Research article Special Issues

Uncertainty-based sampling plans for various statistical distributions

  • Received: 08 November 2022 Revised: 28 February 2023 Accepted: 22 March 2023 Published: 19 April 2023
  • MSC : 62A86

  • This research work appertains to the acceptance sampling plan under the neutrosophic statistical interval method (ASP-NSIM) based on gamma distribution (GD), Burr type XII distribution (BXIID) and the Birnbaum-Saunders distribution (BSD). The plan parameters will be determined using the neutrosophic non-linear optimization problem. We will provide numerous tables for the three distributions using various values of shape parameters and degree of indeterminacy. The efficiency of the proposed ASP-NSIM will be discussed over the existing sampling plan in terms of sample size. The application of the proposed ASP-NSIM will be given with the aid of industrial data.

    Citation: Nasrullah Khan, Gadde Srinivasa Rao, Rehan Ahmad Khan Sherwani, Ali Hussein AL-Marshadi, Muhammad Aslam. Uncertainty-based sampling plans for various statistical distributions[J]. AIMS Mathematics, 2023, 8(6): 14558-14571. doi: 10.3934/math.2023744

    Related Papers:

  • This research work appertains to the acceptance sampling plan under the neutrosophic statistical interval method (ASP-NSIM) based on gamma distribution (GD), Burr type XII distribution (BXIID) and the Birnbaum-Saunders distribution (BSD). The plan parameters will be determined using the neutrosophic non-linear optimization problem. We will provide numerous tables for the three distributions using various values of shape parameters and degree of indeterminacy. The efficiency of the proposed ASP-NSIM will be discussed over the existing sampling plan in terms of sample size. The application of the proposed ASP-NSIM will be given with the aid of industrial data.



