Research article

Evaluating COVID-19 in Portugal: Bootstrap confidence interval

  • Received: 18 November 2023 Revised: 17 December 2023 Accepted: 22 December 2023 Published: 29 December 2023
  • MSC : 62F40, 62F25, 62P10

  • In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.

    Citation: Sofia Tedim, Vera Afreixo, Miguel Felgueiras, Rui Pedro Leitão, Sofia J. Pinheiro, Cristiana J. Silva. Evaluating COVID-19 in Portugal: Bootstrap confidence interval[J]. AIMS Mathematics, 2024, 9(2): 2756-2765. doi: 10.3934/math.2024136

    Related Papers:

  • In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.



    加载中


    [1] E. Bertuzzo, L. Mari, D. Pasetto, S. Miccoli, R. Casagrandi, M. Gatto, et al., The geography of COVID-19 spread in Italy and implications for the relaxation of confinement measures, Nat. Commun., 11 (2020). https://doi.org/10.1038/s41467-020-18050-2 doi: 10.1038/s41467-020-18050-2
    [2] B. Machado, L. Antunes, C. Caetano, J. F. Pereira, B. Nunes, P. Patrício, et al., The impact of vaccination on the evolution of COVID-19 in Portugal, Math. Biosci. Eng., 19 (2022), 936–952. https://doi.org/10.3934/mbe.2022043 doi: 10.3934/mbe.2022043
    [3] S. Moore, E. M. Hill, M. J. Tildesley, L. Dyson, M. J. Keeling, Vaccination and non-pharmaceutical interventions for COVID-19: A mathematical modelling study, Lancet Infect. Dis., 21 (2021), 793–802. https://doi.org/10.1016/S1473-3099(21)00143-2 doi: 10.1016/S1473-3099(21)00143-2
    [4] F. Ndairou, I. Area, J. J. Nieto, C. J. Silva, D. F. M. Torres, Fractional model of COVID-19 applied to Galicia, Spain and Portugal, Chaos Soliton. Fract., 144 (2021), 110652. https://doi.org/10.1016/j.chaos.2021.110652 doi: 10.1016/j.chaos.2021.110652
    [5] O. Pinto Neto, D. M. Kennedy, J. C. Reis, Y. Wang, A. C. Brisola Brizzi, G. José Zambrano, et al., Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil, Nat. Commun., 12 (2021), 418. https://doi.org/10.1038/s41467-020-20687-y doi: 10.1038/s41467-020-20687-y
    [6] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, (1991).
    [7] R. M. Anderson, R. M. May, M. C. Boily, G. P. Garnett, J. T. Rowley, The spread of HIV-1 in Africa: sexual contact patterns and the predicted demographic impact of AIDS, Nature, 352 (1991), 581–589. https://doi.org/10.1038/352581a0 doi: 10.1038/352581a0
    [8] N. Bacaër, McKendrick and Kermack on epidemic modelling (1926–1927), A Short History of Mathematical Population Dynamics, Springer, (2011). https://doi.org/10.1007/978-0-85729-115-8_16
    [9] H. W. Hethcote, A thousand and one epidemic models, in Frontiers in mathematical biology. Lecture notes in Biomathematics (eds. Simon A. Levin), Springer, (1984), 100,504–515. https://doi.org/10.1007/978-3-642-50124-1_29
    [10] K. J. B. Villasin, E. M. Rodriguez, A. R. Lao, A Deterministic Compartmental Modeling Framework for Disease Transmission, in Computational Methods in Synthetic Biology. Methods in Molecular Biology (eds M.A. Marchisio), Humana, 2189 (2021), 157–167. https://doi.org/10.1007/978-1-0716-0822-7_12
    [11] Y. Guo, T. Li, Modeling and dynamic analysis of Novel Coronavirus Pneumonia(COVID-19) in China, J. Appl. Math. Comput., 68 (2022), 2641–2666. https://doi.org/10.1007/s12190-021-01611-z doi: 10.1007/s12190-021-01611-z
    [12] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Soliton. Fract., 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [13] T. Li, Y. Guo, Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain, Physica A., 606 (2022), 128134. https://doi.org/10.1016/j.physa.2022.128134 doi: 10.1016/j.physa.2022.128134
    [14] C. J. Silva, C. Cruz, D. F. M. Torres, A. P. Muñuzuri, A. Carballosa, I. Area, et al. Optimal control of the COVID-19 pandemic: controlled sanitary deconfinement in Portugal, Sci. Rep., 11 (2021), 3451. https://doi.org/10.1038/s41598-021-83075-6 doi: 10.1038/s41598-021-83075-6
    [15] C. J. Silva, G. Cantin, C. Cruz, R. Fonseca-Pinto, R. Fonseca, E. S. Santos, et al., Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple epidemic waves, J. Math. Anal. Appl., in press. https://doi.org/10.1016/j.jmaa.2021.125171
    [16] Z. Abreu, G. Cantin, C. J. Silva, Analysis of a COVID-19 compartmental model: a mathematical and computational approach, Math. Biosci. Eng., 18 (1992), 7979–7998. https://doi.org/10.3934/mbe.2021396 doi: 10.3934/mbe.2021396
    [17] K. Soetaert, T. Petzoldt, R. W. Setzer, Solving Differential Equations in R: Package deSolve, J. Stat. Softw., 33 (2010), 1–25. https://doi.org/10.18637/jss.v033.i09 doi: 10.18637/jss.v033.i09
    [18] J. Fox, Applied Regression Analysis and Generalized Models, Sage, Los Angeles, (2016).
    [19] D. A. Freedman, Bootstrapping Regression Models, Ann. Stat., 9 (1981), 1218–1228. https://doi.org/10.1214/aos/1176345638 doi: 10.1214/aos/1176345638
    [20] R. Davidson, J. MacKinnon, Bootstrap Tests: How many bootstraps?, Economet. Rev., l9 (2000), 55–68. https://doi.org/10.1080/07474930008800459 doi: 10.1080/07474930008800459
    [21] D. Q. F. de Menezes, D. M. Prata, A. R. Secchi, J. C. Pinto, A review on robust M-estimators for regression analysis, Comput. Chem. Eng., 147 (2021), 107254. https://doi.org/10.1016/j.compchemeng.2021.107254 doi: 10.1016/j.compchemeng.2021.107254
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1009) PDF downloads(85) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog