In this paper, we investigate blow-up conditions for the semilinear generalized Tricomi equation with a general nonlinear memory term in $ \mathbb{R}^n $ by using suitable functionals and employing iteration procedures. Particularly, a new combined effect from the relaxation function and the time-dependent coefficient is found.
Citation: Jincheng Shi, Jianye Xia, Wenjing Zhi. Blow-up of energy solutions for the semilinear generalized Tricomi equation with nonlinear memory term[J]. AIMS Mathematics, 2021, 6(10): 10907-10919. doi: 10.3934/math.2021634
In this paper, we investigate blow-up conditions for the semilinear generalized Tricomi equation with a general nonlinear memory term in $ \mathbb{R}^n $ by using suitable functionals and employing iteration procedures. Particularly, a new combined effect from the relaxation function and the time-dependent coefficient is found.
[1] | R. Agemi, Y. Kurokawa, H. Takamura, Critical curve for $p$-$q$ systems of nonlinear wave equations in three space dimensions, J. Differential Equations, 167 (2000), 87–133. doi: 10.1006/jdeq.2000.3766 |
[2] | T. Cazenave, F. Dickstein, F. B. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal., 68 (2008), 862–874. doi: 10.1016/j.na.2006.11.042 |
[3] | W. Chen, Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms, Nonlinear Anal., 202 (2021), 112160. doi: 10.1016/j.na.2020.112160 |
[4] | W. Chen, R. Ikehata, The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case, J. Differential Equations, 292 (2021), 176–219. doi: 10.1016/j.jde.2021.05.011 |
[5] | W. Chen, A. Palmieri, Nonexistence of global solutions for the semilinear Moore-Gibson- Thompson equation in the conservative case, Discrete Contin. Dyn. Syst., 40 (2020), 5513–5540. doi: 10.3934/dcds.2020236 |
[6] | W. Chen, A. Palmieri, Blow-up result for a semilinear wave equation with a nonlinear memory term, In: M. Cicognani, D. Del Santo, A. Parmeggiani, M. Reissig, Eds, Anomalies in Partial Differential Equations, Springer INdAM Series, vol 43. Springer, Cham (2021). |
[7] | W. Chen, S. Lucente, A. Palmieri, A blow-up result for a semilinear generalized Tricomi equation with combined nonlinearity, Nonlinear Anal. Real World Appl., 61 (2021), 103354. doi: 10.1016/j.nonrwa.2021.103354 |
[8] | W. Chen, M. Reissig, Blow-up of solutions to Nakao's problem via an iteration argument, J. Differential Equations, 275 (2021), 733–756. doi: 10.1016/j.jde.2020.11.009 |
[9] | M. D'Abbicco, A wave equation with structural damping and nonlinear memory, Nonlinear Differ. Equ. Appl., 21 (2014), 751–773. doi: 10.1007/s00030-014-0265-2 |
[10] | M. D'Abbicco, The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal., 95 (2014), 130–145. doi: 10.1016/j.na.2013.09.006 |
[11] | M. D'Abbicco, S. Lucente, The beam equation with nonlinear memory, Z. Angew. Math. Phys., 67 (2016), 18. doi: 10.1007/s00033-016-0617-3 |
[12] | D. He, I. Witt, H. Yin, On the global solution problem for semilinear generalized Tricomi equations, Calc. Var., 56 (2017), 21. doi: 10.1007/s00526-017-1125-9 |
[13] | D. He, I. Witt, H. Yin, On semilinear Tricomi equations with critical exponents or in two space dimensions, J. Differential Equations, 263 (2017), 8102–8137. doi: 10.1016/j.jde.2017.08.033 |
[14] | D. He, I. Witt, H. Yin, On semilinear Tricomi equations in one space dimension, Commum. Pure Appl. Anal., 19 (2020), 4817–4838. doi: 10.3934/cpaa.2020213 |
[15] | M. I. keda, J. Lin, Z. Tu, Small data blow-up for the weakly coupled system of the generalized Tricomi equations with multiple propagation speeds, J. Evol. Equ., (2021). doi: 10.1007/s00028-021-00703-4. |
[16] | T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Commun. Pure Appl. Math., 33 (1980), 501–505. doi: 10.1002/cpa.3160330403 |
[17] | N. A. Lai, H. Takamura, Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case, Nonlinear Anal., 168 (2018), 222–237. doi: 10.1016/j.na.2017.12.008 |
[18] | J. Lin, Z. Tu, Lifespan of semilinear generalized Tricomi equation with Strauss type exponent, Preprint (2019). arXiv: 1903.11351v2. |
[19] | S. Lucente, A. Palmieri, A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type, Milan J. Math., 89 (2021), 45–57. doi: 10.1007/s00032-021-00326-x |
[20] | A. Palmieri, H. Takamura, Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities, Nonlinear Anal., 187 (2019), 467–492. doi: 10.1016/j.na.2019.06.016 |
[21] | A. Palmieri, H. Takamura, Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations of derivative type in the scattering case, Mediterr. J. Math., 17 (2020), 20. doi: 10.1007/s00009-019-1462-3 |
[22] | A. Palmieri, H. Takamura, Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms, NoDEA Nonlinear Differential Equations Appl., 27 (2020), 39. doi: 10.1007/s00030-020-00643-x |
[23] | W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110–133. doi: 10.1016/0022-1236(81)90063-X |
[24] | B. T. Yordanov, Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361–374. doi: 10.1016/j.jfa.2005.03.012 |