
In this research, the ˉq-homotopy analysis transform method (ˉq-HATM) is employed to identify fractional-order Whitham–Broer–Kaup equation (WBKE) solutions. The WBKE is extensively employed to examine tsunami waves. With the aid of Caputo and Atangana-Baleanu fractional derivative operators, to obtain the analytical findings of WBKE, the predicted algorithm employs a combination of ˉq-HAM and the Aboodh transform. The fractional operators are applied in this work to show how important they are in generalizing the frameworks connected with kernels of singularity and non-singularity. To demonstrate the applicability of the suggested methodology, various relevant problems are solved. Graphical and tabular results are used to display and assess the findings of the suggested approach. In addition, the findings of our recommended approach were analyzed in relation to existing methods. The projected approach has fewer processing requirements and a better accuracy rate. Ultimately, the obtained results reveal that the improved strategy is both trustworthy and meticulous when it comes to assessing the influence of nonlinear systems of both integer and fractional order.
Citation: Maysaa Al Qurashi, Saima Rashid, Sobia Sultana, Fahd Jarad, Abdullah M. Alsharif. Fractional-order partial differential equations describing propagation of shallow water waves depending on power and Mittag-Leffler memory[J]. AIMS Mathematics, 2022, 7(7): 12587-12619. doi: 10.3934/math.2022697
[1] | Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116 |
[2] | Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406 |
[3] | Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767 |
[4] | Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225 |
[5] | Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820 |
[6] | Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280 |
[7] | Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041 |
[8] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[9] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[10] | Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Dynamical behavior of tumor-immune system with fractal-fractional operator. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489 |
In this research, the ˉq-homotopy analysis transform method (ˉq-HATM) is employed to identify fractional-order Whitham–Broer–Kaup equation (WBKE) solutions. The WBKE is extensively employed to examine tsunami waves. With the aid of Caputo and Atangana-Baleanu fractional derivative operators, to obtain the analytical findings of WBKE, the predicted algorithm employs a combination of ˉq-HAM and the Aboodh transform. The fractional operators are applied in this work to show how important they are in generalizing the frameworks connected with kernels of singularity and non-singularity. To demonstrate the applicability of the suggested methodology, various relevant problems are solved. Graphical and tabular results are used to display and assess the findings of the suggested approach. In addition, the findings of our recommended approach were analyzed in relation to existing methods. The projected approach has fewer processing requirements and a better accuracy rate. Ultimately, the obtained results reveal that the improved strategy is both trustworthy and meticulous when it comes to assessing the influence of nonlinear systems of both integer and fractional order.
Chemical kinetics deals with chemistry experiments and interprets them in terms of a mathematical model. The experiments are done on chemical reactions with the passage of time. The models are differential equations for the rates at which reactants are consumed and products are produced. Chemists are able to understand how chemical reactions take place at the molecular level by combining models with investigation. Molecules react in steps to lead to the overall stoichiometric reaction which is reaction mechanism for collection of reactions. The set of reactions specifies the path (or paths) that reactant molecules take to finally arrive at the product molecules. All species in the reaction appear in at least one step and the sum of the steps gives the overall reaction. The govern the rate of the reaction which leads directly to the mechanism of differential equations [1]. Many processes and phenomena in chemistry generally in sciences can be designated by first-order differential equations. These equations are the most important and most frequently used to describe natural laws. The following examples are discussed: the Bouguer-Lambert-Beer law in spectroscopy, time constants of sensors, chemical reaction kinetics, radioactive decay, relaxation in nuclear magnetic resonance, and the RC constant of an electrode [2]. The induced kinetic differential equations of a reaction network endowed with mass action type kinetics are a system of polynomial differential equations [3]. We review the basic ideas of fractional differential equations and their applications on non-linear biochemical reaction models. We apply this idea to a non-linear model of enzyme inhibitor reactions [4].
The fractional-order, which involves integration and transect differentiation using fractional calculus is helping to better understand the explanation of real-world problems than ordinary integer order, as well as in the modeling of real phenomena due to a characterization of memory and hereditary properties in [5,6]. Riemann Liouville developed the concept of fractional derivative, which is based on power law, [7,8] offers a novel fractional derivative that makes use of the exponential kernel. Several issues include the non-singular kernel fractional derivative, which covers the trigonometric and exponential functions, and [9,10,11,12] illustrates some relevant techniques for epidemic models. This virus's suggested outbreak efficiently catches the timeline for the COVID-19 disease conceptual model [13]. In the literature, many fractional operators are employed to solve real-world issues [14,15].
In this paper, section 1 is introduction and section 2 consists of some basic fractional order derivative which are helpful to solve the epidemiological model. Section 3 and 4 consists of generalized from of the model, uniqueness and stability of the model. Fractal Fractional techniques with exponential decay kernel and Mittag-Leffler kernel respectively in section 5. Results and conclusion are discussed in section 6, and 7 respectively.
Following are the basic definitions [7,8,14,15] used for analysis and solution of the problem.
Definition 1: Sumudu transform for any function ϕ(t) over a set is given as,
A={ϕ(t):there exist Λ,τ1,τ2>0,|ϕ(t)|<Λexp(|t|τi),if t∈(−1)j×[0,∞)} |
is defined by
F(u)=ST[ϕ(t)]=∞∫0exp(−t)ϕ(ut)dt, u∈(−τ1,τ2). |
Definition 2: For a function g(t)∈W12(0,1),b>a and σ∈(0,1], the definition of Atangana–Baleanu derivative in the Caputo sense is given by
ABC0Dσtg(t)=AB(σ)1−σt∫0ddτg(τ)Mσ[−σ1−σ(t−τ)σ]dτ, n−1<σ<n |
where
AB(σ)=1−σ+σΓ(σ). |
By using Sumudu transform (ST) for (1), we obtain
ST[ABC0Dσtg(t)](s)=q(σ)1−σ{σΓ(σ+1)Mσ(−11−σVσ)}×[ST(g(t))−g(0)]. |
Definition 3: For a function g(t)∈W12(0,1),b>a and α1∈(0,1], the definition of Atangana–Baleanu derivative in the Caputo sense is given by
ABC0Dα1tg(t)=AB(α1)1−α1t∫0ddτg(τ)Eα1[−α11−α1(t−τ)α1]dτ, |
where
AB(α1)=1−α1+α1Γ(α1). |
Definition 4: Suppose that g(t) is continuous on an open interval (a,b), then the fractal-fractional integral of g(t) of order α1 having Mittag-Leffler type kernel and given by
FFMJα1,α20,t(g(t))=α1α2AB(α1)Γ(α1)t∫0sα2−1g(s)(t−s)α1ds+α2(1−α1)tα2−1g(t)AB(α1) |
Robertson introduces this chemical process in [19,20]. Schafer pioneered the following chemical reactions method in 1975 [19,20]. It represents the high irradiance response (HIRES) of photomorphogenesis based on phytochrome. A stiff system of eight non-linear ordinary differential equations is used to create the following mathematical model.
y1′=−M1y1+M2y2+M3y3+M4,y2′=M1y1−M5y2,y3′=−M6y3+M2y4+M7y5,y4′=M3y2+M8y3−M9y4,y5′=−M10y5+M2y6+M2y7,y6′=−M11y6y8+M12y4+M8y5−M2y6+M12y7,y7′=M11y6y8−M13y7,y8′=−M11y6y8+M13y7. | (1) |
Here M1=1.7,M2=0.43,M3=8.32, M4=0.0007,M5=8.75, M6=10.03,M7=0.035, M8=1.71,M9=1.12,M10=1.745, M11=280,M12=0.69,M13=1.81. The initial values can be represented by y=(1,0,0,0,0,0,0,0.0057)T. By using Atangana-Baleanu in Caputo sense for system (1), we get
ABC0Dαty1=−M1y1+M2y2+M3y3+M4,ABC0Dαty2=M1y1−M5y2,ABC0Dαty3=−M6y3+M2y4+M7y5,ABC0Dαty4=M3y2+M8y3−M9y4,ABC0Dαty5=−M10y5+M2y6−M2y7,ABC0Dαty6=−M11y6y8+M12y4+M8y5−M2y6+M12y7,ABC0Dαty7=M11y6y8−M13y7,ABC0Dαty8=−M11y6y8+M13y7. | (2) |
Here OABCDαt is the Atanagana-Baleanue Caputo sense fractional derivative with 0<α≤1.
With given initial conditions
yi(0)≥0,i=1,2,3,…,8 | (3) |
Theorem 3.1: The solution of the proposed fractional-order model (1) along initial conditions is unique and bounded in R+8.
Proof: In (1), we can get its existence and uniqueness on the time interval (0, ∞). Afterwards, we need to show that the non-negative region R+8 is a positively invariant region. For this
ABC0Dαty1|y1=0=M2y2+M3y3+M4≥0, |
ABC0Dαty1|y2=0=M1y1≥0, |
ABC0Dαty1|y3=0=M2y4+M7y5≥0, |
ABC0Dαty1|y4=0=M3y2+M8y3≥0, |
ABC0Dαty1|y5=0=M2y6−M2y7≥0, |
ABC0Dαty1|y6=0=M12y4+M8y5+M12y7≥0, |
ABC0Dαty1|y7=0=M11y6y8≥0, |
ABC0Dαty1|y8=0=M13y7≥0 |
If (y1(0)), (y2(0)), (y3(0)), (y4(0)), (y5(0)), (y6(0)), (y7(0)), (y8(0)) ϵ R8+, then from above expression, the solution cannot escape from the hyperplane. Also on each hyperplane bounding the non-negative orthant, the vector field points into R8+, i.e., the domain R8+ is a positively invariant set.
Now, with the help of Sumudu transform definition, we get
QEα(−11−αPα)ST{y1(t)−y1(0)}=ST[−M1y1+M2y2+M3y3+M4],QEα(−11−αPα)ST{y2(t)−y2(0)}=ST[M1y1−M5y2],QEα(−11−αPα)ST{y3(t)−y3(0)}=ST[−M6y3+M2y4+M7y5],QEα(−11−αPα)ST{y4(t)−y4(0)}=ST[M3y2+M8y3−M9y4],QEα(−11−αPα)ST{y5(t)−y5(0)}=ST[−M10y5+M2y6−M2y7],QEα(−11−αPα)ST{y6(t)−y6(0)}=ST[−M11y6y8+M12y4+M8y5−M2y6+M12y7],QEα(−11−αPα)ST{y7(t)−y7(0)}=ST[M11y6y8−M13y7],QEα(−11−αPα)ST{y8(t)−y8(0)}=ST[−M11y6y8+M13y7]. | (4) |
Where Q=M(α)αΓ(α+1)1−α
Rearranging, we get
ST(y1(t))=y1(0)+H×ST[−M1y1+M2y2+M3y3+M4],ST(y2(t))=y2(0)+H×ST[M1y1−M5y2],ST(y3(t))=y3(0)+H×ST[−M6y3+M2y4+M7y5],ST(y4(t))=y4(0)+H×ST[M3y2+M8y3−M9y4],ST(y5(t))=y5(0)+H×ST[−M10y5+M2y6−M2y7],ST(y6(t))=y6(0)+H×ST[−M11y6y8+M12y4+M8y5−M2y6+M12y7],ST(y7(t))=y7(0)+H×ST[M11y6y8−M13y7],ST(y8(t))=y8(0)+H×ST[−M11y6y8+M13y7]. | (5) |
Using the inverse Sumudu transform on both sides of the system (5), we obtain
y1(t)=y1(0)+ST−1[H×ST[−M1y1+M2y2+M3y3+M4]],y2(t)=y2(0)+ST−1[H×ST[M1y1−M5y2]],y3(t)=y3(0)+ST−1[H×ST[−M6y3+M2y4+M7y5]],y4(t)=y4(0)+ST−1[H×ST[M3y2+M8y3−M9y4]],y5(t)=y5(0)+ST−1[H×ST[−M10y5+M2y6−M2y7]],y6(t)=y6(0)+ST−1[H×ST[−M11y6y8+M12y4+M8y5−M2y6+M12y7]],y7(t)=y7(0)+ST−1[H×ST[M11y6y8−M13y7]],y8(t)=y8(0)+ST−1[H×ST[−M11y6y8+M13y7]]. | (6) |
We next obtain the following recursive formula.
y1(n+1)(t)=y1(n)(0)+ST−1[H×ST{−M1y1(n)+M2y2(n)+M3y3(n)+M4}],y2(n+1)(t)=y2(n)(0)+ST−1[H×ST{M1y1(n)−M5y2(n)}],y3(n+1)(t)=y3(n)(0)+ST−1[H×ST{−M6y3(n)+M2y4(n)+M7y5(n)}],y4(n+1)(t)=y4(n)(0)+ST−1[H×ST{M3y2(n)+M8y3(n)−M9y4(n)}],y5(n+1)(t)=y5(n)(0)+ST−1[H×ST{−M10y5(n)+M2y6(n)−M2y7(n)}],y6(n+1)(t)=y6(n)(0)+ST−1[H×ST{−M11y6(n)y8(n)+M12y4(n)+M8y5(n)−M2y6(n)+M12y7(n)}],y7(n+1)(t)=y7(n)(0)+ST−1[H×ST{M11y6(n)y8(n)−M13y7(n)}],y8(n+1)(t)=y8(n)(0)+ST−1[H×ST{−M11y6(n)y8(n)+M13y7(n)}]. | (7) |
Where H=1−αM(α)αΓ(α+1)Eα(−11−αPα)
And the solution of system is provided by
y1(t)=limn→∞y1(n)(t), y2(t)=limn→∞y2(n)(t), y3(t)=limn→∞y3(n)(t), |
y4(t)=limn→∞y4(n)(t), y5(t)=limn→∞y5(n)(t), y6(t)=limn→∞y6(n)(t), |
y7(t)=limn→∞y7(n)(t), y8(t)=limn→∞y8(n)(t). |
Theorem 4.1: Define K be a self-map is given by
K[y1(n+1)(t)]=y1(n+1)(t)=y1(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M1y1(n)+M2y2(n)+M3y3(n)+M4}],K[y2(n+1)(t)]=y2(n+1)(t)=y2(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M1y1(n)−M5y2(n)}],K[y3(n+1)(t)]=y3(n+1)(t)=y3(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M6y3(n)+M2y4(n)+M7y5(n)}],K[y4(n+1)(t)]=y4(n+1)(t)=y4(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M3y2(n)+M8y3(n)−M9y4(n)}],K[y5(n+1)(t)]=y5(n+1)(t)=y5(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M10y5(n)+M2y6(n)−M2y7(n)}],K[y6(n+1)(t)]=y6(n+1)(t)=y6(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M11y6(n)y8(n)+M12y4(n)+M8y5(n)−M2y6(n)+M12y7(n)}],K[y7(n+1)(t)]=y7(n+1)(t)=y7(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M11y6(n)y8(n)−M13y7(n)}],K[y8(n+1)(t)]=y8(n+1)(t)=y8(n)(0)+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M11y6(n)y8(n)+M13y7(n)}]. | (8) |
Proof: By using triangular inequality with the definition of norms, we get
||K[y1(n)(t)]−K[y1(m)(t)]||≤||y1(n)(t)−y1(m)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M1||y1(n)−y1(m)||+M2||y2(n)−y2(m)||+M3||y3(n)−y3(m)||+M4}],||K[y2(n)(t)]−K[y2(m)(t)]||≤||y2(n)(t)−y2(m)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M1||y1(n)−y1(m)||−M5||y2(n)−y2(m)||}],||K[y3(n)(t)]−K[y3(m)(t)]||≤||y3(n)(t)−y3(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M6||y3(n)−y3(m)||+M2||y4(n)−y4(m)||+M7||y5(n)−y5(m)||}],||K[y4(n)(t)]−K[y4(m)(t)]||≤||y4(n)(t)−y4(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M3||y2(n)−y2(m)||+M8||y3(n)−y3(m)||−M9||y4(n)−y4(m)||}],||K[y5(n)(t)]−K[y5(m)(t)]||≤||y5(n)(t)−y5(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M10||y5(n)−y5(m)||+M2||y6(n)−y6(m)||−M2||y7(n)−y7(m)||}],||K[y6(n)(t)]−K[y6(m)(t)]||≤||y6(n)(t)−y6(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M11||y6(n)y8(n)−y6(m)y8(m)||+M12||y4(n)−y4(m)||+M8||y5(n)−y5(m)||−M2||y6(n)−y6(m)||+M12||y7(n)−y7(m)||}],||K[y7(n)(t)]−K[y7(m)(t)]||≤||y7(n)(t)−y7(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{M11||y6(n)y8(n)−y6(m)y8(m)||−M13||y7(n)−y7(m)||}],||K[y8(n)(t)]−K[y8(m)(t)]||≤||y8(n)(t)−y8(n)(t)||+ST−1[1−αM(α)αΓ(α+1)Eα(−11−αPα)×ST{−M11||y6(n)y8(n)−y6(m)y8(m)||+M13||y7(n)−y7(m)||}]. |
Hence satisfied given conditions.
θ=(0,0,0,0,0,0,0,0),θ={||y1(n)(t)−y1(m)(t)||×||−(y1(n)(t)+y1(m)(t))||−M1||y1(n)−y1(m)||+M2||y2(n)−y2(m)||+M3||y3(n)−y3(m)||+M4||y2(n)(t)−y2(m)(t)||×||−(y2(n)(t)+y2(m)(t))||+M1||y1(n)−y1(m)||−M5||y2(n)−y2(m)||||y3(n)(t)−y3(m)(t)||×||−(y3(n)(t)+y3(m)(t))||−M6||y3(n)−y3(m)||+M2||y4(n)−y4(m)||+M7||y5(n)−y5(m)||||y4(n)(t)−y4(m)(t)||×||−(y4(n)(t)+y4(m)(t))||+M3||y2(n)−y2(m)||+M8||y3(n)−y3(m)||−M9||y4(n)−y4(m)||||y5(n)(t)−y5(m)(t)||×||−(y5(n)(t)+y5(m)(t))||−M10||y5(n)−y5(m)||+M2||y6(n)−y6(m)||−M2||y7(n)−y7(m)||||y6(n)(t)−y6(m)(t)||×||−(y6(n)(t)+y6(m)(t))||−M11||y6(n)y8(n)−y6(m)y8(m)||+M12||y4(n)−y4(m)||+M8||y5(n)−y5(m)||−M2||y6(n)−y6(m)||+M12||y7(n)−y7(m)||||y7(n)(t)−y7(m)(t)||×||−(y7(n)(t)+y7(m)(t))||+M11||y6(n)y8(n)−y6(m)y8(m)||−M13||y7(n)−y7(m)||||y8(n)(t)−y8(m)(t)||×||−(y8(n)(t)+y8(m)(t))||−M11||y6(n)y8(n)−y6(m)y8(m)||+M13||y7(n)−y7(m)|| |
Hence the system is stable.
Theorem 4.2: Unique singular solution with the iterative method for the special solution of system (2).
Proof: Considering the Hilbert space H=L2((p,q)×(0,T)) which can be defined as
h:(p,q)×(0,T)→R,∬ghdgdh<∞. |
For this purpose, we consider the following operator
θ(0,0,0,0,0,0,0,0),θ={−M1y1+M2y2+M3y3+M4,M1y1−M5y2,−M6y3+M2y4+M7y5,M3y2+M8y3−M9y4,−M10y5+M2y6−M2y7,−M11y6y8+M12y4+M8y5−M2y6+M12y7,M11y6y8−M13y7,−M11y6y8+M13y7. |
By using inner product, we get
T((y1(11)−y1(12),y2(21)−y2(22),y3(31)−y3(32),y4(41)−y4(42),y5(51)−y5(52),y6(61)− y6(62),y7(71)−y7(72),y8(81)−y8(82)),(V1,V2,V3,V4,V5,V6,V7,V8)). |
Where
(y1(11)−y1(12),y2(21)−y2(22),y3(31)−y3(32), y4(41)−y4(42),y5(51)−y5(52), y6(61)−y6(62), y7(71)−y7(72), y8(81)−y8(82)), are the special solutions of the system. Taking into account the inner function and the norm, we have
{−M1(y1(11)−y1(12))+M2(y2(21)−y2(22))+M3(y3(31)−y3(32))+M4,V1}≤M1||y1(11)−y1(12)||||V1||+M2||y2(21)−y2(22)||||V1||+M3||y3(31)−y3(32)||||V1||+M4||V1||,{M1(y1(11)−y1(12))−M5(y2(21)−y2(22)),V2}≤M1||y1(11)−y1(12)||||V2||+M5||y2(21)−y2(22)||||V2||,{−M6(y3(31)−y3(32))+M2(y4(41)−y4(42))+M7(y5(51)−y5(52)),V3}≤M6||(y3(31)−y3(32))||||V3||+M2||(y4(41)−y4(42))||||V3||+M7||(y5(51)−y5(52))||||V3||,{M3(y2(21)−y2(22))+M8(y3(31)−y3(32))−M9(y4(41)−y4(42)),V4}≤M3||(y2(21)−y2(22))||||V4||+M8||(y3(31)−y3(32))||||V4||+M9||(y4(41)−y4(42))||||V4||,{−M10(y5(51)−y5(52))+M2(y6(61)−y6(62))−M2(y7(71)−y7(72)),V5}≤M10||(y5(51)−y5(52))||||V5||+M2||(y6(61)−y6(62))||||V5||+M2||(y7(71)−y7(72))||||V5||,{−M11(y6(61)−y6(62))(y8(81)−y8(82))+M12(y4(41)−y4(42))+M8(y5(51)−y5(52))−M2(y6(61)−y6(62))+M12(y7(71)−y7(72)),V6}≤M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||||V6||+M12||(y4(41)−y4(42))||||V6||+M8||(y5(51)−y5(52))||||V6||+M2||(y6(61)−y6(62))||||V6||+M12||(y7(71)−y7(72))||||V6||,{M11(y6(61)−y6(62))(y8(81)−y8(82))−M13(y7(71)−y7(72)),V7}≤M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||||V7||+M13||(y7(71)−y7(72))||||V7||,{−M11(y6(61)−y6(62))(y8(81)−y8(82))+M13(y7(71)−y7(72)),V8}≤M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||||V8||+M13||(y7(71)−y7(72))||||V8||. |
In the case for large number e1,e2,e3,e4,e5,e6,e7ande8, both solutions happen to be converged to the exact solution. Employing the topology concept, we can obtain eight positive very small parameters (χe1,χe2,χe3,χe4,χe5,χe6,χe7andχe8).
||y1−y1(11)||,||y1−y1(12)||≤χe1ϖ,||y2−y2(21)||,||y2−y2(22)||≤χe2ς, |
||y3−y3(31)||,||y3−y3(32)||≤χe3υ,||y4−y4(41)||,||y4−y4(42)||≤χe4κ, |
||y5−y5(51)||,||y5−y5(52)||≤χe5ϱ,||y6−y6(61)||,||y6−y6(62)||≤χe6ζ, |
||y7−y7(71)||,||y7−y7(72)||≤χe7ν,||y8−y8(81)||,||y8−y8(82)||≤χe8ε. |
Where
ϖ=8(M1||y1(11)−y1(12)||+M2||y2(21)−y2(22)||+M3||y3(31)−y3(32)||+M4)||V1|| |
ς=8(M1||y1(11)−y1(12)||+M5||y2(21)−y2(22)||)||V2|| |
υ=8(M6||(y3(31)−y3(32))||+M2||(y4(41)−y4(42))||+M7||(y5(51)−y5(52))||)||V3|| |
κ=8(M3||(y2(21)−y2(22))||+M8||(y3(31)−y3(32))||+M9||(y4(41)−y4(42))||)||V4|| |
ϱ=8(M10||(y5(51)−y5(52))||+M2||(y6(61)−y6(62))||+M2||(y7(71)−y7(72))||)||V5|| |
ζ=8(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M12||(y4(41)−y4(42))||+M8||(y5(51)−y5(52))||+M2||(y6(61)−y6(62))||+M12||(y7(71)−y7(72))||)||V6|| |
ν=8(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M13||(y7(71)−y7(72))||)||V7|| |
ε=8(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M13||(y7(71)−y7(72))||)||V8|| |
But, it is obvious that
(M1||y1(11)−y1(12)||+M2||y2(21)−y2(22)||+M3||y3(31)−y3(32)||+M4)≠0 |
(M1||y1(11)−y1(12)||+M5||y2(21)−y2(22)||)≠0 |
(M6||(y3(31)−y3(32))||+M2||(y4(41)−y4(42))||+M7||(y5(51)−y5(52))||)≠0 |
(M3||(y2(21)−y2(22))||+M8||(y3(31)−y3(32))||+M9||(y4(41)−y4(42))||)≠0 |
(M10||(y5(51)−y5(52))||+M2||(y6(61)−y6(62))||+M2||(y7(71)−y7(72))||)≠0 |
(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M12||(y4(41)−y4(42))||+M8||(y5(51)−y5(52))||+M2||(y6(61)−y6(62))||+M12||(y7(71)−y7(72))||)≠0 |
(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M13||(y7(71)−y7(72))||)≠0 |
(M11||(y6(61)−y6(62))||||(y8(81)−y8(82))||+M13||(y7(71)−y7(72))||)≠0 |
where ||V1||,||V2||,||V3||,||V4||,||V5||,||V6||,||V7||,||V8||≠0.
Therefore, we have
||y1(11)−y1(12)||=0,||y2(21)−y2(22)||=0,||y3(31)−y3(32)||=0, |
||(y4(41)−y4(42))||=0,||(y5(51)−y5(52))||=0,||(y6(61)−y6(62))||=0, |
||(y7(71)−y7(72))||=0,||(y8(81)−y8(82))||=0. |
Which yields that
y1(11)=y1(12),y2(21)=y2(22),y3(31)=y3(32),y4(41)=y4(42),y5(51)=y5(52),y6(61)=y6(62),y7(71)=y7(72),y8(81)=y8(82) |
This completes the proof of uniqueness.
An operator B:Z→Z can be defined as:
B(φ)(t)=φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)∫t0λμ−1(1−λ)μ−1£(t,φ(t))dλ | (10) |
If £(t,φ(t)) satisfies the Lipschitz condition and the following extension then
● For every φ∈Z there exists constants L£>0 and M£ such that
|£(t,φ(t))|≤L£|φ(t)|+M£ | (11) |
● For every φ,¯φ∈Z, there exists a constant M£>0 such that
|£(t,φ(t))−£(t,¯φ(t))||≤M£|φ(t)−¯φ(t)| | (12) |
Theorem 4.2: If the condition of (11) holds then for the function £:[0,T]×Z→R there exists at least one solution for the (1).
Proof: Since £ in (10) is continuous function, so B is also a continuous. Assume M={φ∈||φ||≤R,R>0}, then for φ∈Z, we have
B(φ)(t)=maxt∈[0,T]|φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(t,φ(t))dλ |
≤|φ(0)+μTμ−1(1−α1)AB(α1)(L£||φ(t)||+M£)+maxt∈[0,T]μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(t,φ(t))dλ| |
≤φ(0)+μTμ−1(1−α1)AB(α1)(L£||φ(t)||+M£)+μα1AB(α1)Γ(α1)(L£||φ(t)||+M£)Tμ+α1−1M(μ,α1)≤R. |
Hence, B is uniformly bounded, and M(μ,α1) is a beta function. For equicontinuity of B, we take t1<t2≤T, then consider
B(φ)(t2)−B(φ)(t1)=|μt2μ−1(1−α1)AB(α1)£(t2,φ(t2))+μα1AB(α1)Γ(α1) |
t2∫0λμ−1(t2−λ)μ−1£(t,φ(t))dλ−μt1μ−1(1−α1)AB(α1)£(t1,φ(t1)) +μα1AB(α1)Γ(α1)t2∫0λμ−1(t1−λ)μ−1£(t,φ(t))dλ| |
≤μt2μ−1(1−α1)AB(α1)(L£|φ(t)|+M£)+μα1AB(α1)Γ(α1)(L£|φ(t)|+M£)t2μ+α1−1M(μ,α1) |
μt1μ−1(1−α1)AB(α1)(L£|φ(t)|+M£)−μα1AB(α1)Γ(α1)(L£|φ(t)|+M£)t1μ+α1−1M(μ,α1) |
If t1→t2 then ||B(φ)(t2)−B(φ)(t1)→0|| Consequently ||B(φ)(t2)−B(φ)(t1)→0||,ast1→t2. Hence B is equicontinous. Thus, by Arzela-Ascoli theorem B is completely continuous. Consequently, by the result of Schauder's fixed point, it has at least one solution.
Theorem 4.3: If η=μTμ−1(1−α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α1−1M(μ,α1)M£<1 and the condition (12) holds, then η has a unique solution.
Proof: For φ,¯φ∈Z, we have
|B(φ)−B(¯φ)|=maxt∈[0,T]|μtμ−1(1−α1)AB(α1)[£(t,φ(t))|−£(t,¯φ(t))] |
+μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1[£(t,φ(t))|−£(t,¯φ(t))]dλ| |
≤[μTμ−1(1−α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α1−1M(μ,α1)]||B(φ)−B(¯φ)|| |
≤η||B(φ)−B(¯φ)||. |
Hence, B is a contraction. So, by the principle of Banach contraction, it has a unique solution.
Ulam-Hyres stability
The proposed model is Ulam-Hyres stable if there exists Bμ,α1≥0 such that for every ε>0 and for every φ∈(L[0,T],R) satisfies the following inequality FFMJμ,α10,t(φ(t))−£(t,φ(t))≤ε,t∈[0,T] such that |φ(t)−£(t)|≤Bμ,α1ε,t∈[0,T].
Suppose a perturbation ω∈L[0,T],R then ω(0)=0 and
● For every ε>0∃ω(t)≤ε|
● 0FFMJμ,α1t(φ(t))=£(t,φ(t))+ω(t).
Lemma 4.4: The solution of the perturbed model 0FFMJμ,α1t(φ(t))=£(t,φ(t))+ω(t),φ(0)=φ0 fulfills the relation
B(t)−[φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(λ,φ(λ))dλ ≤α1∗α1,με |
Where α1∗α1,με=μTμ−1(1−α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α1−1M(μ,α1).
Lemma 4.5: By using condition (12) with lemma (4.4), proposed model is Ulam-Hyres stable if η<1.
Proof: Suppose α1∈Z be a solution and φ∈Z be any solution of (1), then
|φ(t)−α1(t)|=|φ(t)−[α1(0)+μtμ−1(1−α1)AB(α1)£(t,α1(t))+μα1AB(α1)Γ(α1)∫t0λμ−1(1−λ)μ−1£(λ,α1(λ))dλ]| |
≤|φ(t)−[φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(λ,φ(λ))dλ]| +|φ(0)+μtμ−1(1−α1)AB(α1)£(t,φ(t)) +μα1AB(α1)Γ(α1)t∫0λμ−1(1−λ)μ−1£(λ,φ(λ))dλ| |
−|α1(0)+μtμ−1(1−α1)AB(α1)£(t,α1(t))+μα1AB(α1)Γ(α1)∫t0λμ−1(1−λ)μ−1£(λ,α1(λ))dλ| |
≤α1∗α1,με+(μTμ−1(1−α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α1−1)L£|φ(t)−α1(t)| |
≤α1∗α1,με+η|φ(t)−α1(t)|. |
Consequently,
||φ−α1||≤α1∗α1,με+η||φ(t)−α1(t)||. |
So, we can write it as
||φ−α1||≤Bα1,με, |
Where Bα1,με=α1∗α1,μ1−η. Hence the solution is Ulam-Hyres stable.
In this section, we present the Hires problem model (1) using fractal-fractional Atangana-Baleanu derivative. We have
FFDα1,α20,ty1=−M1y1+M2y2+M3y3+M4,FFDα1,α20,ty2=M1y1−M5y2,FFDα1,α20,ty3=−M6y3+M2y4+M7y5,FFDα1,α20,ty4=M3y2+M8y3−M9y4,FFDα1,α20,ty5=−M10y5+M2y6−M2y7,FFDα1,α20,ty6=−M11y6y8+M12y4+M8y5−M2y6+M12y7,FFDα1,α20,ty7=M11y6y8−M13y7,FFDα1,α20,ty8=−M11y6y8+M13y7. | (13) |
With initial conditions
y1(0)=y1(0),y2(0)=y2(0),y3(0)=y3(0),y4(0)=y4(0),y5(0)=y5(0),y6(0)=y6(0),y7(0)=y7(0),y8(0)=y8(0). |
We present the numerical algorithm for the fractal-fractional Hires problem model (13). The following is obtained by integrating the system (13).
y1(t)−y1(0)=(1−α1)C(α1)α2tα2−1{−M1y1(t)+M2y2(t)+M3y3(t)+M4}+α1α2C(α1)Γ(α1)∫t0τα2−1{−M1y1(τ)+M2y2(τ)+M3y3(τ)+M4}(t−τ)α1−1dτ,y2(t)−y2(0)=(1−α1)C(α1)α2tα2−1{M1y1(t)−M5y2(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{{M1y1(τ)−M5y2(τ)}}(t−τ)α1−1dτ,y3(t)−y3(0)=(1−α1)C(α1)α2tα2−1{−M6y3(t)+M2y4(t)+M7y5(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{−M6y3(τ)+M2y4(τ)+M7y5(τ)}(t−τ)α1−1dτ,y4(t)−y4(0)=(1−α1)C(α1)α2tα2−1{M3y2(t)+M8y3(t)−M9y4(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{M3y2(τ)+M8y3(τ)−M9y4(τ)}(t−τ)α1−1dτ,y5(t)−y5(0)=(1−α1)C(α1)α2tα2−1{−M10y5(t)+M2y6(t)−M2y7(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{{−M10y5(τ)+M2y6(τ)−M2y7(τ)}}(t−τ)α1−1dτ,y6(t)−y6(0)=(1−α1)C(α1)α2tα2−1{−M11y6(t)y8(t)+M12y4(t)+M8y5(t)−M2y6(t)+M12y7(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{−M11y6(τ)y8(τ)+M12y4(τ)+M8y5(τ)−M2y6(τ)+M12y7(τ)}(t−τ)α1−1dτ,y7(t)−y7(0)=(1−α1)C(α1)α2tα2−1{M11y6(t)y8(t)−M13y7(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{M11y6(τ)y8(τ)−M13y7(τ)}(t−τ)α1−1dτ,y8(t)−y8(0)=(1−α1)C(α1)α2tα2−1{−M11y6(t)y8(t)+M13y7(t)}+α1α2C(α1)Γ(α1)∫t0τα2−1{{−M11y6(τ)y8(τ)+M13y7(τ)}}(t−τ)α1−1dτ, | (14) |
Let
k(t,y1(t))=α2tα2−1{−M1y1(t)+M2y2(t)+M3y3(t)+M4}, |
k(t,y2(t))=α2tα2−1{M1y1(t)−M5y2(t)}, |
k(t,y3(t))=α2tα2−1{−M6y3(t)+M2y4(t)+M7y5(t)}, |
k(t,y4(t))=α2tα2−1{M3y2(t)+M8y3(t)−M9y4(t)}, |
k(t,y5(t))=α2tα2−1{−M10y5(t)+M2y6(t)−M2y7(t)}, |
k(t,y6(t))=α2tα2−1{−M11y6(t)y8(t)+M12y4(t)+M8y5(t)−M2y6(t)+M12y7(t)}, |
k(t,y7(t))=α2tα2−1{M11y6(t)y8(t)−M13y7(t)}, |
k(t,y8(t))=α2tα2−1{−M11y6(t)y8(t)+M13y7(t)}. |
Then system (14) becomes
y1(t)−y1(0)=(1−α1)C(α1)k(t,y1(t))+α1C(α1)Γ(α1)∫t0k(τ,y1(τ))(t−τ)α1−1dτ,y2(t)−y2(0)=(1−α1)C(α1)k(t,y2(t))+α1C(α1)Γ(α1)∫t0k(τ,y2(τ))(t−τ)α1−1dτ,y3(t)−y3(0)=(1−α1)C(α1)k(t,y3(t))+α1C(α1)Γ(α1)∫t0k(τ,y3(τ))(t−τ)α1−1dτ,y4(t)−y4(0)=(1−α1)C(α1)k(t,y4(t))+α1C(α1)Γ(α1)∫t0k(τ,y4(τ))(t−τ)α1−1dτ,y5(t)−y5(0)=(1−α1)C(α1)k(t,y5(t))+α1C(α1)Γ(α1)∫t0k(τ,y5(τ))(t−τ)α1−1dτ,y6(t)−y6(0)=(1−α1)C(α1)k(t,y6(t))+α1C(α1)Γ(α1)∫t0k(τ,y6(τ))(t−τ)α1−1dτ,y7(t)−y7(0)=(1−α1)C(α1)k(t,y7(t))+α1C(α1)Γ(α1)∫t0k(τ,y7(τ))(t−τ)α1−1dτ,y8(t)−y8(0)=(1−α1)C(α1)k(t,y8(t))+α1C(α1)Γ(α1)∫t0k(τ,y8(τ))(t−τ)α1−1dτ, | (15) |
At tn+1=(n+1)Δt, we have
y1(tn+1)−y1(0)=(1−α1)C(α1)k(tn,y1(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y1(τ))(tn+1−τ)α1−1dτ,y2(tn+1)−y2(0)=(1−α1)C(α1)k(tn,y2(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y2(τ))(tn+1−τ)α1−1dτ,y3(tn+1)−y3(0)=(1−α1)C(α1)k(tn,y3(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y3(τ))(tn+1−τ)α1−1dτ,y4(tn+1)−y4(0)=(1−α1)C(α1)k(tn,y4(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y4(τ))(tn+1−τ)α1−1dτ,y5(tn+1)−y5(0)=(1−α1)C(α1)k(tn,y5(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y5(τ))(tn+1−τ)α1−1dτ,y6(tn+1)−y6(0)=(1−α1)C(α1)k(tn,y6(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y6(τ))(tn+1−τ)α1−1dτ,y7(tn+1)−y7(0)=(1−α1)C(α1)k(tn,y7(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y7(τ))(tn+1−τ)α1−1dτ,y8(tn+1)−y8(0)=(1−α1)C(α1)k(tn,y8(tn))+α1C(α1)Γ(α1)∫tn+10k(τ,y8(τ))(tn+1−τ)α1−1dτ. | (16) |
Also, we have
\begin{array}{l} {y}_{1}\left({t}_{n+1}\right) = {y}_{1}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{1}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{2}\left({t}_{n+1}\right) = {y}_{2}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{2}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{2}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{3}\left({t}_{n+1}\right) = {y}_{3}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{3}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{3}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{4}\left({t}_{n+1}\right) = {y}_{4}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{4}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{4}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{5}\left({t}_{n+1}\right) = {y}_{5}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{5}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{5}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{6}\left({t}_{n+1}\right) = {y}_{6}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{6}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{6}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{7}\left({t}_{n+1}\right) = {y}_{7}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{7}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{7}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{8}\left({t}_{n+1}\right) = {y}_{8}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{8}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{8}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau . \end{array} | (17) |
In general, approximating the function k\left(\tau, y\left(\tau \right)\right), using the Newton polynomial, we have
\begin{array}{l} {P}_{n}\left(\tau \right) = \frac{k\left({t}_{n}, y\left({t}_{n}\right)\right)}{{t}_{n}-{t}_{n-1}}\left(\tau -{t}_{n-1}\right)+\frac{k\left({t}_{n-1}, y\left({t}_{n-1}\right)\right)}{{t}_{n}-{t}_{n-1}}\left(\tau -{t}_{n}\right) = \frac{k\left({t}_{n}, y\left({t}_{n}\right)\right)}{h}\left(\tau -{t}_{n-1}\right)\frac{k\left({t}_{n-1}, y\left({t}_{n-1}\right)\right)}{h}\left(\tau -\\ {t}_{n}\right). \end{array} | (18) |
Using Eq (18) into system (17) we have
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\int_{{t}_{j}}^{{t}_{j+1}} \{k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)+\\ \frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\left(\tau -{t}_{j-2}\right)+\frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\left(\tau -{t}_{j-2}\right)(\tau -\\ {t}_{j-1})\}{\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \end{array} | (19) |
Rearranging the above equation, we have
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}[\int_{{t}_{j}}^{{t}_{j+1}} k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \int_{{t}_{j}}^{{t}_{j+1}} \frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \int_{{t}_{j}}^{{t}_{j+1}} \frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau ], \end{array} | (20) |
Writing further system (20) we have
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\int_{{t}_{j}}^{{t}_{j+1}} {\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \end{array} | (21) |
Now, calculating the integrals in system (21) we get
\int_{{t}_{j}}^{{t}_{j+1}} {\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}}}{{\alpha }_{1}}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right], |
\begin{array}{l} \int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}+1}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)}[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}(n-\\ j+3+3{\alpha }_{1})], \end{array} |
\begin{array}{l} \int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}+2}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)\left({\alpha }_{1}+2\right)}[{\left(n-j+1\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\\ \left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+\\ 18{\alpha }_{1}+12\}]. \end{array} |
Inserting them into system (21) we get
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+1\right)}\sum _{j = 2}^{n}k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]+\\ \frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+2\right)}\sum _{j = 2}^{n}\left[k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\right][{(n-j+1)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-(n-j+\\ 1)^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)]+\frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{2\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+3\right)}\sum _{j = 2}^{n}\left[k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\right][(n-\\ j+1)^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+(5{\alpha }_{1}+\\ 10)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}] \end{array} | (22) |
Finally, we have the following approximation:
\begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{1}{y}_{1}(t)+{M}_{2}{y}_{2}(t)+{M}_{3}{y}_{3}(t)+{M}_{4}\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+{M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-1}+{M}_{2}{{y}_{2}}^{j-1}+{M}_{3}{{y}_{3}}^{j-1}+{M}_{4}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+\\ {M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j}+{M}_{2}{{y}_{2}}^{j}+{M}_{3}{{y}_{3}}^{j}+{M}_{4}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-1}+{M}_{2}{{y}_{2}}^{j-1}+\\ {M}_{3}{{y}_{3}}^{j-1}+{M}_{4}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+{M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+\\ (3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+\\ 18{\alpha }_{1}+12\}], \\ {{y}_{2}}^{n+1} = {{y}_{2}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{1}{y}_{1}(t)-{M}_{5}{y}_{2}(t)\}+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-\\ {M}_{5}{{y}_{2}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-1}-{M}_{5}{{y}_{2}}^{j-1}\}-\\ {t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-{M}_{5}{{y}_{2}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+\\ 3{\alpha }_{1})]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j}-{M}_{5}{{y}_{2}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-1}-{M}_{5}{{y}_{2}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-{M}_{5}{{y}_{2}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-\\ {(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{3}}^{n+1} = {{y}_{3}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{6}{y}_{3}(t)+{M}_{2}{y}_{4}(t)+{M}_{7}{y}_{5}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+{M}_{7}{{y}_{5}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-1}+{M}_{2}{{y}_{4}}^{j-1}+{M}_{7}{{y}_{5}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+\\ {M}_{7}{{y}_{5}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j}+{M}_{2}{{y}_{4}}^{j}+\\ {M}_{7}{{y}_{5}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-1}+{M}_{2}{{y}_{4}}^{j-1}+{M}_{7}{{y}_{5}}^{j-1}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+\\ {M}_{7}{{y}_{5}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-\\ j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{4}}^{n+1} = {{y}_{4}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{3}{y}_{2}(t)+{M}_{8}{y}_{3}(t)-{M}_{9}{y}_{4}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-{M}_{9}{{y}_{4}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-1}+{M}_{8}{{y}_{3}}^{j-1}-{M}_{9}{{y}_{4}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-\\ {M}_{9}{{y}_{4}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j}+{M}_{8}{{y}_{3}}^{j}-{M}_{9}{{y}_{4}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-1}+{M}_{8}{{y}_{3}}^{j-1}-{M}_{9}{{y}_{4}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-{M}_{9}{{y}_{4}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{5}}^{n+1} = {{y}_{5}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{10}{y}_{5}(t)+{M}_{2}{y}_{6}(t)-{M}_{2}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+{M}_{2}{{y}_{6}}^{j-2}-{M}_{2}{{y}_{7}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-1}+{M}_{2}{{y}_{6}}^{j-1}-{M}_{2}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+{M}_{2}{{y}_{6}}^{j-2}-\\ {M}_{2}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j}+{M}_{2}{{y}_{6}}^{j}-\\ {M}_{2}{{y}_{7}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-1}+{M}_{2}{{y}_{6}}^{j-1}-{M}_{2}{{y}_{7}}^{j-1}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+\\ {M}_{2}{{y}_{6}}^{j-2}-{M}_{2}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+\\ 10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+\\ 10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+\\ 12\}], \end{array} | (23) |
\begin{array}{l} {{y}_{6}}^{n+1} = {{y}_{6}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{11}{y}_{6}(t){y}_{8}(t)+{M}_{12}{y}_{4}(t)+{M}_{8}{y}_{5}(t)-{M}_{2}{y}_{6}(t)+{M}_{12}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+{M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}[(n-\\ j+1)^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{12}{{y}_{4}}^{j-1}+{M}_{8}{{y}_{5}}^{j-1}-\\ {M}_{2}{{y}_{6}}^{j-1}+{M}_{12}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+\\ {M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}+{M}_{12}{{y}_{4}}^{j}+{M}_{8}{{y}_{5}}^{j}-{M}_{2}{{y}_{6}}^{j}+{M}_{12}{{y}_{7}}^{j}\}-\\ 2{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{12}{{y}_{4}}^{j-1}+{M}_{8}{{y}_{5}}^{j-1}-{M}_{2}{{y}_{6}}^{j-1}+{M}_{12}{{y}_{7}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+{M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2(n-\\ j)^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+\\ 6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \end{array} |
\begin{array}{l} {{y}_{7}}^{n+1} = {{y}_{7}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{11}{y}_{6}(t){y}_{8}(t)-{M}_{13}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}-{M}_{13}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}][(n-\\ j+1)^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}-{M}_{13}{{y}_{7}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}-{M}_{13}{{y}_{7}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \end{array} |
\begin{array}{l} {{y}_{8}}^{n+1} = {{y}_{8}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{y}_{6}\left(t\right){y}_{8}\left(t\right)+{M}_{13}{y}_{7}\left(t\right)\right\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+1\right)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{13}{{y}_{7}}^{j-2}\right\}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+2\right)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{13}{{y}_{7}}^{j-1}\right\}-{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+\\ {M}_{13}{{y}_{7}}^{j-2}\}]\left[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)\right]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{2\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+3\right)}\sum _{j = 2}^{n}\left[{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}+{M}_{13}{{y}_{7}}^{j}\right\}-2{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{13}{{y}_{7}}^{j-1}\right\}+\\ {t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{13}{{y}_{7}}^{j-2}\right\}\right][{\left(n-j+1\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{\left(n-j\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\right\}]. \end{array} |
A fractional-order model is proposed for analysis and simulation, to observe the concentration of chemicals in chemistry kinematics problems with a stiff differential equation. For this purpose, we used ABC with Mittage-Lefffier law, Atangana-Tufik scheme, and fractal fractional derivative for hires problem with given initial conditions. Details of parameters values of real data are also given in [18,19] which will consider for simulation analysis for the proposed study. Solution of compartment shows in Figures 1 to 8 with fractional fractal operator at different order. Effect of fraction order can easily be observed in simulation of the compartments having a concentration of chemical reaction with stiff differential equations. The concentration {y}_{1} and {y}_{8} of the chemical species start decreasing by decreasing fractional values respectively while concentration {y}_{2}, {y}_{3} , {y}_{4} , {y}_{5} , {y}_{6} and {y}_{7} of the chemical species start increasing by decreasing fractional values. These concentrations of chemical species converge to our desired value according to steady state by decreasing the fractional values which shows that it provides us appropriate results at non integer value. We can get better concentration of the components by using the fractional derivative which are very important for chemical problem to check the actual behavior of the concentration of the chemical with smallest changes in derivative with respect to time. It is also very important for solutions of nonlinear problems which are commonly used researcher and scientist in kinetics chemistry.
We examine the hires problems with stiff systems of nonlinear ordinary equations that rely on the concentration of chemical reaction of components in this study. The advanced techniques of fractional operator have been implemented for initial value problem arising from chemical reactions composed of large systems of stiff ordinary differential equations. The arbitrary derivative of fractional order has been taken with Atangana-Toufik scheme and fractal fractional derivative. Solutions have been obtained efficiently within limited time which shows the actual behavior of kinetic chemical reactions. Existence and uniqueness of results have been verified by fixed point theorem. Simulations are carried out for different fractional values. New chemical reactions can be done with the help of these analyses. These concepts are very important to use for real life problems like Brine tank cascade, Recycled Brine tank cascade, pond pollution, home heating and biomass transfer problem.
Research Supporting Project number (RSP-2021/167), King Saud University, Riyadh, Saudi Arabia.
No conflict of interest.
[1] |
H. I. Abdel-Gawad, M. Tantawy, D. Baleanu, Fractional KdV and Boussenisq-Burger's equations, reduction to PDE and stability approaches, Math. Method. Appl. Sci., 43 (2020), 4125–4135. http://doi.org/10.1002/mma.6178 doi: 10.1002/mma.6178
![]() |
[2] |
H. I. Abdel-Gawad, M. Tantawy, Traveling wave solutions of DNA-Torsional model of fractional order, Appl. Math. Inf. Sci. Lett., 6 (2018), 85–89. http://doi.org/10.18576/amisl/060205 doi: 10.18576/amisl/060205
![]() |
[3] |
N. I. Okposo, P. Veeresha, E. N. Okposo, Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons, Chinese J. Phy., 77 (2022), 965–984. http://doi.org/10.1016/j.cjph.2021.10.014 doi: 10.1016/j.cjph.2021.10.014
![]() |
[4] |
P. Veeresha, M. Yavuz, C. Baishya, A computational approach for shallow water forced Korteweg-De Vries equation on critical flow over a hole with three fractional operators, IJOCTA, 11 (2021), 52–67. http://doi.org/10.11121/ijocta.2021.1177 doi: 10.11121/ijocta.2021.1177
![]() |
[5] |
P. Veeresha, E. Ilhan, H. M. Baskonus, Fractional approach for analysis of the model describing wind-influenced projectile motion, Phy. Scr., 96 (2021), 075209. http://doi.org/10.1088/1402-4896/abf868 doi: 10.1088/1402-4896/abf868
![]() |
[6] |
P. Veeresha, D. Baleanu, A unifying computational framework for fractional Gross-Pitaevskii equations, Phy. Scr., 96 (2021), 125010. http://doi.org/10.1088/1402-4896/ac28c9 doi: 10.1088/1402-4896/ac28c9
![]() |
[7] |
P. Veeresha, D. G. Prakasha, H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29 (2019), 013119. http://doi.org/10.1063/1.5074099 doi: 10.1063/1.5074099
![]() |
[8] |
C. Baishya, P. Veeresha, Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel, Proc. R. Soc. A, 477 (2021), 20210438. http://doi.org/10.1098/rspa.2021.0438 doi: 10.1098/rspa.2021.0438
![]() |
[9] |
S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y.-M. Chu, On multi-step methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. http://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
![]() |
[10] |
F. Jin, Z.-S. Qian, Y.-M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. http://doi.org/10.11948/20210357 doi: 10.11948/20210357
![]() |
[11] |
S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y.-M. Chu, Some recent developments on dynamical \hbar-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. http://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
![]() |
[12] |
F.-Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y.-M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional Fishers equations, Fractals, 30 (2022), 2240051. http://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
![]() |
[13] |
S. Rashid, E. I. Abouelmagd, S. Sultana, Y.-M. Chu, New developments in weighted n-fold type inequalities via discrete generalized h-proportional fractional operators, Fractals, 30 (2022), 2240056. http://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
![]() |
[14] | Y.-M. Chu, S. Bashir, M. Ramzan, M. Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects, Math. Method. Appl. Sci., in press. http://doi.org/10.1002/mma.8234 |
[15] |
S. A. Iqbal, M. G. Hafez, Y.-M. Chu, C. Park, Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative, J. Appl. Anal. Comput., 12 (2022), 770–789. http://doi.org/10.11948/20210324 doi: 10.11948/20210324
![]() |
[16] |
C. Baishya1, S. J. Achar, P. Veeresha, D. G. Prakasha, Dynamics of a fractional epidemiological model with disease infection in both the populations, Chaos, 31 (2021), 043130. http://doi.org/10.1063/5.0028905 doi: 10.1063/5.0028905
![]() |
[17] |
E. Ilhan, P. Veeresha, H. M. Baskonus, Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method, Chaos Soliton. Fract., 152 (2021), 111347. http://doi.org/10.1016/j.chaos.2021.111347 doi: 10.1016/j.chaos.2021.111347
![]() |
[18] |
P. Veeresha, H. M. Baskonus, W. Gao, Strong interacting internal waves in rotating ocean: Novel fractional approach, Axioms, 10 (2021), 123. http://doi.org/10.3390/axioms10020123 doi: 10.3390/axioms10020123
![]() |
[19] |
P. Veeresha, D. G. Prakasha, D. Kumar, An efficient technique for nonlinear time-fractional Klein–Fock–Gordon equation, Appl. Math. Comput., 364 (2020), 124637. http://doi.org/10.1016/j.amc.2019.124637 doi: 10.1016/j.amc.2019.124637
![]() |
[20] |
P. Veeresha, D. G. Prakasha, M. A. Qurashi, D. Baleanu, A reliable technique for fractional modified Boussinesq and approximate long wave equations, Adv. Differ. Equ., 2019 (2019), 253. http://doi.org/10.1186/s13662-019-2185-2 doi: 10.1186/s13662-019-2185-2
![]() |
[21] | T.-H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176. |
[22] |
M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y.-M. Chu, Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2022), 126868. http://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
![]() |
[23] |
Y.-M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano- material surface, Appl. Math. Comput., 419 (2022), 126883. http://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
![]() |
[24] | T.-H. Zhao, M. Ijaz Khan, Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Method. Appl. Sci., in press. http://doi.org/10.1002/mma.7310 |
[25] | K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y.-M. Chu, Almost sectorial operators on \Psi-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.7954 |
[26] |
Y.-M. Chu, U. Nazir, M. Sohail, M. M. Selim, J.-R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. http://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
![]() |
[27] |
S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y.-M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. http://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
![]() |
[28] |
B. S. T. Alkahtani, A. Atangana, Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos Soliton. Fract., 89 (2016), 566–571. https://doi.org/10.1016/j.chaos.2016.03.027 doi: 10.1016/j.chaos.2016.03.027
![]() |
[29] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[30] | T.-H. Zhao, M.-K. Wang, G.-J. Hai, Y.-M. Chu, Landen inequalities for Gaussian hypergeometric function, RACSAM, 116, (2022), 53. https://doi.org/10.1007/s13398-021-01197-y |
[31] |
T.-H. Zhao, M.-K. Wang, Y.-M. Chu, On the bounds of the perimeter of an ellipse, Acta Math. Sci., 42 (2022), 491–501. https://doi.org/10.1007/s10473-022-0204-y doi: 10.1007/s10473-022-0204-y
![]() |
[32] |
T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals, Comput. Methods Funct. Theory, 21 (2021), 413–426. https://doi.org/10.1007/s40315-020-00352-7 doi: 10.1007/s40315-020-00352-7
![]() |
[33] |
L. Wang, X. Chen, Approximate analytical solutions of time fractional Whitham–Broer–Kaup equations by a residual power series method, Entropy, 17 (2015), 6519–6533. http://doi.org/10.3390/e17096519 doi: 10.3390/e17096519
![]() |
[34] |
S. Rashid, K. T. Kubra, H. Jafari, S. U. Lehre, A semi-analytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers, Math. Method. Appl. Sci., 45 (2022), 1033–1062. http://doi.org/10.1002/mma.7833 doi: 10.1002/mma.7833
![]() |
[35] |
P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel simulations to the time-fractional Fisher's equation, Math. Sci., 13 (2019), 33–42. http://doi.org/10.1007/s40096-019-0276-6 doi: 10.1007/s40096-019-0276-6
![]() |
[36] |
M. I. El-Bahi, K. Hilal, Lie symmetry analysis, exact solutions, and conservation laws for the generalized time-fractional KdV-Like equation, J. Funct. Space., 2021 (2021), 6628130. http://doi.org/10.1155/2021/6628130 doi: 10.1155/2021/6628130
![]() |
[37] |
S. C. Shiralashetti, S. Kumbinarasaiah, Laguerre wavelets collocation method for the numerical solution of the Benjamina–Bona-Mohany equations, J. Taibah Univ. Sci., 13 (2019), 9–15. http://doi.org/10.1080/16583655.2018.1515324 doi: 10.1080/16583655.2018.1515324
![]() |
[38] | A. Kadem, D. Baleanu, On fractional coupled Whitham–Broer–Kaup equations, Rom. J. Phys., 56 (2011), 629–635. |
[39] |
G. B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. Lond. A, 299 (1967), 6–25. http://doi.org/10.1098/rspa.1967.0119 doi: 10.1098/rspa.1967.0119
![]() |
[40] |
L. J. F. Broer, Approximate equations for long water waves, Appl. Sci. Res., 31 (1975), 377–395. http://doi.org/10.1007/BF00418048 doi: 10.1007/BF00418048
![]() |
[41] |
D. J. Kaup, A higher-order water-wave equation and the method for solving it, Progress of Theoretical Physics, 54 (1975), 396–408. http://doi.org/10.1143/PTP.54.396 doi: 10.1143/PTP.54.396
![]() |
[42] |
M. Al-Qurashi, S. Rashid, F. Jarad, M. Tahir, A. M. Alsharif, New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method, AIMS Mathematics, 7 (2022), 2044–2060. http://doi.org/10.3934/math.2022117 doi: 10.3934/math.2022117
![]() |
[43] |
S. Rashid, F. Jarad, T. M. Jawa, A study of behaviour for fractional order diabetes model via the nonsingular kernel, AIMS Mathematics, 7 (2022), 5072–5092. http://doi.org/10.3934/math.2022282 doi: 10.3934/math.2022282
![]() |
[44] |
S. Rashid, S. Sultana, R. Ashraf, M. K. A. Kaabar, On comparative analysis for the Black-Scholes model in the generalized fractional derivatives sense via Jafari transform, J. Funct. Space., 2021 (2021), 7767848. http://doi.org/10.1155/2021/7767848 doi: 10.1155/2021/7767848
![]() |
[45] |
S. T. Mohyud-Din, A. Ydrm, G. Demirli, Traveling wave solutions of Whitham–Broer–Kaup equations by homotopy perturbation method, J. King Saud Univ. Sci., 22 (2010), 173–176. http://doi.org/10.1016/j.jksus.2010.04.008 doi: 10.1016/j.jksus.2010.04.008
![]() |
[46] |
S. Saha Ray, A novel method for travelling wave solutions of fractional Whitham-Broer-Kaup, fractional modified Boussinesq and fractional approximate long wave equations in shallow water, Math. Method. Appl. Sci., 38 (2015), 1352–1368. http://doi.org/10.1002/mma.3151 doi: 10.1002/mma.3151
![]() |
[47] |
B. Tian, Y. Qiu, Exact and explicit solutions of Whitham–Broer–Kaup equations in shallow water, Pure and Applied Mathematics Journal, 5 (2016), 174–180. http://doi.org/10.11648/j.pamj.20160506.11 doi: 10.11648/j.pamj.20160506.11
![]() |
[48] | P. Veeresha, D. G. Prakasha, H. M. Baskonus, An efficient technique for coupled fractional Whitham–Broer–Kaup equations describing the propagation of shallow water waves, In: 4th International conference on computational mathematics and engineering sciences (CMES-2019), Cham: Springer, 2019, 49–75. http://doi.org/10.1007/978-3-030-39112-6_4 |
[49] |
J. Singh, D. Kumar, R. Swroop, Numerical solution of time- and space-fractional coupled Burgers' equations via homotopy algorithm, Alex. Eng. J., 55 (2016), 1753–1763. http://doi.org/10.1016/j.aej.2016.03.028 doi: 10.1016/j.aej.2016.03.028
![]() |
[50] |
S. J. Liao, Homotopy analysis method: A new analytical technique for nonlinear problems, Commun. Nonlinear Sci. Numer. Simul., 2 (1997), 95–100. https://doi.org/10.1016/S1007-5704(97)90047-2 doi: 10.1016/S1007-5704(97)90047-2
![]() |
[51] |
S. J. Liao, Homotopy analysis method: a new analytic method for nonlinear problems, Appl. Math. Mech., 19 (1998), 957–962. http://doi.org/10.1007/BF02457955 doi: 10.1007/BF02457955
![]() |
[52] | K. S. Aboodh, The new integral transform "Aboodh transform", Global Journal of Pure and Applied Mathematics, 9 (2013), 35–43. |
[53] |
H. Bulut, D. Kumar, J. Singh, R. Swroop, H. M. Baskonus, Analytic study for a fractional model of HIV infection of CD4+T lymphocyte cells, Math. Nat. Sci., 2 (2018), 33–43. http://doi.org/10.22436/mns.02.01.04 doi: 10.22436/mns.02.01.04
![]() |
[54] |
P. Veeresha, D. G. Prakasha, Solution for fractional Zakharov-Kuznetsov equations by using two reliable techniques, Chinese J. Phys., 60 (2019), 313–330. http://doi.org/10.1016/j.cjph.2019.05.009 doi: 10.1016/j.cjph.2019.05.009
![]() |
[55] |
D. G. Prakasha, P. Veeresha, Analysis of lakes pollution model with Mittag-Leffler kernel, J. Ocean Eng. Sci., 5 (2020), 310–322. http://doi.org/10.1016/j.joes.2020.01.004 doi: 10.1016/j.joes.2020.01.004
![]() |
[56] | M. H. Cherif, D. Ziane, A new numerical technique for solving systems of nonlinear fractional partial differential equations, Int. J. Anal. Appl., 15 (2017), 188–197. |
[57] |
M. A. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag–Leffler kernel, Symmetry, 13 (2021), 2055. http://doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055
![]() |
[58] | G. M. Mittag-Leffler, Sur La nonvelle Fonction E_{\alpha}(x), C. R. Acad. Sci. Paris, (Ser. II), 137 (1903), 554–558. |
[59] |
S. M. El-Sayed, D. Kaya, Exact and numerical travelling wave solutions of Whitham–Broer–Kaup equations, Appl. Math. Comput., 167 (2005), 1339–1349. http://doi.org/10.1016/j.amc.2004.08.012 doi: 10.1016/j.amc.2004.08.012
![]() |
[60] |
M. Rafei, H. Daniali, Application of the variational iteration method to the Whitham-Broer-Kaup equations, Comput. Math. Appl, 54 (2007), 1079–1085. http://doi.org/10.1016/j.camwa.2006.12.054 doi: 10.1016/j.camwa.2006.12.054
![]() |
1. | Hira Soomro, Nooraini Zainuddin, Hanita Daud, Joshua Sunday, Noraini Jamaludin, Abdullah Abdullah, Mulono Apriyanto, Evizal Abdul Kadir, Variable Step Block Hybrid Method for Stiff Chemical Kinetics Problems, 2022, 12, 2076-3417, 4484, 10.3390/app12094484 | |
2. | Zeeshan Ali, Faranak Rabiei, Kamyar Hosseini, A fractal–fractional-order modified Predator–Prey mathematical model with immigrations, 2023, 207, 03784754, 466, 10.1016/j.matcom.2023.01.006 | |
3. | Sümeyra Uçar, Analysis of hepatitis B disease with fractal–fractional Caputo derivative using real data from Turkey, 2023, 419, 03770427, 114692, 10.1016/j.cam.2022.114692 | |
4. | Mohammad Partohaghighi, Ali Akgül, Rubayyi T. Alqahtani, New Type Modelling of the Circumscribed Self-Excited Spherical Attractor, 2022, 10, 2227-7390, 732, 10.3390/math10050732 | |
5. | G.M. Vijayalakshmi, Roselyn Besi. P, A fractal fractional order vaccination model of COVID-19 pandemic using Adam’s moulton analysis, 2022, 8, 26667207, 100144, 10.1016/j.rico.2022.100144 | |
6. | SHAIMAA A. M. ABDELMOHSEN, SHABIR AHMAD, MANSOUR F. YASSEN, SAEED AHMED ASIRI, ABDELBACKI M. M. ASHRAF, SAYED SAIFULLAH, FAHD JARAD, NUMERICAL ANALYSIS FOR HIDDEN CHAOTIC BEHAVIOR OF A COUPLED MEMRISTIVE DYNAMICAL SYSTEM VIA FRACTAL–FRACTIONAL OPERATOR BASED ON NEWTON POLYNOMIAL INTERPOLATION, 2023, 31, 0218-348X, 10.1142/S0218348X2340087X | |
7. | D.A. Tverdyi, R.I. Parovik, A.R. Hayotov, A.K. Boltaev, Распараллеливание численного алгоритма решения задачи Коши для нелинейного дифференциального уравнения дробного переменного порядка с помощью технологии OpenMP, 2023, 20796641, 87, 10.26117/2079-6641-2023-43-2-87-110 | |
8. | Khalid Hattaf, A New Class of Generalized Fractal and Fractal-Fractional Derivatives with Non-Singular Kernels, 2023, 7, 2504-3110, 395, 10.3390/fractalfract7050395 | |
9. | Ali Raza, Ovidiu V. Stadoleanu, Ahmed M. Abed, Ali Hasan Ali, Mohammed Sallah, Heat transfer model analysis of fractional Jeffery-type hybrid nanofluid dripping through a poured microchannel, 2024, 22, 26662027, 100656, 10.1016/j.ijft.2024.100656 | |
10. | Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen, New solutions of time-space fractional coupled Schrödinger systems, 2023, 8, 2473-6988, 27033, 10.3934/math.20231383 | |
11. | Muhammad Shahzad, Soma Mustafa, Sarbaz H A Khoshnaw, Inference of complex reaction mechanisms applying model reduction techniques, 2024, 99, 0031-8949, 045242, 10.1088/1402-4896/ad3291 | |
12. | B. El Ansari, E. H. El Kinani, A. Ouhadan, Symmetry analysis of the time fractional potential-KdV equation, 2025, 44, 2238-3603, 10.1007/s40314-024-02991-1 | |
13. | Muhammad Farman, Changjin Xu, Perwasha Abbas, Aceng Sambas, Faisal Sultan, Kottakkaran Sooppy Nisar, Stability and chemical modeling of quantifying disparities in atmospheric analysis with sustainable fractal fractional approach, 2025, 142, 10075704, 108525, 10.1016/j.cnsns.2024.108525 | |
14. | Hira Khan, Gauhar Rahman, Muhammad Samraiz, Kamal Shah, Thabet Abdeljawad, On Generalized Fractal-Fractional Derivative and Integral Operators Associated with Generalized Mittag-Leffler Function, 2025, 24058440, e42144, 10.1016/j.heliyon.2025.e42144 | |
15. | Emmanuel Kengne, Ahmed Lakhssassi, Dynamics of stochastic nonlinear waves in fractional complex media, 2025, 542, 03759601, 130423, 10.1016/j.physleta.2025.130423 |