;b, y;m)dbdy.\nonumber\\ \end{aligned} \end{equation}

    Employing the fact F(a, a; c;z)\geq1 for a\in \mathbb{R}, c > 0 and z\in [0, 1) (more details can be found in [34]), we derive

    \begin{equation} \begin{aligned} E(t, z;b, y;m) \geq [(z+R+\varphi_{m}(b))^{2}-(z-y)^{2}]^{-\gamma} \geq4^{-\gamma}(z+R)^{-\gamma}(y+R)^{-\gamma}.\nonumber \end{aligned} \end{equation}

    Therefore, we have

    \begin{equation} \begin{aligned} I_{5}&\geq4^{-\gamma}c_{m}(z+R)^{-\gamma}(4R)^{-\frac{n-1}{2}(p-1)} \times \int_{R}^{z}(y+R)^{-\frac{n-1}{2}(p-1)-\gamma} \int_{\varphi_{m}^{-1}(y-R)}^{\varphi_{m}^{-1}(y+R)} |\partial_{t}V(b, y)|^{p}dbdy.\nonumber \end{aligned} \end{equation}

    It follows that

    \begin{equation} \begin{aligned} &\ \ \ |\int_{\varphi_{m}^{-1}(y-R)}^{\varphi_{m}^{-1}(y+R)}\partial_{t}V(b, y)db|^{p} \\& \leq (\varphi_{m}^{-1}(y+R)-\varphi_{m}^{-1}(y-R))^{p-1}\int_{\varphi_{m}^{-1}(y-R)}^{\varphi_{m}^{-1}(y+R)} |\partial_{t}V(b, y)|^{p}db \\& \leq (2R(m+1))^{\frac{p-1}{m+1}}\int_{\varphi_{m}^{-1}(y-R)}^{\varphi_{m}^{-1}(y+R)} |\partial_{t}V(b, y)|^{p}db. \nonumber\\ \end{aligned} \end{equation}

    Making use of V(\varphi_{m}^{-1}(y-R), y) = 0 and the Jensen inequality, we deduce

    \begin{equation} \begin{aligned} I_{5}&\geq4^{-\gamma}c_{m}(z+R)^{-\gamma}(4R)^{-\frac{n-1}{2}(p-1)} \int_{R}^{z}(y+R)^{-\frac{n-1}{2}(p-1)-\gamma} \int_{\varphi_{m}^{-1}(y-R)}^{\varphi_{m}^{-1}(y+R)} |\partial_{t}V(b, y)|^{p}dbdy \\&\geq C_{1}(z+R)^{-\gamma}\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(p-1)-\gamma} |V(\varphi_{m}^{-1}(y+R), y)|^{p}dy, \end{aligned} \end{equation} (3.8)

    where C_{1} = 4^{-\gamma}c_{m}(4R)^{-\frac{n-1}{2}(p-1)}(2R(m+1))^{-\frac{p-1}{m+1}}.

    Combining (3.6)–(3.8), we have

    \begin{equation} \begin{aligned} (z+R)^{\gamma}U(t, z)&\geq \varepsilon K\|u_{0}+u_{1}\|_{L^{1}(\mathbb{R}^{n})} +C_{1}\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(p-1)-\gamma} |V(\varphi_{m}^{-1}(y+R), y)|^{p}dy.\nonumber\\ \end{aligned} \end{equation}

    Setting \widetilde{U}(z) = (z+R)^{\gamma}U(t, z) and \widetilde{V}(z) = (z+R)^{\gamma}V(t, z) , we deduce

    \begin{equation} \begin{aligned} \widetilde{U}(z)&\geq\varepsilon K\|u_{0}+u_{1}\|_{L^{1}(\mathbb{R}^{n})}+C_{1}\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(p-1)-\gamma(p+1)} |\widetilde{V}(y)|^{p}dy \\& = \varepsilon M+C_{1}\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(p-1)-\gamma(p+1)} |\widetilde{V}(y)|^{p}dy, \end{aligned} \end{equation} (3.9)

    where M = K\|u_{0}+u_{1}\|_{L^{1}(\mathbb{R}^{n})}. Similarly, we obtain

    \begin{equation} \begin{aligned} \widetilde{V}(z)\geq\varepsilon N+C_{2}\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(q-1)-\gamma(q+1)} |\widetilde{U}(y)|^{q}dy, \end{aligned} \end{equation} (3.10)

    where N = K\|v_{0}+v_{1}\|_{L^{1}(\mathbb{R}^{n})} and C_{2} = 4^{-\gamma}c_{m}(4R)^{-\frac{n-1}{2}(q-1)}(2R(m+1))^{-\frac{q-1}{m+1}}.

    We are in the position to apply the iteration argument. In the sub-critical case, we assume

    \begin{eqnarray} \begin{aligned} \widetilde{U}(z)\geq \theta_{j}(R+z)^{-\alpha_{j}}(z-R)^{\beta_{j}}, z\geq R, \end{aligned} \end{eqnarray} (3.11)

    where \{\alpha_{j}\}_{j\in \mathbb{N}} , \{\beta_{j}\}_{j\in \mathbb{N}} and \{\theta_{j}\}_{j\in \mathbb{N}} are sequences of non-negative real numbers. We set \alpha_{0} = 0, \beta_{0} = 0 , \theta_{0} = M\varepsilon . From (3.9), we deduce that (3.11) holds with j = 0 . Plugging (3.11) into (3.10) yields

    \begin{eqnarray} \begin{aligned} \widetilde{V}(z)&\geq C_{2}\int_{R}^{z}(R+y)^{-\frac{n-1}{2}(q-1)-\gamma(q+1)-\alpha_{j}q}\theta_{j}^{q}(y-R)^{\beta_{j}q}dy \\&\geq \frac{C_{2}\theta_{j}^{q}}{\beta_{j}q+1}(R+z)^{-\frac{n-1}{2}(q-1)-\gamma(q+1)-\alpha_{j}q}(z-R)^{\beta_{j}q+1}. \end{aligned} \end{eqnarray} (3.12)

    Substituting (3.12) into (3.9), we have

    \begin{eqnarray} \begin{aligned} \widetilde{U}(z)&\geq C_{1}\int_{R}^{z}(R+y)^{-\frac{n-1}{2}(p-1)-\gamma(p+1)}|\widetilde{V}(y)|^{p}dy \\&\geq C_{1}(\frac{C_{2}\theta_{j}^{q}}{\beta_{j}q+1})^{p}\int_{R}^{z}(R+y)^{-\frac{n-1}{2}(pq-1)-\gamma(pq+2p+1)-pq\alpha_{j}} (y-R)^{\beta_{j}pq+p}dy \\&\geq C_{1}(\frac{C_{2}\theta_{j}^{q}}{\beta_{j}q+1})^{p}\frac{1}{\beta_{j}pq+p+1} (R+z)^{-\frac{n-1}{2}(pq-1)-\gamma(pq+2p+1)-pq\alpha_{j}}(z-R)^{\beta_{j}pq+p+1}. \end{aligned} \end{eqnarray} (3.13)

    Let

    \begin{equation} \begin{aligned} &\alpha_{j+1} = \frac{n-1}{2}(pq-1)+\gamma(pq+2p+1)+pq\alpha_{j}, \\& \beta_{j+1} = \beta_{j}pq+p+1, \\&\theta_{j+1} = C_{1}(\frac{C_{2}\theta_{j}^{q}}{\beta_{j}q+1})^{p}\frac{1}{\beta_{j}pq+p+1}. \end{aligned} \end{equation} (3.14)

    It is deduced from (3.14) that

    \begin{equation} \begin{aligned} \alpha_{j} = A\frac{(pq)^{j}-1}{pq-1}, \quad \beta_{j} = B\frac{(pq)^{j}-1}{pq-1}, \end{aligned} \end{equation} (3.15)

    where A = \frac{n-1}{2}(pq-1)+\gamma(pq+2p+1), B = p+1. From \beta_{j}\leq B\frac{(pq)^{j}}{pq-1} , we deduce

    \begin{equation} \begin{aligned} \theta_{j}& = C_{1}(\frac{C_{2}\theta_{j-1}^{q}}{\beta_{j-1}q+1})^{p}\frac{1}{\beta_{j-1}pq+p+1} \geq \widetilde{\theta}(pq)^{-(p+1)j}\theta_{j-1}^{pq}, \end{aligned} \end{equation} (3.16)

    where \widetilde{\theta} = C_{1}(C_{2})^{p}(\frac{B}{pq-1})^{-(p+1)}. From (3.16), we have

    \begin{equation} \begin{aligned} \log \theta_{j}&\geq pq\log \theta_{j-1}-j\log(pq)^{p+1}+\log\widetilde{\theta} \\&\geq (pq)^{j}(\log \theta_{0}-\frac{pq}{(pq-1)^{2}}\log(pq)^{p+1}+\frac{\log\widetilde{\theta}}{pq-1}) \\& +(j+1)\frac{\log(pq)^{p+1}}{pq-1}+\frac{\log(pq)^{p+1}}{(pq-1)^{2}}-\frac{\log\widetilde{\theta}}{pq-1}. \nonumber\\ \end{aligned} \end{equation}

    Choosing j_{0} = \max\{0, \frac{\log\widetilde{\theta}}{\log(pq)^{p+1}}-\frac{pq}{pq-1}\}, we derive

    \begin{equation} \begin{aligned} \log \theta_{j}\geq(pq)^{j}\log (\hat{\theta}\varepsilon) \end{aligned} \end{equation} (3.17)

    for j > j_{0} , where \hat{\theta} = M(pq)^{-\frac{pq(p+1)}{(pq-1)^{2}}}\;\;\widetilde{\theta}^{\frac{1}{pq-1}}. Combining (3.11), (3.15) with (3.17), we have

    \begin{equation} \begin{aligned} \widetilde{U}(z)&\geq \theta_{j}(R+z)^{-\alpha_{j}}(z-R)^{\beta_{j}} \\&\geq \exp\big((pq)^{j}[\log (\hat{\theta}\varepsilon)-\frac{A}{pq-1}\log(R+z)+\frac{B}{pq-1}\log(z-R)]\big)\\& \times(z+R)^{\frac{A}{pq-1}}(z-R)^{-\frac{B}{pq-1}}. \end{aligned} \end{equation} (3.18)

    We deduce 2(z-R)\geq R+z when z\geq3R . Therefore, we obtain

    \begin{equation} \begin{aligned} \widetilde{U}(z)&\geq \exp\big((pq)^{j}[\log (\hat{\theta}\varepsilon)+\log(R+z)^{-\frac{A}{pq-1}}+\log(\frac{R+z}{2})^{\frac{B}{pq-1}}]\big)\\& \times(z+R)^{\frac{A}{pq-1}}(z-R)^{-\frac{B}{pq-1}} \\& = \exp((pq)^{j}\log[\hat{\theta}2^{-\frac{B}{pq-1}}\varepsilon(R+z)^{\frac{B-A}{pq-1}}])(z+R)^{\frac{A}{pq-1}}(z-R)^{-\frac{B}{pq-1}}. \end{aligned} \end{equation} (3.19)

    We choose \varepsilon_{1} = \varepsilon_{1}(n, m, p, q, R, u_{0}, u_{1}, v_{0}, v_{1}) such that (\hat{\theta}2^{-\frac{B}{pq-1}}\varepsilon_{1})^{-\Lambda_{GG}^{-1}}\geq4R. For all \varepsilon\in(0, \varepsilon_{1}] and \phi_{m}(t) > (\hat{\theta}2^{-\frac{B}{pq-1}}\varepsilon)^{-\Lambda_{GG}^{-1}}, we have

    \phi_{m}(t)\geq4R, \, \, \, \hat{\theta}2^{-\frac{B}{pq-1}}\varepsilon \phi^{\Lambda_{GG}}_{m}(t) > 1.

    Sending j\rightarrow \infty in (3.19), we deduce that \widetilde{U}(z) blows up in finite time. Therefore, we conclude

    T(\varepsilon)\leq C\varepsilon^{-\frac{1}{(m+1)\Lambda_{GG}\;\;(n, m, p, q)}}.

    Similarly, for \Lambda_{GG}(n, m, q, p) > 0, we have

    T(\varepsilon)\leq C\varepsilon^{-\frac{1}{(m+1)\Lambda_{GG}\;\;(n, m, q, p)}}.

    In summary, we obtain the upper bound lifespan estimate

    T(\varepsilon)\leq C\varepsilon^{-\widetilde{\Lambda}_{GG}^{-1}\;\;(n, m, p, q)}

    for \widetilde{\Lambda}_{GG}(n, m, p, q) > 0.

    Let \max\{\widetilde{\Lambda}_{GG}(n, m, p, q), \widetilde{\Lambda}_{GG}(n, m, q, p)\} = 0. Without loss of generality, we set \widetilde{\Lambda}_{GG}(n, m, p, q) = 0 > \widetilde{\Lambda}_{GG}(n, m, q, p). We assume

    \begin{equation} \begin{aligned} \widetilde{U}(z)\geq D_{j}(\log(\frac{z}{l_{j}R}))^{E_{j}}, \ \ \text{for} \ \ z\geq l_{j}R, \end{aligned} \end{equation} (3.20)

    where l_{j} = 2-2^{-(j+1)} , \{D_{j}\}_{j\in \mathbb{N}} and \{E_{j}\}_{j\in \mathbb{N}} are suitable sequences of non-negative real numbers. From (3.9) and (3.20), we deduce D_{0} = M\varepsilon and E_{0} = 0 when j = 0 . For l_{j}\geq l_{0} = \frac{3}{2}, we have z\geq\frac{3}{5}(R+z). According to (3.10), we derive

    \begin{equation} \begin{aligned} \widetilde{V}(z)&\geq C_{2}\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(q-1)-\gamma(q+1)} |\widetilde{U}(y)|^{q}dy\\& \geq C_{2}D_{j}^{q}\int_{l_{j}R}^{z}(y+R)^{-\frac{n-1}{2}(q-1)-\gamma(q+1)} (\log(\frac{y}{l_{j}R}))^{qE_{j}}dy\\& \geq \frac{3}{5}C_{2}D_{j}^{q}(z+R)^{-\frac{n-1}{2}(q-1)-\gamma(q+1)+1}(\log(\frac{z}{l_{j+1}R}))^{qE_{j}}(1-\frac{l_{j}}{l_{j+1}}). \end{aligned} \end{equation} (3.21)

    Plugging (3.21) into (3.9), we conclude

    \begin{equation} \begin{aligned} \widetilde{U}(z)&\geq C_{1}\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(p-1)-\gamma(p+1)} |\widetilde{V}(y)|^{p}dy\\& \geq C_{1}(\frac{3}{5}C_{2})^{p}D_{j}^{pq}(1-\frac{l_{j}}{l_{j+1}})^{p}\\& \times\int_{R}^{z}(y+R)^{-\frac{n-1}{2}(pq-1)-\gamma(pq+2p+1)+p}(\log(\frac{y}{l_{j+1}R}))^{pqE_{j}}dy\\& \geq C_{1}(\frac{3}{5})^{p+1}(C_{2})^{p}D_{j}^{pq}(1-\frac{l_{j}}{l_{j+1}})^{p}(pqE_{j}+1)^{-1} (\log(\frac{z}{l_{j+1}R}))^{pqE_{j}+1}, \nonumber\\ \end{aligned} \end{equation}

    where we have used the fact \widetilde{\Lambda}_{GG}(n, m, p, q) = 0 and (R+y)^{-1}\geq\frac{3}{5}y^{-1}. When 1-\frac{l_{j}}{l_{j+1}}\geq 2^{-(j+3)}, we obtain

    \begin{equation} \begin{aligned} \widetilde{U}(z)\geq C_{1}(\frac{3}{5})^{p+1}(C_{2})^{p}2^{-p(j+3)}D_{j}^{pq}(pqE_{j}+1)^{-1} (\log(\frac{z}{l_{j+1}R}))^{pqE_{j}+1}. \end{aligned} \end{equation} (3.22)

    Let

    \begin{equation} \begin{aligned} &E_{j+1} = pqE_{j}+1, \\ &D_{j+1} = C_{1}(\frac{3}{5})^{p+1}(C_{2})^{p}2^{-p(j+3)}D_{j}^{pq}(pqE_{j}+1)^{-1}. \nonumber \end{aligned} \end{equation}

    Direct computation implies

    \begin{equation} \begin{aligned} E_{j} = \frac{(pq)^{j}-1}{pq-1}. \end{aligned} \end{equation} (3.23)

    Taking advantage of E_{j}\leq\frac{(pq)^{j}}{pq-1}, we deduce

    \begin{equation} \begin{aligned} D_{j}& = C_{1}(\frac{3}{5})^{p+1}(C_{2})^{p}2^{-p(j+2)}D_{j-1}^{pq}(pqE_{j-1}+1)^{-1} \geq \widetilde{D} 2^{-pj}D_{j-1}^{pq}(pq)^{-j}, \end{aligned} \end{equation} (3.24)

    where \widetilde{D} = (pq-1) C_{1}(\frac{3}{5})^{p+1}(C_{2})^{p}2^{-2p}. From (3.24), we derive

    \begin{equation} \begin{aligned} \log D_{j}&\geq\log \widetilde{D}-j\log(2^{p}pq)+pq\log D_{j-1}\\& \geq (pq)^{j}(\log D_{0}-\frac{pq}{(pq-1)^{2}}\log(2^{p}pq)+\frac{\log\widetilde{D}}{pq-1})\\& +\frac{j+1}{pq-1}\log(2^{p}pq)+\frac{\log(2^{p}pq)}{(pq-1)^{2}} -\frac{\log\widetilde{D}}{pq-1}.\nonumber\\ \end{aligned} \end{equation}

    Let j_{1} = \max\{0, \frac{\log\widetilde{D}}{\log(2^{p}pq)}-\frac{pq}{pq-1}\}. For j > j_{1} , we acquire

    \begin{equation} \begin{aligned} \log D_{j}&\geq(pq)^{j}(\log D_{0}-\frac{pq}{(pq-1)^{2}}\log(2^{p}pq)+\frac{\log\widetilde{D}}{pq-1}) = (pq)^{j}\log(\hat{D}\varepsilon), \end{aligned} \end{equation} (3.25)

    where \hat{D} = M(2^{p}pq)^{-\frac{2}{(pq-1)^{2}}}\widetilde{D}^{\frac{1}{pq-1}}.

    Applying (3.20), (3.23) and (3.25), for j > j_{1}, z\geq l_{j}R , we deduce

    \begin{equation} \begin{aligned} \widetilde{U}(z)&\geq \exp((pq)^{j}\log(\hat{D}\varepsilon))(\log(\frac{z}{2R}))^{\frac{(pq)^{j}-1}{pq-1}}\\& = \exp\Big((pq)^{j}\log\big(\hat{D}\varepsilon\log(\frac{z}{2R})^{\frac{1}{pq-1}}\big)\Big)(\log\frac{z}{2R})^{-\frac{1}{pq-1}}. \nonumber\\ \end{aligned} \end{equation}

    We choose \varepsilon_{2} = \varepsilon_{2}(n, m, p, q, R, u_{0}, u_{1}, v_{0}, v_{1}) such that \exp((\hat{D}\varepsilon_{2})^{-(pq-1)})\geq1. For all \varepsilon\in(0, \varepsilon_{2}], z > 2R\exp((\hat{D}\varepsilon)^{-(pq-1)}), we have \hat{D}\varepsilon(\log\frac{z}{2R})^{\frac{1}{pq-1}} > 1. Sending j\rightarrow \infty, we have \widetilde{U}(z)\rightarrow \infty. Therefore, we arrive at

    z\leq\exp(C\varepsilon^{-(pq-1)}).

    For \phi_{m}(t) = z+R < 2z, we obtain the lifespan estimate

    T(\varepsilon)\leq\exp(C\varepsilon^{-(pq-1)}).

    Similarly, we acquire

    T(\varepsilon)\leq\exp(C\varepsilon^{-(pq-1)})

    when \widetilde{\Lambda}_{GG}(n, m, q, p) = 0 > \widetilde{\Lambda}_{GG}(n, m, p, q) .

    For the case \widetilde{\Lambda}_{GG}(n, m, p, q) = \widetilde{\Lambda}_{GG}(n, m, q, p) = 0 when p = q, following a similar deduction, we prove

    \begin{equation} \begin{aligned} \widetilde{U}(z)\geq F_{j}(\log\frac{z}{R})^{H_{j}}, z\geq R. \end{aligned} \end{equation} (3.26)

    Employing the fact -\frac{n-1}{2}(p-1)-\gamma(p+1) = -\frac{n-1}{2}(q-1)-\gamma(q+1) = -1 when \widetilde{\Lambda}_{GG}(n, m, p, q) = \widetilde{\Lambda}_{GG}(n, m, q, p) = 0 , we deduce

    H_{j} = H_{j-1}p^{2}+p+1 = \frac{p^{2j}-1}{p-1},
    \begin{equation} \begin{aligned} F_{j}& = 2^{-(p+1)}C_{1}C_{2}^{p}(H_{j-1}p+1)^{-p}(H_{j-1}p^{2}+p+1)^{-1}\\& \geq2^{-(p+1)}C_{1}C_{2}^{p}H_{j}^{-(p+1)}F_{j-1}^{p^{2}} \geq\widetilde{F}p^{-2(p+1)j}F_{j-1}^{p^{2}}, \nonumber\\ \end{aligned} \end{equation}

    where \widetilde{F} = 2^{-(p+1)}C_{1}C_{2}^{p}(p-1)^{p+1}.

    Direct calculation shows

    \begin{equation} \begin{aligned} \log F_{j}&\geq\log\widetilde{F}-2(p+1)j\log p+p^{2}\log F_{j-1}\\& \geq p^{2j}(\log F_{0}-\frac{2p^{2}(p+1)}{(p^{2}-1)^{2}}\log p+\frac{\log\widetilde{F}}{p^{2}-1}) \\& +\frac{2(p+1)\log p}{p^{2}-1}(j+1)-\frac{1}{p^{2}-1}\log\widetilde{F}+\frac{2(p+1)\log p}{(p^{2}-1)^{2}}. \nonumber\\ \end{aligned} \end{equation}

    Let j_{2} = \max\{0, \frac{\log\widetilde{F} }{2(p+1)\log p}-\frac{p^{2}}{p^{2}-1}\}. For j > j_{2}, we obtain

    \begin{equation} \begin{aligned} \log F_{j}&\geq p^{2j}(\log F_{0}-\frac{2p^{2}(p+1)}{(p^{2}-1)^{2}}\log p+\frac{\log\widetilde{F}}{p^{2}-1}) = p^{2j}\log(\hat{F}\varepsilon), \nonumber\\ \end{aligned} \end{equation}

    where \hat{F} = Mp^{-\frac{2p^{2}(p+1)}{(p^{2}-1)^{2}}}\widetilde{F}^{\frac{1}{p^{2}-1}}. Therefore, we acquire

    \begin{equation} \begin{aligned} \widetilde{U}(z)&\geq F_{j}(\log\frac{z}{R})^{H_{j}} \geq\exp[p^{2j}\log(\hat{F}\varepsilon(\log\frac{z}{R})^{\frac{1}{p-1}})](\log\frac{z}{R})^{\frac{1}{p-1}}. \nonumber\\ \end{aligned} \end{equation}

    We choose small positive constant \varepsilon_{3} = \varepsilon_{3}(n, m, p, q, R, u_{0}, u_{1}, v_{0}, v_{1}) such that

    \exp[(\hat{F}\varepsilon_{3})^{-(p-1)}]\geq1.

    Then, for all \varepsilon\in(0, \varepsilon_{3}], z > R\exp[(\hat{F}\varepsilon)^{-(p-1)}], we have

    z\geq R, \ \ \ \hat{F}\varepsilon(\log\frac{z}{R})^{\frac{1}{p-1}} > 1.

    Therefore, \widetilde{U}(z) blows up in finite time when j\rightarrow \infty . It follows that

    z\leq R\exp[(\hat{F}\varepsilon)^{-(p-1)}].

    Bearing in mind \phi_{m}(t) = z+R\leq2z, we have

    \begin{eqnarray} \begin{aligned} T(\varepsilon)\leq\exp(C\varepsilon^{-(p-1)}). \end{aligned} \end{eqnarray} (3.27)

    Analogously, we have the same lifespan estimate for \widetilde{V}(z) in (3.27).

    Choosing \varepsilon_{4} = \min\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\}, we conclude the lifespan estimates in (1.8). This completes the proof of Theorem 1.2.

    In this paper, blow-up results of solutions to coupled system of the Tricomi equations with derivative type nonlinearities are studied. Upper bound lifespan estimates of solutions to the Cauchy problem with small initial values are derived. We illustrate the key results by using the test function method (see Theorem 1.1) and integral representation formula together with iteration argument (see Theorem 1.2), respectively. Our main new contribution is that lifespan estimates of solutions to the problem in the sub-critical and critical cases are connected with the Glassey conjecture. To the best of our knowledge, the results in Theorems 1.1 and 1.2 are new. In addition, we present a comparison for lifespan estimates in Theorems 1.1 and 1.2 in a special case (see Remark 1.1).

    The author Sen Ming would like to express his sincere thank to Professor Yi Zhou for his guidance and encouragements during the postdoctoral study in Fudan University. The author Sen Ming also would like to express his sincere thank to Professors Han Yang and Ning-An Lai for their helpful suggestions and discussions. The project is supported by Fundamental Research Program of Shanxi Province (No. 20210302123021, No. 20210302123045, No. 20210302123182), Innovative Research Team of North University of China (No. TD201901), Program for the Innovative Talents of Higher Education Institutions of Shanxi Province, Science and Technology Innovation Project of Higher Education Institutions in Shanxi (No. 2020L0277) and Science Foundation of North University of China (No. XJJ201922).

    This work does not have any conflict of interest.



    [1] W. H. Chen, S. Lucente, A. Palmieri, Non-existence of global solutions for generalized Tricomi equations with combined nonlinearity, Nonlinear Anal.: Real Worl. Appl., 61 (2021), 103354. https://doi.org/10.1016/j.nonrwa.2021.103354 doi: 10.1016/j.nonrwa.2021.103354
    [2] V. Georgiev, H. Lindblad, C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 119 (1997), 1291–1319. https://doi.org/10.1353/ajm.1997.0038 doi: 10.1353/ajm.1997.0038
    [3] R. T. Glassey, Math review to "Global behavior of solutions to nonlinear wave equations in three space dimensions" of sideris, Comm. Part. Differ. Equ., 1983.
    [4] R. T. Glassey, Existence in the large for \Box u = F(u) in two space dimensions, Math. Zeit., 178 (1981), 233–261. https://doi.org/10.1007/BF01262042 doi: 10.1007/BF01262042
    [5] M. Hamouda, M. A. Hamza, Blow-up for wave equation with the scale invariant damping and combined nonlinearities, Math. Meth. Appl. Scie., 44 (2021), 1127–1136. https://doi.org/10.1002/mma.6817 doi: 10.1002/mma.6817
    [6] M. Hamouda, M. A. Hamza, Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities, arXiv, 2021. https://doi.org/10.48550/arXiv.2011.04895 doi: 10.48550/arXiv.2011.04895
    [7] W. Han, Concerning the Strauss Conjecture for the subcritical and critical cases on the exterior domain in two space dimensions, Nonlinear Anal., 84 (2013), 136–145. https://doi.org/10.1016/j.na.2013.02.013 doi: 10.1016/j.na.2013.02.013
    [8] W. Han, Y. Zhou, Blow-up for some semilinear wave equations in multi-space dimensions, Commun. Part. Differ. Equ., 39 (2014), 651–665. https://doi.org/10.1080/03605302.2013.863916 doi: 10.1080/03605302.2013.863916
    [9] J. H. Hao, B. P. Rao, Influence of the hidden regularity on the stability of partially damped systems of wave equations, J. Math. Pure Appl., 143 (2020), 257–286. https://doi.org/10.1016/j.matpur.2020.09.004 doi: 10.1016/j.matpur.2020.09.004
    [10] M. F. B. Hassen, M. Hamouda, M. A. Hamza, H. K. Teka, Nonexistence result for the generalized Tricomi equation with the scale-invariant damping, mass term and time derivative nonlinearity, Asymptotic Anal., 2021.
    [11] D. Y. He, I. Witt, H. C. Yin, On the global solution problem for semilinear generalized Tricomi equations, Ⅰ, Calc. Vari., 56 (2017), 21. https://doi.org/10.1007/s00526-017-1125-9 doi: 10.1007/s00526-017-1125-9
    [12] D. Y. He, I. Witt, H. C. Yin, On semilinear Tricomi equations with critical exponents or in two space dimensions, J. Differ. Equ., 263 (2017), 8102–8137. https://doi.org/10.1016/j.jde.2017.08.033 doi: 10.1016/j.jde.2017.08.033
    [13] D. Y. He, I. Witt, H. C. Yin, On the strauss index of semilinear Tricomi equation, Commun. Pure Appl. Anal., 19 (2020), 4817–4838. https://doi.org/10.3934/cpaa.2020213 doi: 10.3934/cpaa.2020213
    [14] M. Ikeda, J. Y. Lin, Z. H. Tu, Small data blow-up for the weakly coupled system of the generalized Tricomi equations with multiple propagation speeds, J. Evol. Equ., 21 (2021), 3765–3796. https://doi.org/10.1007/s00028-021-00703-4 doi: 10.1007/s00028-021-00703-4
    [15] M. Ikeda, M. Sobajima, K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differ. Equ., 267 (2019), 5165–5201. https://doi.org/10.1016/j.jde.2019.05.029 doi: 10.1016/j.jde.2019.05.029
    [16] F. John, Blow-up of solutions of nonlinear wave equations in three space dimension, Manuscripta Math., 28 (1979), 235–268. https://doi.org/10.1007/BF01647974 doi: 10.1007/BF01647974
    [17] S. Kitamura, K. Morisawa, H. Takamura, The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension, J. Differ. Equ., 307 (2022), 486–516. https://doi.org/10.1016/j.jde.2021.10.062 doi: 10.1016/j.jde.2021.10.062
    [18] N. A. Lai, H. Takamura, Non-existence of global solutions of wave equations with weak time dependent damping and combined nonlinearity, Nonlinear Anal.: Real Worl. Appl., 45 (2019), 83–96. https://doi.org/10.1016/j.nonrwa.2018.06.008 doi: 10.1016/j.nonrwa.2018.06.008
    [19] N. A. Lai, Z. H. Tu, Strauss exponent for semilinear wave equations with scattering space dependent damping, J. Math. Anal. Appl., 489 (2020), 124189. https://doi.org/10.1016/j.jmaa.2020.124189 doi: 10.1016/j.jmaa.2020.124189
    [20] N. A. Lai, M. Y. Liu, K. Wakasa, C. B. Wang, Lifespan estimates for 2 dimensional semilinear wave equations in asymptotically Euclidean exterior domains, J. Funct. Anal., 281 (2021), 109253. https://doi.org/10.1016/j.jfa.2021.109253 doi: 10.1016/j.jfa.2021.109253
    [21] N. A. Lai, Y. Zhou, Blow-up for initial boundary value problem of critical semilinear wave equation in 2-D, Commun. Pure Appl. Anal., 17 (2018), 1499–1510. https://doi.org/10.3934/cpaa.2018072 doi: 10.3934/cpaa.2018072
    [22] N. A. Lai, N. M. Schiavone, Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture, Math. Z., 2020. https://doi.org/10.1007/s00209-022-03017-4 doi: 10.1007/s00209-022-03017-4
    [23] N. A. Lai, Y. Zhou, Global existence for semilinear wave equation with scalling invariant damping in 3-D, Nonlinear Anal., 210 (2021), 112392. https://doi.org/10.1016/j.na.2021.112392 doi: 10.1016/j.na.2021.112392
    [24] Q. Lei, H. Yang, Global existence and blow-up for semilinear wave equations with variable coefficients, Chin. Anna. Math. Seri. B, 39 (2018), 643–664. https://doi.org/10.1007/s11401-018-0087-3 doi: 10.1007/s11401-018-0087-3
    [25] M. Y. Liu, C. B. Wang, Blow up for small amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds, J. Differ. Equ., 269 (2020), 8573–8596. https://doi.org/10.1016/j.jde.2020.06.032 doi: 10.1016/j.jde.2020.06.032
    [26] M. Y. Liu, C. B. Wang, Global existence for semilinear damped wave equations in relation with the Strauss conjecture, Discrete Cont. Dyn. Syst., 40 (2020), 709–724. https://doi.org/10.3934/dcds.2020058 doi: 10.3934/dcds.2020058
    [27] J. Y. Lin, Z. H. Tu, Lifespan of semilinear generalized Tricomi equation with Strauss type exponent, arXiv, 2019. https://doi.org/10.48550/arXiv.1903.11351 doi: 10.48550/arXiv.1903.11351
    [28] H. Lindblad, C. D. Sogge, Long time existence for small amplitude semilinear wave equations, Amer. J. Math., 118 (1996), 1047–1135. https://doi.org/10.1353/ajm.1996.0042 doi: 10.1353/ajm.1996.0042
    [29] S. Lucente, A. Palmieri, A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type, Mila. J. Math., 89 (2021), 45–57. https://doi.org/10.1007/s00032-021-00326-x doi: 10.1007/s00032-021-00326-x
    [30] S. Ming, H. Yang, X. M. Fan, J. Y. Yao, Blow-up and lifespan estimates of solutions to semilinear Moore-Gibson-Thompson equations, Nonlinear Anal.: Real Worl. Appl., 62 (2021), 103360. https://doi.org/10.1016/j.nonrwa.2021.103360 doi: 10.1016/j.nonrwa.2021.103360
    [31] S. Ming, S. Y. Lai, X. M. Fan, Lifespan estimates of solutions to quasilinear wave equations with scattering damping, J. Math. Anal. Appl., 492 (2020), 124441. https://doi.org/10.1016/j.jmaa.2020.124441 doi: 10.1016/j.jmaa.2020.124441
    [32] S. Ming, H. Yang, X. M. Fan, Blow-up and lifespan estimates of solutions to the weakly coupled system of semilinear Moore-Gibson-Thompson equations, Math. Meth. Appl. Sci., 44 (2021), 10972–10992. https://doi.org/10.1002/mma.7462 doi: 10.1002/mma.7462
    [33] I. T. Nazipov, Solution of the spatial Tricomi problem for a singular mixed-type equation by the method of integral equations, Russ. Math., 55 (2011), 61–76. https://doi.org/10.3103/S1066369X1103008X doi: 10.3103/S1066369X1103008X
    [34] F. W. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST handbook of mathematical functions, New York: Cambridge University Press, 2010.
    [35] A. Palmieri, H. Takamura, Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations of derivative type in the scattering case, Nonlinear Differ. Equ. Appl., 17 (2020), 13. https://doi.org/10.1007/s00009-019-1445-4 doi: 10.1007/s00009-019-1445-4
    [36] A. Palmieri, A note on a conjecture for the critical curve of a weakly coupled system of semilinear wave equations with scale invariant lower order terms, Math. Meth. Appl. Sci., 43 (2020), 6702–6731. https://doi.org/10.1002/mma.6412 doi: 10.1002/mma.6412
    [37] A. Palmieri, H. Takamura, Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms, Nonlinear Differ. Equ. Appl., 27 (2020), 58. https://doi.org/10.1007/s00030-020-00662-8 doi: 10.1007/s00030-020-00662-8
    [38] A. Palmieri, H. Takamura, Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities, Nonlinear Anal., 187 (2019), 467–492. https://doi.org/10.1016/j.na.2019.06.016 doi: 10.1016/j.na.2019.06.016
    [39] A. Palmieri, Z. H. Tu, A blow-up result for a semilinear wave equation with scale invariant damping and mass and nonlinearity of derivative type, Calc. Var., 60 (2021), 72. https://doi.org/10.1007/s00526-021-01948-0 doi: 10.1007/s00526-021-01948-0
    [40] Z. P. Ruan, I. Witt, H. C. Yin, On the existence of low regularity solutions to semilinear generalized Tricomi equations in mixed type domains, J. Differ. Equ., 259 (2015), 7406–7462. https://doi.org/10.1016/j.jde.2015.08.025 doi: 10.1016/j.jde.2015.08.025
    [41] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110–133. https://doi.org/10.1016/0022-1236(81)90063-X doi: 10.1016/0022-1236(81)90063-X
    [42] B. Yordanov, Q. S. Zhang, Finite time blow-up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361–374. https://doi.org/10.1016/j.jfa.2005.03.012 doi: 10.1016/j.jfa.2005.03.012
    [43] D. B. Zha, F. S. Wang, On initial boundary value problems for one dimension semilinear wave equations with null conditions, J. Differ. Equ., 275 (2021), 638–651. https://doi.org/10.1016/j.jde.2020.11.022 doi: 10.1016/j.jde.2020.11.022
    [44] Y. Zhou, W. Han, Lifespan of solutions to critical semilinear wave equations, Commun. Part. Differ. Equ., 39 (2014), 439–451. https://doi.org/10.1080/03605302.2013.863914 doi: 10.1080/03605302.2013.863914
    [45] Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Differ. Equ., 8 (1995), 135–144.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2447) PDF downloads(79) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog