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1. Introduction

There are a lot of works about classification of Hopf algebras or Nichols algebras of finite GK-
dimension. For example, the readers can refer to [1, 2]. In the paper [2], Liu tried to classify all prime
Hopf algebras of GK-dimension one and constructed a series of new examples of non-pointed Hopf
algebras D(m, d, γ). As a by-product, a series of finite-dimensional non-semisimple quotient Hopf
algebras are obtained, which have no Chevalley property. To understand this new class of quotient
Hopf algebras, we see that those quotient Hopf algebras under the conditions that n is odd and d = 2n,
denoted by D(n), are just isomorphic to an extension of the generalized quaternion group algebra kQ4n

equipped with a nontrivial suitable coalgebraic structure. It is well known that the representations of
the generalized quaternion group Q4n have been known for a long time. In [3, 4], all the irreducible
representations of Q4n are given. As applications, [5] determined the complex representation rings of
Q4n and gave the isomorphism class of the n-th augmentation quotient of the augmentation ideal. In [6]
the group code over the generalized quaternion group Q4n is studied, which is based on representations
of Q4n. It is important in cryptography.

The task of this paper is to classify all the indecomposable modules of D(n) explicitly. The
decomposition formulas of the tensor products of them are established. Finally, we describe the
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representation ring of D(n) by generators and generating relations. There is much effort to put
into understanding and classifying all indecomposable modules of algebras of finite representation
type. The readers can refer to the books [7, 8] for the representation theory of algebras and some
newest results [9, 10] for example. In [11], Yang determined the representation type of a class of
pointed Hopf algebras and classified all indecomposable modules of simple-pointed Hopf algebra
R(q, α). In the paper [12], the representations of the half of the small quantum group uq(sl2) were
constructed by the technique of the deformed preprojective algebras. Furthermore, a lot of papers
investigated the representation rings of various Hopf algebras, the readers can refer to [13–17]. By
techniques of generators and generating relations, Su and Yang described representation rings of the
weak generalized Taft Hopf algebras as well as some small quantum groups in [15, 16]. Sun et al.
described the representation rings of Drinfeld doubles of Taft algebras in [17]. Motivated by the above
works, we shall establish the decomposition formulas of the tensor products of the indecomposable
D(n)-modules and determine the representation ring of D(n). This can help us to understand the
structure and representation theory of D(n) in a better way.

The paper is organized as follows. In Section 2, we review the definition of D(n) and show that
D(n) is of finite representation type. In Section 3, we shall construct all the indecomposable D(n)-
modules and establish all the decomposition formulas of the tensor product of two indecomposable
D(n)-modules. In Section 4, we characterize the representation ring of D(n) by three generators and
some generating relations.

For the theories of Hopf algebras and representation theory, we refer to [7, 8, 18, 19].

2. Preliminaries

Throughout this paper, we work over an algebraic closed field k of characteristic 0. Unless
otherwise stated, all algebras, Hopf algebras, and modules are finite-dimensional over k, all maps are
k-linear, dim and ⊗ stand for dimk and ⊗k, respectively. In this paper, we describe the representations
of a quotient of the Hopf algebra D(m, d, γ) for the case of m = 2.

Firstly, we review the definition of the Hopf algebra D(2, d, γ) in [2]. Let 2|d. As an algebra, it is
generated by a±1, b±1, c, u0, u1, subject to the following relations

aa−1 = a−1a = 1, bb−1 = b−1b = 1, a2d = b2, c2 = 1 − a2d, (2.1)
ab = ba, ac = ca, cb = −bc, auk = uka−1(k = 1, 2), (2.2)
cu0 = 2u1 = ωadu0c, cu1 = 0 = u1c, u0b = a−2dbu0, u1b = −a−2dbu1, (2.3)

u2
0 = a−

3d
2 b, u2

1 = 0, u0u1 = −
1
2
ωa−

3d
2 cb, u1u0 =

1
2

a−
3d
2 cb, (2.4)

where ω ∈ k is a primitive 4-th root of unity. The comultiplication ∆, the counit ϵ and the antipode S
of D(2, d, γ) are given by

∆(a) = a ⊗ a, ∆(b) = b ⊗ b, ∆(c) = c ⊗ b + 1 ⊗ c,

∆(u0) = u0 ⊗ u0 − u1 ⊗ a−dbu1, ∆(u1) = u0 ⊗ u1 + u1 ⊗ a−dbu0,

ϵ(a) = ϵ(b) = ϵ(u0) = 1, ϵ(c) = ϵ(u0) = 0,
S (a) = a−1, S (b) = b−1, S (c) = −cb−1, S (u0) = a−

3d
2 bu0, S (u1) = −ωa−

d
2 u1.
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From now on, assume that n is odd and d = 2n. Let D(n) be the quotient Hopf algebra

D(n) =: D(2, d, γ)/(an − 1).

We claim that the Hopf algebra D(n) can be viewed as the Hopf algebra generated by x, y, z satisfying
the following relations

x2n = 1, y2 = 0, xn = z2, xy = −yx, xz = zx−1, yz = ωzy.

The comultiplication ∆, the counit ϵ and the antipode S are given by

∆(x) = x ⊗ x, ∆(y) = 1 ⊗ y + y ⊗ z2, ∆(z) = z ⊗ z + yz ⊗ yz−1,

ϵ(x) = ϵ(z) = 1, ϵ(y) = 0, S (x) = x−1, S (y) = −yz2, S (z) = z−1.

Indeed, we define the maps φ and ψ as

φ : a 7→ xz2, b 7→ z2, c 7→ 2y, u0 7→ z, u1 7→ yz

and
ψ : x 7→ ab, y 7→

1
2

c, z 7→ u0,

respectively. It is straightforward to check that φ and ψ are Hopf algebra isomorphisms and ψ ◦φ = id.
Hence we have the claim.

Now, we use the later generators and relations to define the Hopf algebra D(n). Actually, D(n) is a
class of non-pointed Hopf algebras.

It is noted that the generalized quaternion group algebra kQ4n of order 4n is defined as

kQ4n = k⟨x, z| x2n = 1, xn = z2, xz = zx−1⟩.

Obviously, it can be embedded into the algebra D(n) as an algebra, but not as a Hopf algebra.
Firstly, we determine the representation type of D(n) as an algebra.

Lemma 2.1. The algebra D(n) is of finite representation type.

Proof. Let Q4n be the generalized quaternion group

⟨x, z|x2n = 1, xn = z2, xz = zx−1⟩,

and A = k⟨y|y2 = 0⟩ a k-algebra. It is obvious that A is of finite representation type. Define

y · x = −y, y · z = ωy.

Since (y · x)(y · x) = 0, (y · z)(y · z) = 0, Q4n can be viewed as subgroup of AutAlg(A). Therefore, we
have the skew group algebra Q4n ∗ A, whose multiplication is given by

(h ∗ a)(k ∗ b) = hk ∗ (a · k)b

for any h, k ∈ Q4n, a, b ∈ A.
It is easy to see that A can be viewed as the subalgebra of Q4n ∗ A and

(x ∗ 1)(1 ∗ y) = x ∗ y, (1 ∗ y)(x ∗ 1) = x ∗ (y · x) = −x ∗ y,

(z ∗ 1)(1 ∗ y) = z ∗ y, (1 ∗ y)(z ∗ 1) = z ∗ (y · z) = ωz ∗ y,

and D(n) � Q4n ∗ A as an algebra. Consequently, D(n) is of finite representation type as an algebra
by [20, Theorem 1.1, Theorem 1.3(a)]. □
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3. The indecomposable modules of D(n) and their tensor products

In this section, we mainly construct all the indecomposable D(n)-modules and establish their tensor
products. It is remarked that the simple modules of the algebra G ∗ B are completely understood, and
coincide with those of the group G for which B acts as zero (see [21]).

Firstly we classify all the indecomposable modules of D(n). Let ξ ∈ k be a primitive 2n-th root
of unity.

Theorem 3.1. (a) There are 4 pairwise non-isomorphic 1-dimensional D(n)-modules S i with basis
{vi} for 0 ≤ i ≤ 3, the action of D(n) is defined by

x · vi = (−1)ivi, y · vi = 0, z · vi = ω
ivi.

(b) There are n − 1 pairwise non-isomorphic 2-dimensional simple D(n)-modules M j with basis
{v1

j , v
2
j} for 1 ≤ j ≤ n − 1, the action of D(n) is defined by

x · v1
j = ξ

jv1
j , x · v2

j = ξ
− jv2

j ,

y · v1
j = 0, y · v2

j = 0,

z · v1
j = v2

j , z · v2
j = (−1) jv1

j .

(c) There are 4 pairwise non-isomorphic 2-dimensional indecomposable projective D(n)-modules Pi

with basis {µ1
i , µ

2
i } for 0 ≤ i ≤ 3, the action of D(n) is defined by

x · µ1
i = (−1)iµ1

i , x · µ2
i = (−1)i+1µ2

i ,

y · µ1
i = µ

2
i , y · µ2

i = 0,
z · µ1

i = ω
iµ1

i , z · µ2
i = −ω

i+1µ2
i .

(d) There are n−1 pairwise non-isomorphic 4-dimensional indecomposable projective D(n)-modules
T j with basis {ϑ1

j , ϑ
2
j , ϑ

3
j , ϑ

4
j} for 1 ≤ j ≤ n − 1, the action of D(n) is defined by

x · ϑ1
j = ξ

jϑ1
j , x · ϑ2

j = ξ
− jϑ2

j , x · ϑ3
j = −ξ

jϑ3
j , x · ϑ4

j = −ξ
− jϑ4

j ,

y · ϑ1
j = ϑ

3
j , y · ϑ2

j = ϑ
4
j , y · ϑ3

j = 0, y · ϑ4
j = 0,

z · ϑ1
j = ϑ

2
j , z · ϑ2

j = (−1) jϑ1
j , z · ϑ3

j = −ωϑ
4
j , z · ϑ4

j = ω(−1) j+1ϑ3
j .

Proof. The results of (a),(b) are showed in [5, 6, 21].
Firstly, we construct the 2-dimensional indecomposable non-simple D(n)-modules. Let x · µi = λiµ

i

for i = 1, 2, λi ∈ k and y · µ1 , 0. Suppose that y · µ1 = µ̄1, it is obvious that µ̄1 and µ1 are linearly
independent. We might let y · µ1 = µ̄1 =: µ2 as well, then y · µ2 = 0. Since x · µ2 = x · (y · µ1) =
−y · (x · µ1) = −λ1µ

2, there is λ2 = −λ1. Now consider z · µ1. If z · µ1 and µ1, µ2 are linearly dependent,
let z · µ1 = p1µ

1 + p2µ
2, p1, p2 ∈ k, then z · µ2 = z · (y · µ1) = −ωy · (z · µ1) = −ωp1µ

2. By z2 = xn, it’s
easy to see (1 + ω)p1 p2 = 0 and p2

1 = λ
n
1, so p2 = 0 for p1 , 0. Since λ2n

1 = 1, λn
1 = p2

1 = ±1. When
λn

1 = 1, p1 = ±1, there is λ1 = λ
−1
1 by xz = zx−1, thus λ1 = ±1. But if λ1 = −1, then λn

1 = −1 , 1, which
is a contradiction. Thus λ1 = 1. Similarly, if λn

1 = −1, then λ1 = −1, it also gets a contradiction. Hence
we get (c).
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Next, let x · v1 = ξ
iv1 for some i ∈ Z2n, z · v1 = v2, y · v1 = v3, here ξ is a primitive 2n-th root of unity.

Then
x · v2 = x · (z · v1) = zx−1 · v1 = ξ

−iz · v1 = ξ
−iv2

and
x · v3 = −ξ

iv3, y · v2 = ωz · v3, y · v3 = 0, z · v2 = (−1)iv1.

