This research work appertains to the acceptance sampling plan under the neutrosophic statistical interval method (ASP-NSIM) based on gamma distribution (GD), Burr type XII distribution (BXIID) and the Birnbaum-Saunders distribution (BSD). The plan parameters will be determined using the neutrosophic non-linear optimization problem. We will provide numerous tables for the three distributions using various values of shape parameters and degree of indeterminacy. The efficiency of the proposed ASP-NSIM will be discussed over the existing sampling plan in terms of sample size. The application of the proposed ASP-NSIM will be given with the aid of industrial data.
Citation: Nasrullah Khan, Gadde Srinivasa Rao, Rehan Ahmad Khan Sherwani, Ali Hussein AL-Marshadi, Muhammad Aslam. Uncertainty-based sampling plans for various statistical distributions[J]. AIMS Mathematics, 2023, 8(6): 14558-14571. doi: 10.3934/math.2023744
This research work appertains to the acceptance sampling plan under the neutrosophic statistical interval method (ASP-NSIM) based on gamma distribution (GD), Burr type XII distribution (BXIID) and the Birnbaum-Saunders distribution (BSD). The plan parameters will be determined using the neutrosophic non-linear optimization problem. We will provide numerous tables for the three distributions using various values of shape parameters and degree of indeterminacy. The efficiency of the proposed ASP-NSIM will be discussed over the existing sampling plan in terms of sample size. The application of the proposed ASP-NSIM will be given with the aid of industrial data.
[1] | H. F. Dodge, H. G. Romig, Sampling inspection tables: Single and double sampling, New York: John Wiley & Sons, Inc., 47 (1959). https://doi.org/10.2307/2333339 |
[2] | M. Aslam, M. Azam, C. H. Jun, A new sampling plan under the exponential distribution, Commun. Stat.-Theor. M., 46 (2017), 644–652. https://doi.org/10.1080/03610926.2014.1002936 doi: 10.1080/03610926.2014.1002936 |
[3] | R. R. L. Kantam, K. Rosaiah, G. S. Rao, Acceptance sampling based on life tests: Log-logistic model, J. Appl. Stat., 28 (2001), 121–128. https://doi.org/10.1080/02664760120011644 doi: 10.1080/02664760120011644 |
[4] | A. Yan, S. Liu, Designing a repetitive group sampling plan for Weibull distributed processes, Math. Probl. Eng., 2016. https://doi.org/10.1155/2016/5862071 doi: 10.1155/2016/5862071 |
[5] | R. Bhattacharya, B. Pradhan, A. Dewanji, Computation of optimum reliability acceptance sampling plans in presence of hybrid censoring, Comput. Stat. Data Anal., 83 (2015), 91–100. https://doi.org/10.1016/j.csda.2014.10.002 doi: 10.1016/j.csda.2014.10.002 |
[6] | M. Kumar, P. Ramyamol, Design of optimal reliability acceptance sampling plans for the exponential distribution, Econ. Qual. Control, 31 (2016), 23–36. https://doi.org/10.1515/eqc-2015-0005 doi: 10.1515/eqc-2015-0005 |
[7] | Y. L. Lio, T. R. Tsai, S. J. Wu, Acceptance sampling plans from truncated life tests based on the Birnbaum-Saunders distribution for percentiles, Commun. Stat. Simul. Comput., 39 (2009), 119–136. https://doi.org/10.1080/03610910903350508 doi: 10.1080/03610910903350508 |
[8] | A. Kanagawa, H. Ohta, A design for single sampling attribute plan based on fuzzy sets theory, Fuzzy Set. Syst., 37 (1990), 173–181. https://doi.org/10.1016/0165-0114(90)90040-D doi: 10.1016/0165-0114(90)90040-D |
[9] | F. Tamaki, A. Kanagawa, H. Ohta, A fuzzy design of sampling inspection plans by attributes, J. Jap. Soc. Fuzzy Theor. Syst., 3 (1991), 211–212. https://doi.org/10.3156/jfuzzy.3.4_143 doi: 10.3156/jfuzzy.3.4_143 |
[10] | E. Turanoğlu, I. Kaya, C. Kahraman, Fuzzy acceptance sampling and characteristic curves, Int. J. Comput. Intell. Syst., 5 (2012), 13–29. https://doi.org/10.1080/18756891.2012.670518 doi: 10.1080/18756891.2012.670518 |
[11] | B. S. Gildeh, E. B. Jamkhaneh, G. Yari, Acceptance single sampling plan with fuzzy parameter, Iran. J. Fuzzy Syst., 8 (2011), 47–55. https://doi.org/10.2991/jcis.2008.1 doi: 10.2991/jcis.2008.1 |
[12] | P. R. Divya, Quality interval acceptance single sampling plan with fuzzy parameter using Poisson distribution, Int. J. Adv. Res. Technol., 1 (2012), 115–125. |
[13] | E. B. Jamkhaneh, B. S. Gildeh, Acceptance double sampling plan using fuzzy poisson distribution, World Appl. Sci. J., 16 (2012), 1578–1588. |
[14] | E. B. Jamkhaneh, B. S. Gildeh, Sequential sampling plan using fuzzy SPRT, J. Intell. Fuzzy Syst., 25 (2013), 785–791. https://doi.org/10.3233/IFS-120684 doi: 10.3233/IFS-120684 |
[15] | E. B. Jamkhaneh, B. S. Gildeh, G. Yari, Inspection error and its effects on single sampling plans with fuzzy parameters, Struct. Multidiscip. O., 43 (2011), 555–560. https://doi.org/10.1007/s00158-010-0579-6 doi: 10.1007/s00158-010-0579-6 |
[16] | A. Venkatesh, S. Elango, Acceptance sampling for the influence of TRH using crisp and fuzzy gamma distribution, Aryabhatta J. Math. Inform., 6 (2014), 119–124. |
[17] | S. Elango, A. Venkateh, G. Sivakumar, A fuzzy mathematical analysis for the effect of TRH using acceptance sampling plans, Int. J. Pure Appl. Math., 117 (2017), 1–11. |
[18] | F. Smarandache, Introduction to neutrosophic statistics, Infin. Study, 2014. |
[19] | M. Aslam, A new attribute sampling plan using neutrosophic statistical interval method, Complex Intell. Syst., 5 (2019), 365–370. https://doi.org/10.1007/s40747-018-0088-6 doi: 10.1007/s40747-018-0088-6 |
[20] | J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 doi: 10.3390/sym9100208 |
[21] | J. Chen, J. Ye, S. G. Du, R. Yong, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry, 9 (2017), 123. https://doi.org/10.3390/sym9070123 doi: 10.3390/sym9070123 |
[22] | M. Aslam, O. H. Arif, Testing of grouped product for the Weibull distribution using neutrosophic statistics, Symmetry, 10 (2018), 403. https://doi.org/10.3390/sym10090403 doi: 10.3390/sym10090403 |
[23] | W. H. Woodall, A. R. Driscoll, D. C. Montgomery, A review and perspective on neutrosophic statistical process monitoring methods, IEEE Access, 2022. https://doi.org/10.1109/ACCESS.2022.3207188 doi: 10.1109/ACCESS.2022.3207188 |
[24] | Y. Lio, T. R. Tsai, S. J. Wu, Acceptance sampling plans from truncated life tests based on the Birnbaum-Saunders distribution for percentiles, Commun. Stat. Simul. Comput., 39 (2009), 119–136. https://doi.org/10.1080/03610910903350508 doi: 10.1080/03610910903350508 |
[25] | A. Paka, M. R. Mahmoudi, Estimation of lifetime distribution parameters with general progressive censoring from imprecise data, J. Data Sci., 13 (2015), 807–817. https://doi.org/10.6339/JDS.201510_13(4).0010 doi: 10.6339/JDS.201510_13(4).0010 |
[26] | N. B. Khoolenjani, F. Shahsanaie, Estimating the parameter of exponential distribution under type-Ⅱ censoring from fuzzy data, J. Stat. Theory Appl., 15 (2016), 181–195. https://doi.org/10.2991/jsta.2016.15.2.8 doi: 10.2991/jsta.2016.15.2.8 |
[27] | B. M. Hsu, M. H. Shu, B. S. Chen, Evaluating lifetime performance for the Pareto model with censored and imprecise information, J. Stat. Comput. Simul., 81 (2011), 1817–1833. https://doi.org/10.1080/00949655.2010.506439 doi: 10.1080/00949655.2010.506439 |