We consider a mixed system with $ n $ components, where at time $ t, $ all system components are functioning. We then use the system signature to evaluate the extropy of the excess lifetime of the mixed system, which is a useful criterion for predicting the lifetime of the system. We give several results including expressions, bounds, and order conditions for the above measure. Finally, based on the relative extropy, we establish a criterion for selecting a preferred system that is closely related to the parallel system.
Citation: Mohamed Kayid, Mashael A. Alshehri. Excess lifetime extropy for a mixed system at the system level[J]. AIMS Mathematics, 2023, 8(7): 16137-16150. doi: 10.3934/math.2023824
We consider a mixed system with $ n $ components, where at time $ t, $ all system components are functioning. We then use the system signature to evaluate the extropy of the excess lifetime of the mixed system, which is a useful criterion for predicting the lifetime of the system. We give several results including expressions, bounds, and order conditions for the above measure. Finally, based on the relative extropy, we establish a criterion for selecting a preferred system that is closely related to the parallel system.
[1] | N. Ebrahimi, S. N. U. A. Kirmani, Some results on ordering of survival functions through uncertainty, Stat. Probabil. Lett., 29 (1996), 167–176. https://doi.org/10.1016/0167-7152(95)00170-0 doi: 10.1016/0167-7152(95)00170-0 |
[2] | N. Ebrahimi, F. Pellerey, New partial ordering of survival functions based on the notion of uncertainty, J. Appl. Probabil., 32 (1995), 202–211. https://doi.org/10.2307/3214930 doi: 10.2307/3214930 |
[3] | S. Kayal, On a generalized entropy of mixed systems, J. Stat. Manag. Syst., 22 (2019), 1183–1198. https://doi.org/10.1080/09720510.2019.1580899 doi: 10.1080/09720510.2019.1580899 |
[4] | M. Kayid, M. A. Alshehri, Tsallis entropy of a used reliability system at the system level, Entropy, 25 (2023), 1–11. https://doi.org/10.3390/e25040550 doi: 10.3390/e25040550 |
[5] | B. E. Khaledi, M. Shaked, Ordering conditional lifetimes of coherent systems, J. Stat. Plan. Infer., 137 (2007), 1173–1184. https://doi.org/10.1016/j.jspi.2006.01.012 doi: 10.1016/j.jspi.2006.01.012 |
[6] | S. Kochar, H. Mukerjee, F. J. Samaniego, The "signature" of a coherent system and its application to comparisons among systems, Naval Res. Logist., 46 (1999), 507–523. |
[7] | F. Lad, G. Sanfilippo, G. Agrò, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430 |
[8] | X. H. Li, Z. C. Zhang, Some stochastic comparisons of conditional coherent systems, Appl. Stoch. Models Bus. Ind., 24 (2008), 541–549. https://doi.org/10.1002/asmb.715 doi: 10.1002/asmb.715 |
[9] | G. X. Qiu, The extropy of order statistics and record values, Stat. Probabil. Lett., 120 (2017), 52–60. https://doi.org/10.1016/j.spl.2016.09.016 doi: 10.1016/j.spl.2016.09.016 |
[10] | G. X. Qiu, K. Jia, Extropy estimators with applications in testing uniformity, J. Nonparametric Stat., 30 (2018), 182–196. https://doi.org/10.1080/10485252.2017.1404063 doi: 10.1080/10485252.2017.1404063 |
[11] | G. X. Qiu, K. Jia, The residual extropy of order statistics, Stat. Probabil. Lett., 133 (2018), 15–22. https://doi.org/10.1016/j.spl.2017.09.014 doi: 10.1016/j.spl.2017.09.014 |
[12] | G. X. Qiu, L. C. Wang, X. Y. Wang, On extropy properties of mixed systems, Probab. Eng. Inform. Sci., 33 (2019), 471–486. https://doi.org/10.1017/S0269964818000244 doi: 10.1017/S0269964818000244 |
[13] | E. Salehi, M. Tavangar, Stochastic comparisons on conditional residual lifetime and inactivity time of coherent systems with exchangeable components, Stat. Probabil. Lett., 145 (2019), 327–337. https://doi.org/10.1016/j.spl.2018.10.007 doi: 10.1016/j.spl.2018.10.007 |
[14] | F. J. Samaniego, System signatures and their applications in engineering reliability, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-71797-5 |
[15] | M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-34675-5 |
[16] | C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x |
[17] | A. Toomaj, M. Chahkandi, N. Balakrishnan, On the information properties of working used systems using dynamic signature, Appl. Stoch. Models Bus. Ind., 37 (2021), 318–341. https://doi.org/10.1002/asmb.2566 doi: 10.1002/asmb.2566 |
[18] | A. Toomaj, M. Doostparast, Comparisons of mixed systems with decreasing failure rate component lifetimes using dispersive order, Appl. Stoch. Models Bus. Ind., 31 (2015), 801–808. https://doi.org/10.1002/asmb.2102 doi: 10.1002/asmb.2102 |
[19] | Z. C. Zhang, Ordering conditional general coherent systems with exchangeable components, J. Stat. Plan. Infer., 140 (2010), 454–460. https://doi.org/10.1016/j.jspi.2009.07.029 doi: 10.1016/j.jspi.2009.07.029 |