Research article Special Issues

Automorphism groups of representation rings of the weak Sweedler Hopf algebras

  • Received: 24 September 2021 Accepted: 07 November 2021 Published: 11 November 2021
  • MSC : 16W20, 19A22

  • Let $ \mathfrak{w}^{s}_{2, 2}(s = 0, 1) $ be two classes of weak Hopf algebras corresponding to the Sweedler Hopf algebra, and $ r(\mathfrak{w}^{s}_{2, 2}) $ be the representation rings of $ \mathfrak{w}^{s}_{2, 2} $. In this paper, we investigate the automorphism groups $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{s}_{2, 2})) $ of $ r(\mathfrak{w}^{s}_{2, 2}) $, and discuss some properties of $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{s}_{2, 2})) $. We obtain that $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{0}_{2, 2})) $ is isomorphic to $ K_4 $, where $ K_4 $ is the Klein four-group. It is shown that $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{1}_{2, 2})) $ is a non-commutative infinite solvable group, but it is not nilpotent. In addition, $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{1}_{2, 2})) $ is isomorphic to $ (\mathbb{Z}\times \mathbb{Z}_{2})\rtimes \mathbb{Z}_{2} $, and its centre is isomorphic to $ \mathbb{Z}_{2} $.

    Citation: Dong Su, Shilin Yang. Automorphism groups of representation rings of the weak Sweedler Hopf algebras[J]. AIMS Mathematics, 2022, 7(2): 2318-2330. doi: 10.3934/math.2022131

    Related Papers:

  • Let $ \mathfrak{w}^{s}_{2, 2}(s = 0, 1) $ be two classes of weak Hopf algebras corresponding to the Sweedler Hopf algebra, and $ r(\mathfrak{w}^{s}_{2, 2}) $ be the representation rings of $ \mathfrak{w}^{s}_{2, 2} $. In this paper, we investigate the automorphism groups $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{s}_{2, 2})) $ of $ r(\mathfrak{w}^{s}_{2, 2}) $, and discuss some properties of $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{s}_{2, 2})) $. We obtain that $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{0}_{2, 2})) $ is isomorphic to $ K_4 $, where $ K_4 $ is the Klein four-group. It is shown that $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{1}_{2, 2})) $ is a non-commutative infinite solvable group, but it is not nilpotent. In addition, $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{1}_{2, 2})) $ is isomorphic to $ (\mathbb{Z}\times \mathbb{Z}_{2})\rtimes \mathbb{Z}_{2} $, and its centre is isomorphic to $ \mathbb{Z}_{2} $.



    加载中


    [1] N. Aizawa, P. S. Isaac, Weak Hopf algebras corresponding to $U_{q}(sl_{n})$, J. Math. Phys., 44 (2003), 5250–5267. doi: 10.1063/1.1616999. doi: 10.1063/1.1616999
    [2] R. C. Alperin, Homology of the group of automorphisms of $k[x, y]$, J. Pure Appl. Algebra, 15 (1979), 109–115. doi: 10.1016/0022-4049(79)90027-6. doi: 10.1016/0022-4049(79)90027-6
    [3] H. Chen, The coalgebra automorphism group of Hopf algebra $k_q[x; x^{-1}; y]$, J. Pure Appl. Algebra, 217 (2013), 1870–1887. doi: 10.1016/j.jpaa.2013.01.013. doi: 10.1016/j.jpaa.2013.01.013
    [4] H. Chen, The Green ring of Drinfeld Double $D(H_{4})$, Algebr. Represent. Th., 17 (2014), 1457–1483. doi: 10.1007/s10468-013-9456-5. doi: 10.1007/s10468-013-9456-5
    [5] H. Chen, F. V. Oystaeyen, Y. Zhang, The Green rings of Taft algebras, Proc. Amer. Math. Soc., 142 (2014), 765–775. doi: 10.1090/S0002-9939-2013-11823-X. doi: 10.1090/S0002-9939-2013-11823-X
    [6] H. Chen, W. Wang, The coalgebra automorphisms of a Hopf algebras, http://www.paper.edu.cn (in Chinese).
    [7] W. Dicks, Automorphisms of the polynomial ring in two variables, Publ. Sec. Mat. Univ. Auton. Barc., 27 (1983), 155–162. doi: 10.5565/PUBLMAT-27183-04. doi: 10.5565/PUBLMAT-27183-04
    [8] J. Han, Y. Su, Automorphism groups of Witt algebras, Mathematics. doi: 10.1007/s10587-016-0314-6.
    [9] T. Hungerford, GTM73 Algebra, New York-Berlin: Springer-Verlag, 1974.
    [10] T. Jia, R. Zhao, L. Li, Automorphism group of Green ring of Sweedler Hopf algebra, Front. Math. China, 11 (2016), 921–932. doi: 10.1007/s11464-016-0565-4. doi: 10.1007/s11464-016-0565-4
    [11] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch Wiskd., 3 (1853), 33–41. doi: 10.1090/S0002-9904-1928-04567-6. doi: 10.1090/S0002-9904-1928-04567-6
    [12] L. Li, Y. Zhang, The Green rings of the generalized Taft Hopf algebras, Contemp. Math., 585 (2013), 275–288. doi: 10.1090/conm/585. doi: 10.1090/conm/585
    [13] D. E. Radford, On the coradical of a finite-dimensional Hopf algebra, Proc. Amer. Math. soc., 53 (1975), 9–15. doi: 10.1090/s0002-9939-1975-0396652-0. doi: 10.1090/s0002-9939-1975-0396652-0
    [14] D. Su, S. Yang, Green rings of weak Hopf algebras based on generalized Taft algebras, Period. Math. Hungar., 76 (2018), 229–242. doi: 10.1007/s10998-017-0221-0. doi: 10.1007/s10998-017-0221-0
    [15] D. Su, S. Yang, Representation rings of small quantum groups $\overline{U}_{q}(sl_{2})$, J. Math. phys., 58 (2017). doi: 10.1063/1.4986839.
    [16] D. Vesselin, J. Yu, Automorphisms of polynomial algebras and Dirichlet series, J. Algebra, 321 (2009), 292–302. doi: 10.1016/j.jalgebra.2008.08.026. doi: 10.1016/j.jalgebra.2008.08.026
    [17] J. Yu, Recognizing automorphisms of polynomial algebras, Mat. Contemp., 14 (1998), 215–225. https://www.mat.unb.br/matcont/.
    [18] K. Zhao, Automorphisms of the binary polynomial algebras on integer rings, Chinese Ann. Math. Ser. A, 4 (1995), 448–494.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1784) PDF downloads(58) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog