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are functioning. We then use the system signature to evaluate the extropy of the excess lifetime of the
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1. Introduction

Analysis of distribution functions based on partial information is one of the most important topics
in various fields, including biology, survival analysis, reliability engineering, econometrics, statistics,
and demography. Model selection, estimation, hypothesis testing, inequality/poverty assessment, and
portfolio analysis are some examples of relevant activities. The entropy induced by a probability
distribution fulfills numerous applications in information science, physics, probability, statistics,
communication theory, and economics since its full introduction in Shannon’s extensive article [16].
If X is a nonnegative random variable (RV) with an absolutely continuous distribution with density
function (DF) f (x), the Shannon entropy is given by H(X) = H( f ) = −E[log f (X)], assuming that the
expected value exists. Recently, a new measure of uncertainty has been proposed by Lad et al. as a
complementary dual of entropy, called extropy [7]. If X has survival function (SF) S (x) = P(X > x),
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the extropy of X is defined as

J(X) = J( f ) = −
1
2

∫ ∞

0
f 2(x)dx = −

1
2

E[ f (S −1(U))], (1.1)

where U is uniformly distributed on [0, 1], S −1(u) = inf{x; S (x) ≥ u}, for u ∈ [0, 1], denotes its
quantile function. In contrast, Shannon’s measure has been enclosed in a fundamental question since
its inception.

For engineers, the performance and quantification of uncertainties over the lifetime of a system is
quite necessary. The reliability of a system decreases as uncertainty increases, and systems with longer
lifetimes and lower uncertainty are better systems (see, e.g., Ebrahimi and Pellery [2]). If X denotes
the lifetime of a system, then J(X) is used to evaluate its uncertainty. Occasionally, information about
the current age of the system is available. For example, the system may be known to be functioning at
time t and it is therefore interesting to measure how uncertain the residual lifetime of X is after t, i.e.,
Xt = X − t|X > t. In such situations, J(X) can rarely be useful. Therefore, the residual extropy is
defined as

J(Xt) = −
1
2

∫ ∞

0
f 2
t (x)dx = −

1
2

∫ ∞

t

(
f (x)
S (t)

)2

dx, (1.2)

= −
1
2

∫ 1

0
ft(S −1

t (u))du, (1.3)

in which
ft(x) =

f (x + t)
S (t)

, x, t > 0,

is the DF of Xt, and S −1
t (u) = inf{x; S t(x) ≥ u} is the right-continuous inverse function of S t(x) =

S (x + t)/S (t), x, t > 0. Various properties and applications of extropy are studied by Lad et al. [7],
Qiu [9], Qiu and Jia [10,11], and their references. In this case, Qiu et al. [12] explored a formula for the
lifetime extropy of a mixed system, see also Kayal [3] and Toomaj and Doostparast [18]. In this study,
we consider a mixed system with n components, where at time t, all system components are running.
The system signature is then used to evaluate the extropy in the remaining lifetime of a coherent system.
Recently, Kayid and Alshehri [4] studied the Tsallis entropy of the lifetime of a coherent system with n
components, where at time t, all system components are running. The purpose of this paper is to study,
on the basis of extropy, some variability properties of the lifetime of a mixed system which consists
of n components, where at time t, all system components are in operation. These variability properties
help to investigate uncertainty aspects in the excess lifetime of the system. To achieve this goal, the
system signature is used as a tool to establish the extropy of the residual lifetime of a mixed system.
We give an explanation of the extropy of the lifetime of a mixed system as a function of some events.
On the basis of the obtained expression, stochastic orders of the residual lifetime of mixed systems and
limits are determined.

The results reported in this paper are organized as follows: In Section 2, we give an explanation
of the extropy of the lifetime of a mixed system for the case where the system components are in
operation at time t. The signature vector induced by a system is applied for the case where the lifetimes
of the components in a mixed system are independent and also identically distributed. In Section 3, the
residual entropy is also ordered, after establishing some ordering conditions for the system signature. In
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Section 4, some useful thresholds are presented. In Section 5, a new criterion for selecting a preferred
mixed system is presented. Some concluding remarks are given in Section 6.

Throughout the paper, “≤st”, “≤hr”, “≤lr” and “≤d” shall represent the usual stochastic order, hazard
rate order, likelihood ratio order, and dispersive order, respectively. The reader is referred to Shaked
and Shanthikumar [15] for the formal definitions and various properties of these stochastic orders.

2. Excess lifetime extropy

Here, the system signature is adopted to establish the extropy of the excess lifetime of a mixed
system with any system-level structure taking into account that system components are all in operation
at time t. Mixed systems are recognized as a combination of multiple coherent structures. A
coherent system is one if it has no immaterial components and the corresponding structure function
is monotonic. The probability vector p = (p1, . . . , pn) in which the ith point is derived as pi = P(T =
Xi:n), i = 1, 2, . . . , n; is identified as the signature of system (see [14]). Consider a mixed system
having components with independent and identically distributed (i.i.d.) lifetimes X1, . . . , Xn, and a
deterministic signature vector p = (p1, . . . , pn). If T 1,n

t = [T − t|X1:n > t], stands for the excess lifetime
of the system provided that at time t, system components are all running, then from [5] the SF of T 1,n

t

can be acquired as follows:

P(T 1,n
t > x) =

n∑
i=1

piP(Tt
1,i,n > x), (2.1)

where P(Tt
1,i,n > x) = P(Xi:n − t > x|X1:n > t), i = 1, 2, · · · , n, signifies the SF of the excess lifetime of

an i-out-of-n system provided that all of the components are operating at time t. The SF of T 1,i,n
t is

P(Tt
1,i,n > x) =

i−1∑
k=0

(
n
k

)
(1 − S t(x))k (S t(x))n−k , x, t > 0.

It follows from (2.1) that

fT 1,n
t

(x) =
n∑

i=1

pi fTt
1,i,n(x), x, t > 0, (2.2)

where

fTt
1,i,n(x) =

Γ(n + 1)
Γ(i)Γ(n − i + 1)

(1 − S t(x))i−1 (S t(x))n−i ft(x), x, t > 0 (2.3)

is the DF of Tt
1,i,n and Γ(·) denotes the full gamma function. In the following, we will emphasis on the

learning of the extropy of the RV T 1,n
t , which determines the uncertainty degree produced by the DF of

[T − t|X1:n > t], in terms of the anticipatory of the excess lifetime of the system. To reach our goal, the
transformation V = S t(T 1,n

t ) is an important tool. It is not hard to observe that Ui:n = S t(T 1,i,n
t ) has beta

distribution with parameters n − i + 1 and i with the DF

gi(u) =
Γ(n + 1)

Γ(i)Γ(n − i + 1)
(1 − u)i−1un−i, 0 < u < 1, i = 1, · · · , n. (2.4)

We now provide an expression for the extropy of Tt
1,n.
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Theorem 2.1. The extropy of Tt
1,n can be stated as

J(Tt
1,n) = −

1
2

∫ 1

0
g2

V(u) ft(S −1
t (u))du, (2.5)

for all t > 0.

Proof. By making the change of u = S t(x), in spirit of (1.1) and (2.2), we get

J(Tt
1,n) = −

1
2

∫ ∞

0

(
fTt

1,n(x)
)2

dx

= −
1
2

∫ ∞

0

 n∑
i=1

pi fTt
1,i,n(x)

2

dx

= −
1
2

∫ 1

0

 n∑
i=1

pigi(u)

2 (
ft(S −1

t (u))
)

dx

= −
1
2

∫ 1

0
g2

V(u)
(

ft(S −1
t (u))

)
du.

In the final equality gV(u) =
∑n

i=1 pigi(u) is the DF of V denotes the lifetime of the system with i.i.d.
uniform distribution.

In the particular case, if an i-out-of-n system with the system signature p =

(0, . . . , 0, 1i, 0, . . . , 0), i = 1, 2, · · · , n is considered, then Eq (2.5) reduces to

J(T 1,i,n
t ) = −

1
2

∫ 1

0
g2

i (u) ft(S −1
t (u))du, (2.6)

for all t > 0.
The following result is a direct conclusion of Theorem 2.1 dealing with the aging paths of system

components. It is known that X has an increasing (decreasing) failure rate (IFR(DFR)) if S t(x) is
decreasing (increasing) in x for all t > 0.

Theorem 2.2. If X is IFR (DFR), then J(Tt
1,n) is decreasing (increasing) in t.

Proof. We can verify that ft(S −1
t (u)) = uλt(S −1

t (u)), 0 < u < 1. This implies that Eq (2.5) can be
rephrased as

−2J(Tt
1,n) =

∫ 1

0
g2

V(u)uλt(S −1
t (u))du, (2.7)

for all t. On the other hand,

λt(S −1
t (u)) = λ(S −1(uS (t))), 0 < u < 1. (2.8)

If t1 ≤ t2, then S −1(uS (t1)) ≤ S −1(uS (t2)) and so when X is IFR(DFR), from (2.8), we have
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∫ 1

0
g2

V(u)uλt1(S
−1
t1 (u))du =

∫ 1

0
g2

V(u)uλ(S −1(uS (t1)))du

≤ (≥)
∫ 1

0
g2

V(u)uλ(S −1(uS (t2)))du

=

∫ 1

0
g2

V(u)uλt2(S
−1
t2 (u))du.

Using (2.7), we get

−2J(Tt1
1,n) ≤ (≥) − 2J(Tt2

1,n).

This implies that J(Tt1
1,n) ≥ (≤)J(Tt2

1,n) for all t1 ≤ t2 and this completes the proof.

The example below explains Theorems 2.1 and 2.2.

Example 2.1. Consider a bridge system shown in Figure 1 with p = (0, 1/5, 3/5, 1/5, 0) as its signature
vector.

1 4

2 5

3

Figure 1. A coherent system with signature p = (0, 1/5, 3/5, 1/5, 0).

The component lifetimes are assumed to follow Weibull distribution with SF

S (t) = e−tk , k, t > 0. (2.9)

By some routine calculation, we get

J(Tt
1,5) = −

k
2

∫ 1

0

(
tk − log u

)(1− 1
k )

ug2
V(u)du, t > 0.

It is a heavy task to establish a plain statement for the foregoing identity. Thus one may need to
calculate it numerically. In Figure 2, the extropy of Tt

1,5 is plotted with respect to time t for k > 0. In
such situation, X is DFR if 0 < k < 1 and X is IFR when k > 1. As expected from Theorem 2.2, it is
obvious that J(Tt

1,5) increases(decreases) for t when 0 < k < 1(k > 1). The observations are exhibited
in Figure 2.
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Figure 2. The accurate values of J(Tt
1,5) in terms of t for the Weibull distribution for various

values of k > 0.

We compare the extropy entropies of two mixed system’s lifetimes and their excess lifetimes.

Theorem 2.3. Consider a mixed system having component lifetimes which are i.i.d. and they have
IFR (DFR) property. Then J(Tt

1,n) ≤ J(T ), for all t > 0.

Proof. Since X is IFR (DFR), Theorem 3.B.25 of Shaked and Shanthikumar [15] provides that X ≥ (≤
)dXt, for all t > 0, that is

ft(S −1
t (u)) ≥ (≤) f (S −1(u)), 0 < u < 1,

for all t > 0. So, we have∫ 1

0
g2

V(u) ft(S −1
t (u))du ≥ (≤)

∫ 1

0
g2

V(u) f (S −1(u))du, t > 0. (2.10)

Thus, from (2.5) and (2.10), we obtain

J(Tt
1,n) = −

1
2

∫ 1

0
g2

V(u) ft(S −1
t (u))du

≤ (≥) −
1
2

∫ 1

0
g2

V(u) f (S −1(u))du = J(T ).

The proof is thus obtained.

A useful concept in technical reliability is the duality of the system, which reduces the computations
of the signatures of all coherent systems of a given size approximately to half (see, e.g.,
Kochar et al. [6]). If p = (p1, · · · , pn) is the signature of a given mixed system with lifetime Tt

1,n,
then the signature of its dual system with lifetime Tt

D,1,n is pD = (pn, · · · , p1). In the next theorem, we
use the concept of duality to reduce the computation of the residual extropy of mixed systems. First,
we need the following lemma.

Lemma 2.1. If ϕ(x) is a continuous function on [0, 1] such that
∫ 1

0
xnϕ(x)dx = 0 for all n ≥ 0, then

ϕ(x) = 0 for any x ∈ [0, 1].

AIMS Mathematics Volume 8, Issue 7, 16137–16150.
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Theorem 2.4. Let Tt
1,n be the lifetime of a mixed system with signature p consisting of n i.i.d.

components. Then J(T 1,n
t ) = J(T D,1,n

t ) for all p and all n if and only if ft(S −1
t (v)) = ft(S −1

t (1 − v))
satisfies for all 0 < v < 1 and t.

Proof. For the sufficiency, assume that ft(S −1
t (v)) = ft(S −1

t (1−v)) for all 0 < v < 1.Note that gi(1−v) =
gn−i+1(v) for all i = 1, . . . , n and 0 < v < 1. Thus, from (2.5) we have that

J(Tt
D,1,n) = −

1
2

∫ 1

0

 n∑
i=1

pn−i+1gi(u)

2

ft(S −1
t (u))du

= −
1
2

∫ 1

0

 n∑
r=1

prgn−r+1(u)

2

ft(S −1
t (u))du

= −
1
2

∫ 1

0

 n∑
r=1

prgr(1 − u)

2

ft(S −1
t (1 − u))du

= −
1
2

∫ 1

0

 n∑
r=1

prgr(v)

2

ft(S −1
t (v))dv

= J(Tt
1,n).

For the necessity, J(Tt
1,n) = J(Tt

D,1,n) holds for all p and all n. So, let p = (1, 0, . . . , 0), then it follows
from (2.5) that the assumption J(Tt

1,n) = J(Tt
D,1,n) is equivalent to

−
1
2

∫ 1

0
g2

n(u) ft(S −1
t (u))du = −

1
2

∫ 1

0
g2

1(u) ft(S −1
t (u))du

= −
1
2

∫ 1

0
g2

n(1 − u) ft(S −1
t (u))du,

where the identity in the last line is acquired from g1(u) = gn(1 − u), 0 < u < 1. Putting v = 1 − u in
the right side of the foregoing equation yields

−
1
2

∫ 1

0
g2

n(v) ft(S −1
t (v))dv = −

1
2

∫ 1

0
g2

n(v) ft(S −1
t (1 − v))dv.

Thus, we get∫ 1

0
g2

n(v)[ ft(S −1
t (v)) − ft(S −1

t (1 − v))]dv =
∫ 1

0
(1 − v)n−1[ ft(S −1

t (v)) − ft(S −1
t (1 − v))]dv

=

∫ 1

0
un−1[ ft(S −1

t (1 − u)) − ft(S −1
t (u))]du = 0.

Hence, ft(S −1
t (1 − u)) = ft(S −1

t (u)) due to Lemma 2.1 and this completes the proof.

3. Extropy comparison

Given the uncertainties of two mixed systems, this section addresses the stochastic ordering of
the conditional lifetimes of systems. Given several stochastic ordering properties arising from the
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component lifetimes of the system and the corresponding signature vector, we present some results
to select one of the two mixed systems in terms of extropy. Some recent work that has appeared in
the literature on stochastic orders of the residual lifetime of coherent systems can be found in Li and
Zhang [8], Zhang [19], Salehi and Tavangar [13] and the references therein. The next result presents a
comparison of the extropies of the excess lifetimes in two mixed systems.

Theorem 3.1. Let T X,1,n
t = [T − t|X1:n > t] and T Y,1,n

t = [T − t|Y1:n > t] denote the excess lifetimes of two
mixed systems having a common signature vector and component lifetimes X1, . . . , Xn and Y1, . . . ,Yn

which are i.i.d. from SF’s S X(x) and S Y(x), respectively. If X ≤d Y and X or Y is IFR, then J(T X,1,n
t ) ≤

J(T Y,1,n
t ) for all t.

Proof. Relying on the relation (2.5), it suffices to prove that Xt ≤d Yt.Given the assumption that X ≤d Y
and X or Y is IFR, the proof of Theorem 5 in Ebrahimi and Kirmani [1] yields that Xt ≤d Yt and so the
proof ends.

We compare below the residual extropies of two mixed systems having common component
lifetimes but distinct structures.

Theorem 3.2. Let T 1,n
1,t = [T1 − t|X1:n > t] and T 1,n

2,t = [T2 − t|X1:n > t] signifies the excess lifetimes
of two mixed systems associated with signature vectors p1 and p2, respectively, so that p1 ≤lr p2. The
system components are considered i.i.d. with SF S . Then,

(i) if ft(S −1
t (u)) increases in u for all t > 0, then J(T 1,n

1,t ) ≥ J(T 1,n
2,t ) for all t > 0;

(ii) if ft(S −1
t (u)) decreases in u for all t > 0, then J(T 1,n

1,t ) ≤ J(T 1,n
2,t ) for all t > 0.

Proof. Note that the Eq (2.5) can be reformulate as below:

−2J(Tti
1,n) =

∫ 1

0
g2

Vi
(u)du

∫ 1

0
g⋆Vi

(u) ft(S −1
t (u))du (i = 1, 2), (3.1)

where V⋆i has the DF as

g⋆Vi
(u) =

g2
Vi

(u)∫ 1

0
g2

Vi
(u)du

, 0 < u < 1.

Assumption p1 ≤lr p2 implies V1 ≤lr V2 and this gives that V⋆1 ≤lr V⋆2 which means that V⋆1 ≤st V⋆2 . So,
we obtain ∫ 1

0
g⋆V1

(u) ft(S −1
t (u))du ≤ (≥)

∫ 1

0
g⋆V2

(u) ft(S −1
t (u))du, (3.2)

in which the inequality in (3.2) is derived from the property that V⋆1 ≤st V⋆2 implies E[π(V⋆1 )] ≤ (≥
)E[π(V⋆2 )] for all increasing (decreasing) function π. Therefore, relation (3.1) gives

−2J(Tt1
1,n) ≤ (≥) − 2J(Tt2

1,n),

or equivalently J(T1,t
1,n) ≥ (≤)J(T2,t

1,n) for all t > 0.

The following example provides a situation where Theorem 3.2 is applicable.

AIMS Mathematics Volume 8, Issue 7, 16137–16150.
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Example 3.1. Think about two mixed systems of order 4 having excess lifetimes T 1,4
1,t = [T1−t|X1:4 > t]

and T 1,4
2,t = [T2 − t|X1:4 > t] and system signatures p1 = (1

2 ,
1
2 , 0, 0) and p2 = ( 1

4 ,
1
4 ,

1
2 , 0), respectively.

It is uncomplicate to observe and verify that p1 ≤lr p2. Suppose that the component lifetimes are i.i.d.
with the next SF

S (t) = (1 + t)−2, t > 0.

Appealing to some routine calculation, we obtain ft(S −1
t (u)) = 2u

√
u

1+t , t > 0, which is an increasing
function in u, for all t > 0. Hence, by Theorem 3.2, one can claim that J(T 1,4

1,t ) ≥ J(T 1,4
2,t ), for all t > 0.

The accurate values of extropy for such systems are reported in Figure 3.
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J(T1t
14) J(T2t

14)

Figure 3. Residual extropy comparison of T 1,4
1,t and T 1,4

2,t with respect to t given in
Example 3.1.

4. Some bounds

In situations where systems are complex and components are numerous, it is not easy to determine
J(T 1,n

t ) for a mixed system. This situation is common in practice. Under these circumstances, a bound
on the residual extropy may be beneficial in predicting the lifetime of a mixed system. For several
recent papers on boundary conditions for the uncertainty introduced by the lifetime of mixed systems,
the reader is referred to the following sites, for example, [17] and [12] and the references therein. The
next result shows bounds on the extropy of survival of mixed systems based on the extropy of survival
of J(Xt).

Theorem 4.1. Let T 1,n
t = [T − t|X1:n > t] represent the excess lifetime of a mixed system as described

before. Suppose that J(T 1,n
t ) < ∞ for all t. We have

J(T 1,n
t ) ≥ (Bn(p))2 J(Xt), (4.1)

where Bn(p) =
∑n

i=1 pigi(pi), and pi =
n−i
n−1 .

AIMS Mathematics Volume 8, Issue 7, 16137–16150.
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Proof. The beta distribution with parameters n− i+ 1 and i has a mode equal with pi =
n−i
n−1 . Therefore,

gV(v) ≤
n∑

i=1

pigi(pi) = Bn(p), 0 < v < 1.

Thus,

−2J(T 1,n
t ) =

∫ 1

0
g2

V(v) ft(S −1
t (v))dv

≤ (Bn(p))2
∫ 1

0
ft(S −1

t (v))dv

= −2 (Bn(p))2 J(Xt).

The identity in the last line above is derived in view of (1.3). The result is thus proved.

The bound given in (4.1) can be very advantageous when the number of components in systems
increases or the structure of the system becomes more complicated. We now derive a general lower
bound from mathematical aspects of extropy as a measure of information.

Theorem 4.2. Considering the requirements given in Theorem 4.1,

J(T 1,n
t ) ≥

n∑
i=1

piJ(Tt
1,i,n), (4.2)

for all t.

Proof. Applying Jensen’s inequality, one derives

−
1
2

 n∑
i=1

pi fT 1,i,n
t

(x)

2

≥ −
1
2

n∑
i=1

pi f 2
T 1,i,n

t
(x), x, t > 0,

and thus one obtains

J(T 1,n
t ) = −

1
2

(∫ ∞

0
f 2
T 1,n

t
(x)dx

)
≥ −

1
2

 n∑
i=1

pi

∫ ∞

0
f 2
T 1,i,n

t
(x)dx


=

n∑
i=1

piJ(Tt
1,i,n),

which finalizes the proof of the theorem.

Note that the equality in (4.2) holds for i-out-of-n systems, i.e. p j = 0, for j , i, and p j = 1, for
j = i and then J(T 1,n

t ) = J(T 1,i,n
t ). The lower bounds of the two assertions in the Theorems 4.1 and 4.2,

if they are true and can be computed, their maximum can then be recognized as a sharper lower bound.

AIMS Mathematics Volume 8, Issue 7, 16137–16150.
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Example 4.1. Let T 1,5
t = [T − t|X1:5 > t] speak for the excess lifetime in a mixed system with signature

p = (0, 3
10 ,

5
10 ,

2
10 , 0) consisting of n = 5 i.i.d. component lifetimes with uniform distribution in [0, 1].

It is not very complicated to show that B5(p) = 2.22. Thus, by Theorem 4.1, the extropy of T 1,5
t is

bounded as follows:
J(T 1,5

t ) ≥
1.11

(t − 1)
, 0 < t < 1. (4.3)

In addition, the lower bound acquired in (4.2) is found as

J(T 1,5
t ) ≥

[Γ(n + 1)]2

2(t − 1)Γ(2n)

n∑
i=1

pi
Γ(2i − 1)Γ(2n − 2i + 1)

[Γ(i)Γ(n − i + 1)]2 , (4.4)

for all 0 < t < 1. Considering the uniform distribution for the random lifetimes of the components
in the system, we have the limits in (4.3) (dashed line) and also the strict value J(T 1,5

t ) given
by (2.5). Moreover, the limits in (4.4) (dashed line) are also given and the associated observations
are summarized in Figure 4. In this example, the lower bound in (4.4) is found to be more informative
than the lower bound in (4.3).
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Figure 4. Accurate value of J(T 1,5
t ) (solid line) and the lower bounds (4.3) (dotted line)

and (4.4) (dashed line) for the standard uniform distribution in terms of time t.

5. Preferable system

In pairwise comparisons, the physical nature of certain system structures often makes it impossible
to use the usual stochastic arrangement. There are many pairs of systems that are not comparable under
any of the usual stochastic indices. We explore several metrics for comparing system performance with
respect to this type of constraint. In what follows, we present an innovative approach to comparing
information measures. In general, engineers agree that a system that performs over time is best.
It is important that the characteristics of the competing systems be similar. Thus, given the same
characteristics, the parallel system design is found to be more suitable because it has better performance
and longer remaining life among all the systems. As for reliability, from (2.1) we have the following
property:

P(T 1,1,n
t > x) ≤ P(T 1,n

t > x) ≤ P(T 1,n,n
t > x), x > 0,
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for all t > 0. That is, instead of performing a study to compare systems pairwise, a system can be
recognized that has a similar structure to the parallel system. In other words, we are looking for an
answer to the following question: which of these systems is more similar (or closer) to the configuration
of the parallel system and more distant from the configuration of the serial system? To answer this
question, we will use the relative extropy distinction. Recall that the relative extropy in a DF f (x)
relative to g(x) is defined as follows (see Lad et al. [7]):

D(X : Y) =
1
2

∫ ∞

0
[ f (x) − g(x)]2dx ≥ 0, (5.1)

provided the integral is finite. The equality is satisfied if, and only if, f (x) = g(x) almost surely. Based
on this measure,

D(T 1,n
t : Tt

1,1,n) =
1
2

∫ ∞

0

[
fT 1,n

t
(x) − fT 1,1,n

t
(x)

]2
dx, (5.2)

D(T 1,n
t : Tt

1,n,n) =
1
2

∫ ∞

0

[
fT 1,n

t
(x) − fT 1,n,n

t
(x)

]2
dx. (5.3)

Large (small) values of D(T 1,n
t : Tt

1,1,n) (D(T 1,n
t : Tt

1,n,n)) show that residual lifetime’s distribution
of the mixed system T 1,n

t is far from the residual lifetime’s distribution of the parallel system, and is
therefore less preferable. Let us define the preferable system criterion as

J(T 1,n
t ) =

D(T 1,n
t : Tt

1,1,n) − D(T 1,n
t : Tt

1,n,n)

D(T 1,n
t : Tt

1,1,n) + D(T 1,n
t : Tt

1,n,n)
, (5.4)

for all t > 0. It is obvious that −1 ≤ J(T 1,n
t ) ≤ 1 for all t > 0. So we can say that J(T 1,n

t ) = 1 only
if T 1,n

t = Tt
1,n,n and J(T 1,n

t ) = −1 only if T 1,n
t = Tt

1,1,n. In other words, if J(T 1,n
t ) is closer to 1, the

distribution of T 1,n
t is closer to the distribution of the parallel system, and if J(T 1,n

t ) is closer to −1,
the distribution of T 1,n

t is closer to the distribution of the serial system. It is useful to observe that (5.4)
depends on the signature of the system and the parent distribution. We now propose the following
definition for the selection of a preferred system.

Definition 5.1. Let T 1,n
1,t and T 1,n

2,t be excess lifetimes of two mixed systems with n i.i.d. component
lifetimes and dynamic signatures p1 and p2, respectively. We say that T 1,n

2,t is more preferable than T 1,n
1,t

in terms of the dynamic relative extropy (DRE) at time t, denoted by T 1,n
1,t ≤DRE T 1,n

2,t , if and only if
J(T 1,n

1,t ) ≤ J(T 1,n
2,t ) for all t > 0.

If u = S t(x), Eqs (5.2) and (5.3) can then be rewritten as follows:

D(T 1,n
t : Tt

1,1,n) =
1
2

∫ 1

0
[gV(v) − g1(v)]2 ft(S t(v))dv,

D(T 1,n
t : Tt

1,n,n) =
1
2

∫ 1

0
[gV(v) − gn(v)]2 ft(S t(v))dv.

In the next example an application of the proposed measure is introduced.
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Example 5.1. Let T 1,4
1,t and T 1,4

2,t denote the lifetimes of two systems with signatures p1 =

(1/4, 1/4, 1/2, 0) and p2 = (0, 2/3, 1/3, 0), respectively. The lifetimes of the components are assumed
to be i.i.d. with the standard exponential distribution with the SF S (x) = e−x, x > 0.We are aware that
if system components are all functioning, they are not comparable in the sense of the usual stochastic
order. In this case, however, we obtainJ(T 1,4

1,t ) = 0.4117,J(T 1,4
2,t ) = 0.5172 and then T 1,4

1,t ≤DRE T 1,4
2,t for

all t > 0. Therefore, the system with lifetime T 1,4
2,t is more close to the parallel system and is therefore

the preferable one.

6. Conclusions

In recent years, there has been increasing interest in quantifying the uncertainty created by the
lifetime of engineering systems. This criterion can be used to evaluate predictability with respect to
the lifetime of a system. Extropy, as an evolution of Shannon entropy, is very attractive in these cases.
In this work, we have found an expression for the extropy of the system lifetime under the condition
that all system components are functional at time t. Various properties of the proposed measure were
also investigated. Some limits were obtained and partial orderings between the excess lifetimes of two
mixed systems based on their extropy uncertainties were studied using the concept of system signature.
Several examples were also presented to illustrate the applicability of the results.Finally, based on the
relative extropy, we introduced a criterion to choose a preferred system that is closely related to the
parallel system.
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