Obviously, z · v3 , 0.
If z · v3 and v1, v2, v3 are linearly dependent, let z · v3 = av1+bv2+ cv3, a, b, c ∈ k. By xz = zx−1, it’s

easy to get that a = b = 0. Since z4 = 1, we can set z ·v3 = ω
kv3 for some k ∈ Z4, where ω is a primitive

4-th root of unity, then y · v2 = ω
k+1v3. At this time, the matrices of x, y, z acting on {v1, v2, v3} are

x 7→


ξi 0 0
0 ξ−i 0
0 0 −ξi

 , y 7→


0 0 0
0 0 0
1 ωk+1 0

 , z 7→


0 (−1)i 0
1 0 0
0 0 ωk

 ,
respectively. It is directly checked that all the generating relations are satisfied only when i = 0 or
i = n. If i = 0, then

x 7→


1 0 0
0 1 0
0 0 −1

 , y 7→


0 0 0
0 0 0
1 ±1 0

 , z 7→


0 1 0
1 0 0
0 0 ∓ω

 ;

If i = n, then

x 7→


−1 0 0
0 −1 0
0 0 1

 , y 7→


0 0 0
0 0 0
1 ±ω 0

 , z 7→


0 −1 0
1 0 0
0 0 ±1

 .
Now we use a unified expression to describe such modules Vk with a basis {ν1

k , ν
2
k , ν

3
k} for 0 ≤ k ≤ 3,

and the matrices of x, y, z acting on this basis are

x 7→


(−1)k 0 0

0 (−1)k 0
0 0 (−1)k+1

 , y 7→


0 0 0
0 0 0
1 ωk 0

 , z 7→


0 (−1)k 0
1 0 0
0 0 ωk−1

 ,
respectively. In fact, these modules are decomposable. For, let

{ω1
k := −ωkν1

k + ν
2
k , ω

2
k :=

1
2

((−1)kν1
k + ω

kν2
k), ω3

k := ν3
k |0 ≤ k ≤ 3}

be another basis, then the matrices of x, y, z acting on {ω1
k , ω

2
k , ω

3
k} are

x 7→


(−1)k 0 0

0 (−1)k 0
0 0 (−1)k+1

 , y 7→


0 0 0
0 0 0
0 1 0

 , z 7→


−ωk 0 0

0 ωk 0
0 0 ωk−1

 ,
respectively. Thus we get that

Vk = k{ω
1
k} ⊕ k{ω

2
k , ω

3
k} � S k+2 ⊕ Pk.
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Moreover, if z · v3 and v1, v2, v3 are linearly independent, let z · v3 = v4, then

x · v4 = −ξ
−iv4, y · v2 = ωv4, y · v4 = 0, z · v4 = (−1)i+1v3,

and the matrices of x, y, z acting on {v1, v2, v3, v4} are

x 7→


ξi 0 0 0
0 ξ−i 0 0
0 0 −ξi 0
0 0 0 −ξ−i

 , y 7→


0 0 0 0
0 0 0 0
1 0 0 0
0 ω 0 0

 , z 7→


0 (−1)i 0 0
1 0 0 0
0 0 0 (−1)i+1

0 0 1 0

 ,
respectively. We set v′4 = ωv4 to get the result (d). It is noted that when n < i < 2n, let v̄1 := v2, v̄2 :=
(−1)iv1, v̄3 := v4, v̄4 := (−1)iv3, then the matrices of x, y, z acting on this basis are

x 7→


ξ2n−i 0 0 0

0 ξi−2n 0 0
0 0 −ξ2n−i 0
0 0 0 −ξi−2n

 , y 7→


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,

z 7→


0 (−1)i 0 0
1 0 0 0
0 0 0 ω(−1)i+1

0 0 −ω 0

 ,
respectively. Therefore when n < i < 2n, the modules are isomorphic to the case of 2n−i. Furthermore,
when i = 0, we choose the basis

{v̄1 := v1 + v2, v̄2 := v3 + v4, v̄3 := v1 − v2, v̄4 := v3 − v4},

then the matrices of x, y, z acting on this basis are

x 7→


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , y 7→


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , z 7→


1 0 0 0
0 −ω 0 0
0 0 −1 0
0 0 0 ω

 ,
respectively. Hence it is decomposable and isomorphic to P0 ⊕ P2. Similarly, for the case i = n, the
module is decomposable and isomorphic to P1 ⊕ P3. Indeed, we choose the basis

{v̄1 := v1 + ωv2, v̄2 := v3 + ωv4, v̄3 := v1 − ωv2, v̄4 := v3 − ωv4},

then the matrices of x, y, z acting on this basis are

x 7→


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , y 7→


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , z 7→


−ω 0 0 0
0 −1 0 0
0 0 ω 0
0 0 0 1

 ,
AIMS Mathematics Volume 6, Issue 10, 10523–10539.
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respectively. Therefore, we get the result (d).
Then we claim that Pi(0 ≤ i ≤ 3) and T j(1 ≤ j ≤ n − 1) are indecomposable projective modules.
In fact, we know that the primitive idempotents of D(n) are listed in [6] as

e0 =
1

4n

2n−1∑
k=0

xk(1 + z), e1 =
1

4n

2n−1∑
k=0

(−x)k(1 − iz),

e2 =
1

4n

2n−1∑
k=0

xk(1 − z), e3 =
1

4n

2n−1∑
k=0

(−x)k(1 + iz).

Since
xe0 = e0, xe1 = −e1, xe2 = e2, xe3 = −e3,

and
ze0 = e0, ze1 = ωe1, ze2 = −e2, ze3 = −ωe3,

then k{ei, yei|0 ≤ i ≤ 3} consist of four indecomposable modules of D(n) and are isomorphic to Pi,

respectively. Thus D(n)ei � Pi is an indecomposable projective module.
For 0 ≤ j ≤ 2n − 1, set

θ j =
1

2n

2n−1∑
r=0

ξ− jr xr,

then {θ0, θ1, · · · , θ2n−1} is a set of orthogonal idempotents of D(n). Since xθ j = ξ
jθ j, the matrices of

x, y, z act on {θ j, zθ j, yθ j, yzθ j}, are

x 7→


ξ j 0 0 0
0 ξ− j 0 0
0 0 −ξ j 0
0 0 0 −ξ− j

 , y 7→


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , z 7→


0 (−1) j 0 0
1 0 0 0
0 0 0 ω(−1) j+1

0 0 −ω 0

 ,
respectively. By the result of (d), we know that k{θ j, zθ j, yθ j, yzθ j} � T j for 1 ≤ j ≤ n − 1, so
D(n)θ j � T j is an indecomposable projective module.

The straightforward verification shows that Pi(0 ≤ i ≤ 3) and T j(1 ≤ j ≤ n − 1) are uniserial, that
is 0 ⊂ S i−1(mod 4) ⊂ Pi and 0 ⊂ Mn− j ⊂ T j are the unique composition series of Pi and T j, respectively.
Since D(n) is a Frobenius algebra and thus is self-injective, we get that all the indecomposable
projective modules are indecomposable injective modules. Therefore D(n) is a Nakayama algebra.
By [8, Theorem V.3.5], the modules listed above are all the indecomposable modules of D(n).

The proof is completed. □

Corollary 3.2. (1) For all 0 ≤ i ≤ 3, Pi is the projective cover of S i.
(2) For all 1 ≤ j ≤ n − 1, T j is the projective cover of M j.

Proof. The results is directly obtained by [8, Lemma 5.6]. □

Let H be a Hopf algebra, M and N be left H-modules. It has been known that M ⊗k N is a left
H-module defined by

h · (m ⊗ n) =
∑
(h)

h(1) · m ⊗ h(2) · n

AIMS Mathematics Volume 6, Issue 10, 10523–10539.
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for all h ∈ H, m ∈ M and n ∈ N, where ∆(h) =
∑

(h) h(1) ⊗ h(2).

The remaining of this section is devoted to establishing all the decomposition formulas of the tensor
products of two indecomposable D(n)-modules.

Theorem 3.3. (1) (a) For 0 ≤ i, j ≤ 3,

S i ⊗ S j � S j ⊗ S i � S i+ j(mod 4).

(b) For 1 ≤ j ≤ n − 1,

S i ⊗ M j � M j ⊗ S i �

M j, i = 0, 2,
Mn− j, i = 1, 3.

(c) For 0 ≤ i, j ≤ 3,
S i ⊗ P j � P j ⊗ S i � Pi+ j(mod 4).

(d) For 1 ≤ j ≤ n − 1,

S i ⊗ T j � T j ⊗ S i �

T j, i = 0, 2,
Tn− j, i = 1, 3.

(2) (a) For 1 ≤ i, j ≤ n − 1,

Mi ⊗ M j �



Mi+ j ⊕ M|i− j|, 0 < i + j < n, i , j

M2n−(i+ j) ⊕ M|i− j|, n < i + j < 2n, i , j

M|i− j| ⊕ S 1 ⊕ S 3, i + j = n, i , j

Mi+ j ⊕ S 0 ⊕ S 2, i = j, 0 < i + j < n,

M2n−(i+ j) ⊕ S 0 ⊕ S 2, i = j, n < i + j < 2n.

(b) For 1 ≤ i ≤ n − 1, 0 ≤ j ≤ 3,

Mi ⊗ P j � P j ⊗ Mi �

Ti, j = 0, 2,
Tn−i, j = 1, 3.

(c) For 1 ≤ i, j ≤ n − 1,

Mi ⊗ T j � T j ⊗ Mi �



Ti+ j ⊕ T |i− j|, 0 < i + j < n, i , j

T2n−(i+ j) ⊕ T |i− j|, n < i + j < 2n, i , j

P1 ⊕ P3 ⊕ T |i− j|, i + j = n, i , j

Ti+ j ⊕ P0 ⊕ P2, i = j, 0 < i + j < n,

T2n−(i+ j) ⊕ P0 ⊕ P2, i = j, n < i + j < 2n.

(3) (a) For 0 ≤ i, j ≤ 3,
Pi ⊗ P j � P j ⊗ Pi � Pi+ j(mod 4) ⊕ Pi+ j+1(mod 4).

(b) For 1 ≤ j ≤ n − 1, 0 ≤ i ≤ 3,

Pi ⊗ T j � T j ⊗ Pi � T j ⊕ Tn− j.

AIMS Mathematics Volume 6, Issue 10, 10523–10539.
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(4) For 1 ≤ i, j ≤ n − 1,

Ti ⊗ T j �



Ti+ j ⊕ T |i− j| ⊕ Tn−(i+ j) ⊕ Tn−|i− j|, 0 < i + j < n, i , j

T2n−(i+ j) ⊕ T |i− j| ⊕ T(i+ j)−n ⊕ Tn−|i− j|, n < i + j < 2n, i , j

P0 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ T |i− j| ⊕ Tn−|i− j|, i + j = n, i , j

P0 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ Ti+ j ⊕ Tn−(i+ j), i = j, 0 < i + j < n,

P0 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ T2n−(i+ j) ⊕ T(i+ j)−n, i = j, n < i + j < 2n.

Proof. For S i ⊗ S j, let vi j := vi ⊗ v j, then

x · vi j = (−1)i+ jvi j, y · vi j = 0, z · vi j = ω
i+ jvi j,

thus S i ⊗ S j � S i+ j(mod 4) � S j ⊗ S i.

For S i ⊗ M j, let v1
i j := vi ⊗ v1

j , v2
i j := vi ⊗ v2

j , then

x · v1
i j = (−1)iξ jv1

i j, y · v1
i j = 0, z · v1

i j = ω
iv2

i j,

x · v2
i j = (−1)iξ− jv2

i j, y · v2
i j = 0, z · v2

i j = (−1) jωiv1
i j,

thus S i ⊗ M j � M j when i = 0, 2 and S i ⊗ M j � Mn− j when i = 1, 3. Similarly, we can get the same
results of M j ⊗ S i.

For S i ⊗ P j, let µ1
i j := vi ⊗ µ

1
j , µ

2
i j := vi ⊗ µ

2
j , then

x · µ1
i j = (−1)i+ jµ1

i j, y · µ1
i j = µ

2
i j, z · µ1

i j = ω
i+ jµ2

i j,

x · µ2
i j = (−1)i+ j+1µ2

i j, y · µ2
i j = 0, z · µ2

i j = −ω
i+ j+1µ1

i j,

thus S i ⊗ P j � Pi+ j(mod 4). The same results of P j ⊗ S i can be obtained in the same way.
For S i ⊗ T j, let ϑ1

i j := vi ⊗ ϑ
1
j , ϑ

2
i j := vi ⊗ ϑ

2
j , ϑ

3
i j := vi ⊗ ϑ

3
j , ϑ

4
i j := vi ⊗ ϑ

4
j , then

x · ϑ1
i j = (−1)iξ jϑ1

i j, y · ϑ1
i j = ϑ

3
i j, z · ϑ1

i j = ω
iϑ2

i j,

x · ϑ2
i j = (−1)iξ− jϑ2

i j, y · ϑ2
i j = ϑ

4
i j, z · ϑ2

i j = (−1) jωiϑ1
i j,

x · ϑ3
i j = (−1)i+1ξ jϑ3

i j, y · ϑ3
i j = 0, z · ϑ3

i j = −ω
i+1ϑ4

i j,

x · ϑ4
i j = (−1)i+1ξ− jϑ4

i j, y · ϑ4
i j = 0, z · ϑ4

i j = (−1) j+1ωi+1ϑ3
i j,

thus S i ⊗ T j � T j when i = 0, 2 and S i ⊗ T j � Tn− j when i = 1, 3. Similarly, we get the same results of
T j ⊗ S i.

For Mi ⊗ M j, let ω1
i j := v1

i ⊗ v1
j , ω

2
i j := v1

i ⊗ v2
j , ω

3
i j := v2

i ⊗ v1
j , ω

4
i j := v2

i ⊗ v2
j , then

x · ω1
i j = ξ

i+ jω1
i j, y · ω1

i j = 0, z · ω1
i j = ω

4
i j,

x · ω2
i j = ξ

i− jω2
i j, y · ω2

i j = 0, z · ω2
i j = (−1) jω3

i j,

x · ω3
i j = ξ

j−iω3
i j, y · ω3

i j = 0, z · ω3
i j = (−1)iω2

i j,

x · ω4
i j = ξ

−(i+ j)ω4
i j, y · ω4

i j = 0, z · ω4
i j = (−1)i+ jω1

i j.
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Obviously, when 0 < i + j, i − j < n, Mi ⊗ M j � Mi+ j ⊗ Mi− j. Besides, we need to note that when
n < i + j < 2n, let ω̄1

i j := ω4
i j, ω̄

2
i j := (−1)i+ jω1

i j, then

x · ω̄1
i j = ξ

2n−(i+ j)ω̄1
i j, y · ω̄1

i j = 0, z · ω̄1
i j = ω̄

2
i j,

x · ω̄2
i j = ξ

i+ j−2nω̄2
i j, y · ω̄2

i j = 0, z · ω̄2
i j = (−1)i+ jω̄1

i j.

Therefore, k{ω̄1
i j, ω̄

2
i j} � Mi+ j. When −n < i− j < 0, n < i− j+2n < 2n, using the previous conclusion,

we directly get that k{ω̄3
i j := ω3

i j, ω̄
4
i j := (−1)iω2

i j} � M j−i.

In particular, when i+ j = n, the matrices of x, y, z acting on the basis {ω̄1
i j, ω̄

2
i j} are simultaneously

diagonalizable. Thus the modules are isomorphic to S 1 ⊕ S 3; when i − j = 0, the matrices of x, y, z
acting on the basis {ω̄3

i j, ω̄
4
i j} are also simultaneously diagonalizable and isomorphic to S 0 ⊕ S 2. In fact

we might assume that i ≥ j since the result of M j ⊗ Mi are the same as Mi ⊗ M j.

For Mi ⊗ P j, let ν̄1
i j := v1

i ⊗ µ
1
j , ν̄

2
i j := ω jv2

i ⊗ µ
1
j , ν̄

3
i j := v1

i ⊗ µ
2
j , ν̄

4
i j := ω jv2

i ⊗ µ
2
j , then

x · ν̄1
i j = (−1) jξiν̄1

i j, y · ν̄1
i j = ν̄

3
i j, z · ν̄1

i j = ν̄
2
i j,

x · ν̄2
i j = (−1) jξ−iν̄2

i j, y · ν̄2
i j = ν̄

4
i j, z · ν̄2

i j = (−1)i+ jν̄1
i j,

x · ν̄3
i j = (−1) j+1ξiν̄3

i j, y · ν̄3
i j = 0, z · ν̄3

i j = −ων̄
4
i j,

x · ν̄4
i j = (−1) j+1ξ−iν̄4

i j, y · ν̄4
i j = 0, z · ν̄4

i j = ω(−1)i+ j+1ν̄3
i j.

Thus when j = 0, 2, Mi ⊗ P j � P j ⊗ Mi � Ti; when j = 1, 3, Mi ⊗ P j � P j ⊗ Mi � Tn−i,

For Mi ⊗ T j, let {ϑ̄1
i j := v1

i ⊗ ϑ
1
j , ϑ̄

2
i j := v2

i ⊗ ϑ
2
j , ϑ̄

3
i j := v1

i ⊗ ϑ
3
j , ϑ̄

4
i j := v2

i ⊗ ϑ
4
j , ϑ̄

5
i j := v1

i ⊗ ϑ
2
j , ϑ̄

6
i j :=

(−1) jv2
i ⊗ ϑ

1
j , ϑ̄

7
i j := v1

i ⊗ ϑ
4
j , ϑ̄

8
i j := (−1) jv2

i ⊗ ϑ
3
j}, then

x · ϑ̄1
i j = ξ

i+ jϑ̄1
i j, y · ϑ̄1

i j = ϑ̄
3
i j, z · ϑ̄1

i j = ϑ̄
2
i j,

x · ϑ̄2
i j = ξ

−(i+ j)ϑ̄2
i j, y · ϑ̄2

i j = ϑ̄
4
i j, z · ϑ̄2

i j = (−1)i+ jϑ̄1
i j,

x · ϑ̄3
i j = −ξ

i+ jϑ̄3
i j, y · ϑ̄3

i j = 0, z · ϑ̄3
i j = −ωϑ̄

4
i j,

x · ϑ̄4
i j = −ξ

−(i+ j)ϑ̄4
i j, y · ϑ̄4

i j = 0, z · ϑ̄4
i j = ω(−1)i+ j+1ϑ̄3

i j,

x · ϑ̄5
i j = ξ

i− jϑ̄5
i j, y · ϑ̄5

i j = ϑ̄
7
i j, z · ϑ̄5

i j = ϑ̄
6
i j,

x · ϑ̄6
i j = ξ

j−iϑ̄6
i j, y · ϑ̄6

i j = ϑ̄
8
i j, z · ϑ̄6

i j = (−1)i− jϑ̄5
i j,

x · ϑ̄7
i j = −ξ

i− jϑ̄7
i j, y · ϑ̄7

i j = 0, z · ϑ̄7
i j = −ωϑ̄

8
i j,

x · ϑ̄8
i j = −ξ

j−iϑ̄8
i j, y · ϑ̄8

i j = 0, z · ϑ̄8
i j = ω(−1)i− j+1ϑ̄7

i j.

Obviously, when 0 < i + j, i − j < n, Mi ⊗ T j � Ti+ j ⊕ Ti− j. It has been shown that in Theorem 3.1
when n < i + j < 2n, these modules k{ϑ̄1

i j, ϑ̄
2
i j, ϑ̄

3
i j, ϑ̄

4
i j} are isomorphic to the cases of 2n − (i + j).

When −n < i − j < 0, n < i − j + 2n < 2n, it’s clear to get that the modules are isomorphic to the case
of 2n − (i − j + 2n) = j − i.

For Pi ⊗ P j, we have known that 0 ⊂ S i−1(mod 4) ⊂ Pi is the unique composition series of Pi for
0 ≤ i ≤ 3. Thus there is an exact sequence

0 −→ S i−1(mod 4) −→ Pi −→ S i −→ 0.

By Corollary 3.2, Pi = P(S i), so there is a split exact sequence

0 −→ S i−1(mod 4) ⊗ P j −→ Pi ⊗ P j −→ S i ⊗ P j −→ 0.
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Hence
Pi ⊗ P j � S i−1(mod 4) ⊗ P j ⊕ S i ⊗ P j � Pi+ j−1(mod 4) ⊕ Pi+ j(mod 4).

For Pi ⊗ T j, similarly, we have the split exact sequence

0 −→ S i−1(mod 4) ⊗ T j −→ Pi ⊗ T j −→ S i ⊗ T j −→ 0.

Hence
Pi ⊗ T j � S i−1(mod 4) ⊗ T j ⊕ S i ⊗ T j � T j ⊕ Tn− j.

For Ti ⊗ T j, i > j, the unique composition series of Ti is 0 ⊂ Mn−i ⊂ Ti for 1 ≤ i ≤ n − 1, and there
is an exact sequence

0 −→ Mn−i −→ Ti −→ Mi −→ 0

and the split exact sequence

0 −→ Mn−i ⊗ T j −→ Ti ⊗ T j −→ Mi ⊗ T j −→ 0

for T j = P(M j). Hence

Ti ⊗ T j � Mn−i ⊗ T j ⊕ Mi ⊗ T j � Tn−i+ j ⊕ Tn−i− j ⊕ Ti+ j ⊕ Ti− j.

Then applying the result of (2)(c), we get the result (4). For i < j, the result is similar.
The proof is finished. □

Corollary 3.4. The tensor product of any two D(n)-modules is commutative.

4. The representation ring of D(n)

Let H be a finite dimensional Hopf algebra and F(H) the free abelian group generated by the
isomorphic classes [M] of finite dimensional H-modules M. The abelian group F(H) becomes a
ring if we endow F(H) with a multiplication given by the tensor product [M][N] = [M ⊗ N]. The
representation ring (or Green ring) r(H) of the Hopf algebra H is defined to be the quotient ring of
F(H) modulo the relations [M ⊕ N] = [M] + [N]. It follows that the representation ring r(H) is an
associative ring with identity given by [kε], the trivial 1-dimensional H-module. Note that r(H) has
a Z-basis consisting of isomorphic classes of finite dimensional indecomposable H-modules. In this
section we will describe the representation ring r(D(n)) of the Hopf algebra D(n) explicitly by the
generators and the generating relations.

Let Fq(y, z) be the generalized Fibonacci polynomials defined by

Fq+2(y, z) = zFq+1(y, z) − yFq(y, z)

for q ≥ 1, while F0(y, z) = 0, F1(y, z) = 1, F2(y, z) = z. These generalized Fibonacci polynomials
appeared in [13, 14].

Lemma 4.1. [13, Lemma 3.11] Let Z[y, z] be the polynomial algebra over Z in two variables y and z.
Then for any q ≥ 1, we have

Fq(y, z) =

[ q−1
2

]∑
i=0

(−1)i

(
q − 1 − i

i

)
yizq−1−2i,

where
[

q−1
2

]
denotes the biggest integer which is not bigger than q−1

2 .
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Let [S 1] = α, [M1] = β and [P0] = γ. In the following the sum
∑m

i=0 disappears if m < 0.

Lemma 4.2. The following statements hold in r(D(n)).

1. α4 = 1, α2β = β, αγ = γ(γ − 1);
2. [S i] = αi, [Pi] = αiγ (0 ≤ i ≤ 3);
3. For 1 ≤ j ≤ n − 1,

[M j] =


∑ j−1

2
i=0(−1)i

(
j−i
i

)
β j−2i −

∑ j−3
2

i=0(−1)i
(

j−2−i
i

)
β j−2−2i, j is odd,∑ j

2
i=0(−1)i

(
j−i
i

)
β j−2i −

∑ j−4
2

i=0(−1)i
(

j−2−i
i

)
β j−2−2i + (−1)

j
2α2, j is even;

(4.1)

[T j] =


∑ j−1

2
i=0(−1)i

(
j−i
i

)
β j−2iγ −

∑ j−3
2

i=0(−1)i
(

j−2−i
i

)
β j−2−2iγ, j is odd,∑ j

2
i=0(−1)i

(
j−i
i

)
β j−2iγ −

∑ j−4
2

i=0(−1)i
(

j−2−i
i

)
β j−2−2iγ + (−1)

j
2α2γ, j is even.

(4.2)

Proof. The results of (1), (2) are easy to get from Theorem 3.3(1)(a)–(c) and (3)(a).
We prove (3) by induction. By Theorem 3.3(2)(a), there is

[M2] = β2 − (1 + α2) = F3(1, β) − α2

and
[M3] = [M1][M2] − [M1] = β3 − 2β − α2β = β3 − 3β = F4(1, β) − F2(1, β).

Suppose that (4.1) holds for j − 1 being odd and j being even, then for j + 1 we have

[M j+1]
= [M j][M1] − [M j−1]
=

(
F j+1(1, β) − α2F j−1(1, β)

)
β −

(
F j(1, β) − F j−2(1, β)

)
=

(
F j+1(1, β)β − F j(1, β)

)
− α2(F j−1(1, β)β − F j−2(1, β)

)
= F j+2(1, β) − α2F j(1, β)

=

j
2∑

i=0

(−1)i

(
j + 1 − i

i

)
β j+1−2i − α2

j−2
2∑

i=0

(−1)i

(
j − 1 − i

i

)
β j−1−2i

=

j
2∑

i=0

(−1)i

(
j + 1 − i

i

)
β j+1−2i −

j−2
2∑

i=0

(−1)i

(
j − 1 − i

i

)
β j−1−2i.

Similarly, suppose that (4.1) holds for j − 1 being even and j being odd, then for j + 1 we directly
get that

[M j+1] =

j+1
2∑

i=0

(−1)i

(
j + 1 − i

i

)
β j+1−2i − α2

j−1
2∑

i=0

(−1)i

(
j − 1 − i

i

)
β j−1−2i

=

j+1
2∑

i=0

(−1)i

(
j + 1 − i

i

)
β j+1−2i −

j−3
2∑

i=0

(−1)i

(
j − 1 − i

i

)
β j−1−2i − (−1)

j−1
2 α2.

By Theorem 3.3(2)(b), we know that M j ⊗ P0 � T j, thus the Eq (4.2) is obvious to be obtained. □
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Corollary 4.3. Keep the notations above.

1. If n−1
2 is odd, then

n+1
4∑

i=0

(−1)i

( n+1
2 − i

i

)
β

n+1
2 −2i −

n−7
4∑

i=0

(−1)i

( n−3
2 − i

i

)
β

n−3
2 −2i + (−1)

n+1
4 α2

= α

n−3
4∑

i=0

(−1)i

( n−1
2 − i

i

)
β

n−1
2 −2i − α

n−7
4∑

i=0

(−1)i

( n−5
2 − i

i

)
β

n−5
2 −2i.

2. If n−1
2 is even, then

n−1
4∑

i=0

(−1)i

( n+1
2 − i

i

)
β

n+1
2 −2i −

n−5
4∑

i=0

(−1)i

( n−3
2 − i

i

)
β

n−3
2 −2i

= α

n−1
4∑

i=0

(−1)i

( n−1
2 − i

i

)
β

n−1
2 −2i − α

n−9
4∑

i=0

(−1)i

( n−5
2 − i

i

)
β

n−5
2 −2i + (−1)

n−1
4 α3.

Proof. Since [S 1][M n−1
2

] = [M n+1
2

] by Theorem 3.3(1)(b), and using the equations of (4.1) in
Lemma 4.2, we can easily get the results. □

Corollary 4.4. Keep notations as above, then the sets

{αiγk | 0 ≤ i ≤ 3, 0 ≤ k ≤ 1} ∪ {αiβ jγk | 0 ≤ i ≤ 1, 1 ≤ j ≤
n − 1

2
, 0 ≤ k ≤ 1}

form a Z-basis of r(D(n)).

Proof. By Lemma 4.1, α4 = 1, and there is a one-to-one correspondence between the set {αi, αiγ | 0 ≤
i ≤ 3} and the set of D(n)-modules {[S i], [Pi] | 0 ≤ i ≤ 3}. By the Eq (4.1), we know that [M j] is a
Z-polynomial with α and β, and when j ≥ n+1

2 , [M j] = [S 1][Mn− j]. By Corollary 4.3, we know that
the highest degree of β in this polynomial is n−1

2 , and {[M j] | 1 ≤ j ≤ n − 1} is a Z-linear combination
of {αi | 0 ≤ i ≤ 3}, {αβ j | 1 ≤ j ≤ n−1

2 } and {β j | 1 ≤ j ≤ n−1
2 }. Consequently, [T j] is a Z-polynomial

with α, β, γ and the highest degree of γ in this polynomial is 1 since γ2 = αγ + γ. Therefore [T j] is a
Z-linear combination of {αi | 0 ≤ i ≤ 3}, {αβ jγ | 1 ≤ j ≤ n−1

2 } and {β jγ | 1 ≤ j ≤ n−1
2 }.

The result is obtained. □

Theorem 4.5. The representation ring r(D(n)) is a commutative ring generated by a, b, c, subject to
the following relations

a4 = 1, a2b = b, ac = c(c − 1)

and

b
n+1

2 = −

n+1
4∑

i=1

(−1)i

( n+1
2 − i

i

)
b

n+1
2 −2i +

n−7
4∑

i=0

(−1)i

( n−3
2 − i

i

)
b

n−3
2 −2i + (−1)

n+5
4 a2

+ a

n−3
4∑

i=0

(−1)i

( n−1
2 − i

i

)
b

n−1
2 −2i − a

n−7
4∑

i=0

(−1)i

( n−5
2 − i

i

)
b

n−5
2 −2i
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if n−1
2 is odd, or

b
n+1

2 = −

n−1
4∑

i=1

(−1)i

( n+1
2 − i

i

)
b

n+1
2 −2i +

n−5
4∑

i=0

(−1)i

( n−3
2 − i

i

)
b

n−3
2 −2i + (−1)

n−1
4 a3

+ a

n−1
4∑

i=0

(−1)i

( n−1
2 − i

i

)
b

n−1
2 −2i − a

n−9
4∑

i=0

(−1)i

( n−5
2 − i

i

)
b

n−5
2 −2i

if n−1
2 is even.

Proof. By Corollary 3.4, we know that the ring r(D(n)) is a commutative ring generated by α, β and γ,
there is a unique ring epimorphism

Φ : Z[a, b, c]→ r(D(n))

from Z[a, b, c] to r(D(n)) such that

Φ(a) = α, Φ(b) = β, Φ(c) = γ.

By Lemma 4.1, there is
α4 = 1, α2β = β, αγ = γ(γ − 1),

thus we have
Φ(a4 − 1) = 0, Φ(a2b − b) = 0, Φ(ac − c(c − 1)) = 0.

Note that by Corollary 4.3,

β
n+1

2 = −

n+1
4∑

i=1

(−1)i

( n+1
2 − i

i

)
β

n+1
2 −2i +

n−7
4∑

i=0

(−1)i

( n−3
2 − i

i

)
β

n−3
2 −2i + (−1)

n+5
4 α2

+ α

n−3
4∑

i=0

(−1)i

( n−1
2 − i

i

)
β

n−1
2 −2i − α

n−7
4∑

i=0

(−1)i

( n−5
2 − i

i

)
β

n−5
2 −2i

when n−1
2 is odd, or

β
n+1

2 = −

n−1
4∑

i=1

(−1)i

( n+1
2 − i

i

)
β

n+1
2 −2i +

n−5
4∑

i=0

(−1)i

( n−3
2 − i

i

)
β

n−3
2 −2i + (−1)

n−1
4 α3

+ α

n−1
4∑

i=0

(−1)i

( n−1
2 − i

i

)
β

n−1
2 −2i − α

n−9
4∑

i=0

(−1)i

( n−5
2 − i

i

)
β

n−5
2 −2i

when n−1
2 is even. Thus Φ maps

AIMS Mathematics Volume 6, Issue 10, 10523–10539.



10537

b
n+1

2 +

n+1
4∑

i=1

(−1)i

( n+1
2 − i

i

)
b

n+1
2 −2i −

n−7
4∑

i=0

(−1)i

( n−3
2 − i

i

)
b

n−3
2 −2i − (−1)

n+5
4 a2

− a
[ n−3

4 ]∑
i=0

(−1)i

( n−1
2 − i

i

)
b

n−1
2 −2i + a

n−7
4∑

i=0

(−1)i

( n−5
2 − i

i

)
b

n−5
2 −2i

or

b
n+1

2 +

n−1
4∑

i=1

(−1)i

( n+1
2 − i

i

)
b

n+1
2 −2i −

n−5
4∑

i=0

(−1)i

( n−3
2 − i

i

)
b

n−3
2 −2i − (−1)

n−1
4 a3

− a

n−1
4∑

i=0

(−1)i

( n−1
2 − i

i

)
b

n−1
2 −2i + a

n−9
4∑

i=0

(−1)i

( n−5
2 − i

i

)
b

n−5
2 −2i

to 0. It follows that Φ(I) = 0, and Φ induces a ring epimorphism

Φ : Z[a, b, c]/I → r(D(n))

such that Φ(ν) = Φ(ν) for all ν ∈ Z[a, b, c], where ν = π(ν) and π is the natural epimorphism
Z[a, b, c] → Z[a, b, c]/I. Note that the ring r(D(n)) is a free Z-module of rank 2n + 6 with the Z-
basis {αiγk | 0 ≤ i ≤ 3, 0 ≤ k ≤ 1} ∪ {αiβ jγk | 0 ≤ i ≤ 1, 1 ≤ j ≤ n−1

2 , 0 ≤ k ≤ 1}, so we can define a
Z-module homomorphism

Ψ : r(D(n)) −→ Z[a, b, c]/I
αiγk 7→ aick (0 ≤ i ≤ 3, 0 ≤ k ≤ 1),

αiβ jγk 7→ aib jck (0 ≤ i ≤ 1, 1 ≤ j ≤
n − 1

2
, 0 ≤ k ≤ 1).

On the other hand, as a free Z-module, Z[a, b, c]/I is generated by elements aick (0 ≤ i ≤ 3, 0 ≤ k ≤ 1)
and aib jck (0 ≤ i ≤ 1, 1 ≤ j ≤ n−1

2 , 0 ≤ k ≤ 1), we have

ΨΦ(aick) = ΨΦ(aick) = Ψ(αiγk) = aick,

ΨΦ(aib jck) = ΨΦ(aib jck) = Ψ(αiβ jγk) = aib jck.

Hence ΨΦ = id, and Φ is injective. Thus, Φ is a ring isomorphism.
The proof is finished. □

Example 4.6. We have the following examples.

• The representation ring r(D(3)) is a commutative ring generated by a, b, c, subject to the
following relations

a4 = 1, a2b = b, ac = c(c − 1), b2 = ab + a2 + 1.

• The representation ring r(D(5)) is a commutative ring generated by a, b, c, subject to the
following relations

a4 = 1, a2b = b, ac = c(c − 1), b3 = ab2 + 3b − a3 − a.
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5. Conclusions

We have constructed all the indecomposable modules of the non-pointed Hopf algebra D(n) and
established the decomposition formulas of the tensor product of any two indecomposable modules. The
representation ring r(D(n)) has been characterized by generators and relations. In the further work, we
hope to construct all the simple Yetter-Drinfeld modules of D(n) and classify all the finite-dimensional
Nichols algebras and finite-dimensional Hopf algebras over D(n).
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