    加载中


    [1] H. F. Dodge, H. G. Romig, Sampling inspection tables: Single and double sampling, New York: John Wiley & Sons, Inc., 47 (1959). https://doi.org/10.2307/2333339
    [2] M. Aslam, M. Azam, C. H. Jun, A new sampling plan under the exponential distribution, Commun. Stat.-Theor. M., 46 (2017), 644–652. https://doi.org/10.1080/03610926.2014.1002936 doi: 10.1080/03610926.2014.1002936
    [3] R. R. L. Kantam, K. Rosaiah, G. S. Rao, Acceptance sampling based on life tests: Log-logistic model, J. Appl. Stat., 28 (2001), 121–128. https://doi.org/10.1080/02664760120011644 doi: 10.1080/02664760120011644
    [4] A. Yan, S. Liu, Designing a repetitive group sampling plan for Weibull distributed processes, Math. Probl. Eng., 2016. https://doi.org/10.1155/2016/5862071 doi: 10.1155/2016/5862071
    [5] R. Bhattacharya, B. Pradhan, A. Dewanji, Computation of optimum reliability acceptance sampling plans in presence of hybrid censoring, Comput. Stat. Data Anal., 83 (2015), 91–100. https://doi.org/10.1016/j.csda.2014.10.002 doi: 10.1016/j.csda.2014.10.002
    [6] M. Kumar, P. Ramyamol, Design of optimal reliability acceptance sampling plans for the exponential distribution, Econ. Qual. Control, 31 (2016), 23–36. https://doi.org/10.1515/eqc-2015-0005 doi: 10.1515/eqc-2015-0005
    [7] Y. L. Lio, T. R. Tsai, S. J. Wu, Acceptance sampling plans from truncated life tests based on the Birnbaum-Saunders distribution for percentiles, Commun. Stat. Simul. Comput., 39 (2009), 119–136. https://doi.org/10.1080/03610910903350508 doi: 10.1080/03610910903350508
    [8] A. Kanagawa, H. Ohta, A design for single sampling attribute plan based on fuzzy sets theory, Fuzzy Set. Syst., 37 (1990), 173–181. https://doi.org/10.1016/0165-0114(90)90040-D doi: 10.1016/0165-0114(90)90040-D
    [9] F. Tamaki, A. Kanagawa, H. Ohta, A fuzzy design of sampling inspection plans by attributes, J. Jap. Soc. Fuzzy Theor. Syst., 3 (1991), 211–212. https://doi.org/10.3156/jfuzzy.3.4_143 doi: 10.3156/jfuzzy.3.4_143
    [10] E. Turanoğlu, I. Kaya, C. Kahraman, Fuzzy acceptance sampling and characteristic curves, Int. J. Comput. Intell. Syst., 5 (2012), 13–29. https://doi.org/10.1080/18756891.2012.670518 doi: 10.1080/18756891.2012.670518
    [11] B. S. Gildeh, E. B. Jamkhaneh, G. Yari, Acceptance single sampling plan with fuzzy parameter, Iran. J. Fuzzy Syst., 8 (2011), 47–55. https://doi.org/10.2991/jcis.2008.1 doi: 10.2991/jcis.2008.1
    [12] P. R. Divya, Quality interval acceptance single sampling plan with fuzzy parameter using Poisson distribution, Int. J. Adv. Res. Technol., 1 (2012), 115–125.
    [13] E. B. Jamkhaneh, B. S. Gildeh, Acceptance double sampling plan using fuzzy poisson distribution, World Appl. Sci. J., 16 (2012), 1578–1588.
    [14] E. B. Jamkhaneh, B. S. Gildeh, Sequential sampling plan using fuzzy SPRT, J. Intell. Fuzzy Syst., 25 (2013), 785–791. https://doi.org/10.3233/IFS-120684 doi: 10.3233/IFS-120684
    [15] E. B. Jamkhaneh, B. S. Gildeh, G. Yari, Inspection error and its effects on single sampling plans with fuzzy parameters, Struct. Multidiscip. O., 43 (2011), 555–560. https://doi.org/10.1007/s00158-010-0579-6 doi: 10.1007/s00158-010-0579-6
    [16] A. Venkatesh, S. Elango, Acceptance sampling for the influence of TRH using crisp and fuzzy gamma distribution, Aryabhatta J. Math. Inform., 6 (2014), 119–124.
    [17] S. Elango, A. Venkateh, G. Sivakumar, A fuzzy mathematical analysis for the effect of TRH using acceptance sampling plans, Int. J. Pure Appl. Math., 117 (2017), 1–11.
    [18] F. Smarandache, Introduction to neutrosophic statistics, Infin. Study, 2014.
    [19] M. Aslam, A new attribute sampling plan using neutrosophic statistical interval method, Complex Intell. Syst., 5 (2019), 365–370. https://doi.org/10.1007/s40747-018-0088-6 doi: 10.1007/s40747-018-0088-6
    [20] J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 doi: 10.3390/sym9100208
    [21] J. Chen, J. Ye, S. G. Du, R. Yong, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry, 9 (2017), 123. https://doi.org/10.3390/sym9070123 doi: 10.3390/sym9070123
    [22] M. Aslam, O. H. Arif, Testing of grouped product for the Weibull distribution using neutrosophic statistics, Symmetry, 10 (2018), 403. https://doi.org/10.3390/sym10090403 doi: 10.3390/sym10090403
    [23] W. H. Woodall, A. R. Driscoll, D. C. Montgomery, A review and perspective on neutrosophic statistical process monitoring methods, IEEE Access, 2022. https://doi.org/10.1109/ACCESS.2022.3207188 doi: 10.1109/ACCESS.2022.3207188
    [24] Y. Lio, T. R. Tsai, S. J. Wu, Acceptance sampling plans from truncated life tests based on the Birnbaum-Saunders distribution for percentiles, Commun. Stat. Simul. Comput., 39 (2009), 119–136. https://doi.org/10.1080/03610910903350508 doi: 10.1080/03610910903350508
    [25] A. Paka, M. R. Mahmoudi, Estimation of lifetime distribution parameters with general progressive censoring from imprecise data, J. Data Sci., 13 (2015), 807–817. https://doi.org/10.6339/JDS.201510_13(4).0010 doi: 10.6339/JDS.201510_13(4).0010
    [26] N. B. Khoolenjani, F. Shahsanaie, Estimating the parameter of exponential distribution under type-Ⅱ censoring from fuzzy data, J. Stat. Theory Appl., 15 (2016), 181–195. https://doi.org/10.2991/jsta.2016.15.2.8 doi: 10.2991/jsta.2016.15.2.8
    [27] B. M. Hsu, M. H. Shu, B. S. Chen, Evaluating lifetime performance for the Pareto model with censored and imprecise information, J. Stat. Comput. Simul., 81 (2011), 1817–1833. https://doi.org/10.1080/00949655.2010.506439 doi: 10.1080/00949655.2010.506439
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1336) PDF downloads(42) Cited by(1)

Article outline

Figures and Tables

Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog