This study is devoted to examine the existence and uniqueness behavior of a nonlinear integro-differential equation of Volterra-Fredholm integral type in continues space. Then, we examine its solution by modification of Adomian and homotopy analysis methods numerically. Initially, the proposed model is reformulated into an abstract space, and the existence and uniqueness of solution is constructed by employing Arzela-Ascoli and Krasnoselskii fixed point theorems. Furthermore, suitable conditions are developed to prove the proposed model's continues behavior which reflects the stable generation. At last, three test examples are presented to verify the established theoretical concepts.
Citation: Hawsar HamaRashid, Hari Mohan Srivastava, Mudhafar Hama, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa, Dumitru Baleanu. Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type[J]. AIMS Mathematics, 2023, 8(6): 14572-14591. doi: 10.3934/math.2023745
This study is devoted to examine the existence and uniqueness behavior of a nonlinear integro-differential equation of Volterra-Fredholm integral type in continues space. Then, we examine its solution by modification of Adomian and homotopy analysis methods numerically. Initially, the proposed model is reformulated into an abstract space, and the existence and uniqueness of solution is constructed by employing Arzela-Ascoli and Krasnoselskii fixed point theorems. Furthermore, suitable conditions are developed to prove the proposed model's continues behavior which reflects the stable generation. At last, three test examples are presented to verify the established theoretical concepts.
[1] | Z. Laadjal, Q. Ma, Existence and uniqueness of solutions for nonlinear Volterra-Fredholm integro-differential equation of fractional order with boundary conditions, Math. Method. Appl. Sci., 44 (2021), 8215–8227. http://dx.doi.org/10.1002/mma.5845 doi: 10.1002/mma.5845 |
[2] | H. Singh, M. Sahoo, O. P. Singh, Numerical method based on Galerkin approximation for the fractional advection-dispersion equation, Int. J. Appl. Comput. Math., 3 (2017), 2171–2187. http://dx.doi.org/10.1007/s40819-016-0233-0 doi: 10.1007/s40819-016-0233-0 |
[3] | H. M. Srivastava, P. O. Mohammed, J. L. G. Guirao, Y. S. Hamed, Some higher-degree Lacunary fractional splines in the approximation of fractional differential equations, Symmetry, 13 (2021), 422. http://dx.doi.org/10.3390/sym13030422 doi: 10.3390/sym13030422 |
[4] | V. S. H. Rao, K. K. Rao, On a nonlinear differential-integral equation for ecological problems, Bull. Aust. Math. Soc., 19 (1978), 363–369. http://dx.doi.org/10.1017/S0004972700008911 doi: 10.1017/S0004972700008911 |
[5] | H. Hethcote, D. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biolgy, 9 (1980), 37–47. http://dx.doi.org/10.1007/BF00276034 doi: 10.1007/BF00276034 |
[6] | A. M. Wazwaz, S. El-Sayed, A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. Math. Comput., 122 (2001), 393–405. http://dx.doi.org/10.1016/S0096-3003(00)00060-6 doi: 10.1016/S0096-3003(00)00060-6 |
[7] | N. Bildik, M. Inc, Modified decomposition method for nonlinear Volterra-Fredholm integral equations, Chaos Solit. Fract., 33 (2007), 308–313. http://dx.doi.org/10.1016/j.chaos.2005.12.058 doi: 10.1016/j.chaos.2005.12.058 |
[8] | M. Abdou, M. Youssef, On an approximate solution of a boundary value problem for a nonlinear integro-differential equation, Arab Journal of Basic and Applied Sciences, 28 (2021), 386–396. http://dx.doi.org/10.1080/25765299.2021.1982500 doi: 10.1080/25765299.2021.1982500 |
[9] | H. Rashid, M. Hama, Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions, AIMS Mathematics, 8 (2023), 463–483. http://dx.doi.org/10.3934/math.2023022 doi: 10.3934/math.2023022 |
[10] | L. Dawooda, A. Hamoud, N. Mohammed, Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations, J. Math. Comput. Sci., 21 (2020), 158–163. http://dx.doi.org/10.22436/jmcs.021.02.07 doi: 10.22436/jmcs.021.02.07 |
[11] | M. Rahman, Integral equations and their applications, Southampton: WIT Press, 2007. |
[12] | K. Diethelm, J. Ford, Numerical solution of the Bagley-Torvik equation, BIT Numerical Mathematics, 42 (2002), 490–507. http://dx.doi.org/10.1023/A:1021973025166 doi: 10.1023/A:1021973025166 |
[13] | A. Wazwaz, A new algorithm for calculating adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 33–51. http://dx.doi.org/10.1016/S0096-3003(99)00063-6 doi: 10.1016/S0096-3003(99)00063-6 |
[14] | E. Babolian, J. Biazar, Solution of nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput., 132 (2002), 167–172. http://dx.doi.org/10.1016/S0096-3003(01)00184-9 doi: 10.1016/S0096-3003(01)00184-9 |
[15] | S. Yalcinbas, M. Sezer, The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112 (2000), 291–308. http://dx.doi.org/10.1016/S0096-3003(99)00059-4 doi: 10.1016/S0096-3003(99)00059-4 |
[16] | P. O. Mohammed, J. A. T. Machado, J. L. G. Guirao, R. P. Agarwal, Adomian decomposition and fractional power series solution of a class of nonlinear fractional differential equations, Mathematics, 9 (2021), 1070. http://dx.doi.org/10.3390/math9091070 doi: 10.3390/math9091070 |
[17] | S. M. El-Sayed, D. Kaya, S. Zarea, The decomposition method applied to solve high-order linear Volterra-Fredholm integro-differential equations, Int. J. Nonlin. Sci. Num., 5 (2004), 105–112. http://dx.doi.org/10.1515/IJNSNS.2004.5.2.105 doi: 10.1515/IJNSNS.2004.5.2.105 |
[18] | J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79. http://dx.doi.org/10.1016/S0096-3003(01)00312-5 doi: 10.1016/S0096-3003(01)00312-5 |
[19] | J. H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. http://dx.doi.org/10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005 |
[20] | S. Liao, Homotopy analysis method in nonlinear differential equations, Beijing: Higher Education Press, Berlin: Springer, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0 |
[21] | V. Vlasov, N. Rautian, Study of functional-differential equations with unbounded operator coefficients, Dokl. Math., 96 (2017), 620–624. http://dx.doi.org/10.1134/S1064562417060291 doi: 10.1134/S1064562417060291 |
[22] | V. Lakshmikantham, M. Mohana Rao, Theory of integro-differential equations, Amsterdam: Gordon and Breach Science Publishers, 1995. |
[23] | H. Singh, H. Dutta, M. Cavalcanti, Topics in integral and integro-differential equations: theory and applications, Cham: Springer, 2021. http://dx.doi.org/10.1007/978-3-030-65509-9 |
[24] | S. Axler, Linear algebra done right, Cham: Springer, 2014. http://dx.doi.org/10.1007/978-3-319-11080-6 |
[25] | Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, Singapore: World Scientific, 2016. http://dx.doi.org/10.1142/10238 |
[26] | B. S. Thomson, J. B. Bruckner, A. M. Bruckner, Elementary real analysis, 2 Eds., New Jersey: Prentice Hall, 2008. |
[27] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland: Elsevier, 2006. |
[28] | D. R. Smart, Fixed point theorem, Cambridge: Cambridge University Press, 1980. |
[29] | A. M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 33–51. http://dx.doi.org/10.1016/S0096-3003(99)00063-6 doi: 10.1016/S0096-3003(99)00063-6 |