In this paper, we establish the fixed point results for an orthogonal extended interpolative Ciric Reich-Rus type $ \psi\mathcal{F} $-contraction mapping on an orthogonal complete $ \mathfrak{b} $-metric spaces and give an example to strengthen our main results. Furthermore, we present an application to fixed point results to find analytical solutions for functional equation.
Citation: Menaha Dhanraj, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Rajagopalan Ramaswamy, Khizar Hyatt Khan, Ola Ashour A. Abdelnaby, Stojan Radenović. Fixed point theorem on an orthogonal extended interpolative $ \psi\mathcal{F} $-contraction[J]. AIMS Mathematics, 2023, 8(7): 16151-16164. doi: 10.3934/math.2023825
In this paper, we establish the fixed point results for an orthogonal extended interpolative Ciric Reich-Rus type $ \psi\mathcal{F} $-contraction mapping on an orthogonal complete $ \mathfrak{b} $-metric spaces and give an example to strengthen our main results. Furthermore, we present an application to fixed point results to find analytical solutions for functional equation.
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations untegrales, Fundam. Math., 3 (1922), 133–181. |
[2] | S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727–730. |
[3] | L. B. Ciric, A generalization of Banach's contraction principle, Proc. Am. Math. Soc., 45 (1974), 267–273. |
[4] | R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. |
[5] | S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital., 4 (1971), 1–11. |
[6] | I. A. Rus, Generalized Contractions and Applications, Cluj-Napoca: Cluj University Press, 2001. |
[7] | K. Roy, M. Saha, Fixed point theorems for a pair of generalized contractive mappings over a metric space with an application to homotopy, Acta Univ. Apulensis, 60 (2019). |
[8] | G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, V. Stojiljkovic, Z. M. Fadail, S. Radenović, Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space, AIMS Mathematics, 8 (2023), 3269–3285. https://doi.org/10.3934/math.2023168 doi: 10.3934/math.2023168 |
[9] | I. A. Bakhtin, The contraction mapping principle in almost metric space, Funct. Anal., 30 (1989), 26–37. |
[10] | S. Czerwik, Contraction mapping in $\mathfrak{b}$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[11] | S. Aleksic, H. Huang, Z. D. Mitrovic, S. Radenovic, Remarks on some fixed point results in b-metric space, J. Fixed Point Theory Appl., 20 (2018), 147. https://doi.org/10.1007/s11784-018-0626-2 doi: 10.1007/s11784-018-0626-2 |
[12] | T. Dosenovic, M. Pavlovic, S. Radenovic, Contractive conditions in b-metric spaces, Vojnoteh. Glas., 65 (2017), 851–865. https://doi.org/10.5937/vojtehg65-14817 doi: 10.5937/vojtehg65-14817 |
[13] | W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-10927-5 |
[14] | R. Koleva, B. Zlatanov, On fixed points for Chatterjea's maps in b-metric spaces, Turk. J. Anal. Number Theory, 4 (2016), 31–34. https://doi.org/10.12691/tjant-4-2-1 doi: 10.12691/tjant-4-2-1 |
[15] | R. George, H. A. Nabway, J. Vujaković, R. Ramaswamy, S. Vinayagam, Dislocated quasi cone b-metric space over Banach algebra and contraction principles with application to functional equations, Open Math., 17 (2019), 1065–1081. https://doi.org/10.1515/math-2019-0086 doi: 10.1515/math-2019-0086 |
[16] | R. George, H. A. Nabway, R. Ramaswamy, S. Radenovic, Some generalized contraction classes and common fixed points in b-metric space endowed with a graph, Mathematics, 7 (2019), 754. https://doi.org/10.3390/math7080754 doi: 10.3390/math7080754 |
[17] | R. George, R. Ramaswamy, H. A. Nabway, S. Radenovic, Rectangular cone b-metric spaces over Banach Algebra and contraction principles, Fixed Point Theory Appl., 2017 (2017), 14. https://doi.org/10.1186/s13663-017-0608-x doi: 10.1186/s13663-017-0608-x |
[18] | V. Todorčević, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-22591-9 |
[19] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[20] | M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem, Nonlinear Anal., 22 (2017), 17–30. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2 |
[21] | M. Cosentino, M. Jleli, B. Samet, C. Vetro, Solvability of integro-differential problem via fixed point theory in b-metric spaces, Fixed Point Theory Appl., 2015 (2015), 70. https://doi.org/10.1186/s13663-015-0317-2 doi: 10.1186/s13663-015-0317-2 |
[22] | T. Kamran, M. Postolache, M. U. Ali, Q. Kiran, Feng and Liu type F-contraction in b-metric spaces with application to integral equations, J. Math. Anal., 7 (2016), 1827. |
[23] | N. Secelean, D. Wardowski, $\boldsymbol{\psi}$F-contractions: Not necessarily nonexpansive picard operators, Results Math., 70 (2016), 415–431. https://doi.org/10.1007/s00025-016-0570-7 doi: 10.1007/s00025-016-0570-7 |
[24] | M. E. Gordji, M. Ramezani, M. De La Sen, Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45 doi: 10.24193/fpt-ro.2017.2.45 |
[25] | I. Beg, G. Mani, A. J. Gnanaprakasam, Fixed point of orthogonal $\mathrm{F}$-Suzuki contraction mapping on orthogonal complete ${b}$-metric spaces with applications, J. Funct. Space, 2021 (2021), 6692112. https://doi.org/10.1155/2021/6692112 doi: 10.1155/2021/6692112 |
[26] | M. E. Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algebra, 6 (2017), 251–260. |
[27] | A. J. Gnanaprakasam, G. Mani, J. R. Lee, C. Park, Solving a nonlinear integral equation via orthogonal metric space, AIMS Mathematics, 7 (2022), 1198–1210. https://doi.org/10.3934/math.2022070 doi: 10.3934/math.2022070 |
[28] | G. Mani, A. J. Gnanaprakasam, N. Kausar, M. Munir, Salahuddin, Orthogonal F-contraction mapping on orthogonal CMP with applications, Int. J. Fuzzy Log. Intell. Syst., 21 (2021), 243–250. https://doi.org/10.5391/IJFIS.2021.21.3.243 doi: 10.5391/IJFIS.2021.21.3.243 |
[29] | G. Mani, A. J. Gnanaprakasam, C. Park, S. Yun, Orthogonal F-contractions on orthogonal complete b-metric space, AIMS Mathematics, 6 (2021), 8315–8330. https://doi.org/10.3934/math.2021481 doi: 10.3934/math.2021481 |
[30] | A. Mukheimer, A. J. Gnanaprakasam, A. U. Haq, S. K. Prakasam, G. Mani, I. A. Baloch, Solving an integral equation via orthogonal brianciari metric spaces, J. Funct. Space, 2022 (2022), 7251823. https://doi.org/10.1155/2022/7251823 doi: 10.1155/2022/7251823 |
[31] | A. J. Gnanaprakasam, G. Nallaselli, A. U. Haq, G. Mani, I. A. Baloch, K. Nonlaopon, Common fixed-points technique for the existence of a solution to fractional integro-differential equations via orthogonal branciari metric spaces, Symmetry, 14 (2022), 1859. https://doi.org/10.3390/sym14091859 doi: 10.3390/sym14091859 |
[32] | G. Mani, S. K. Prakasam, A. J. Gnanaprakasam, R. Ramaswamy, O. A. A. Abdelnaby, K. H. Khan, et al., Common fixed point theorems on orthogonal branciari metric spaces with an application, Symmetry, 14 (2022), 2420. https://doi.org/10.3390/sym14112420 doi: 10.3390/sym14112420 |
[33] | S. K. Prakasam, A. J. Gnanaprakasam, N. Kausar, G. Mani, M. Munir, Salahuddin, Solution of integral equation via orthogonally modified F-contraction mappings on O-complete metric-like space, Int. J. Fuzzy Log. Intell. Syst., 22 (2022), 287–295. http://doi.org/10.5391/IJFIS.2022.22.3.287 doi: 10.5391/IJFIS.2022.22.3.287 |
[34] | S. K. Prakasam, A. J. Gnanaprakasam, O. Ege, G. Mani, S. Haque, N. Mlaiki, Fixed point for an $\mathbb{O}g\mathfrak{F}$-c in $\mathbb{O}$-complete b-metric-like spaces, AIMS Mathematics, 8 (2023), 1022–1039. https://doi.org/10.3934/math.2023050 doi: 10.3934/math.2023050 |
[35] | E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135 |
[36] | E. Karapinar, R. P. Agarwal, H. Aydi, Interpolative Reich-Rus-Ciric type contractions on partial metric spaces, Mathematics, 6 (2018), 256. https://doi.org/10.3390/math6110256 doi: 10.3390/math6110256 |
[37] | B. Mohammadi, V. Parvaneh, H. Aydi, On extended interpolative Ciric ReichRus type F-contractions and an application, J. Inequal Appl., 2019 (2019), 290. https://doi.org/10.1186/s13660-019-2227-z doi: 10.1186/s13660-019-2227-z |
[38] | S. Panja, K. Roy, M. Saha, Fixed Point for a class of extended interpolative $\psi F$ -contraction maps over a b-metric space and its application to dynamical programming, U. Politeh. Buch. Ser. A, 83 (2021), 1223–7027. |