Associated with a reductive algebraic group $ G $ and its rational representation $ (\rho, M) $ over an algebraically closed filed $ {\bf{k}} $, the authors define the enhanced reductive algebraic group $ {\underline{G}}: = G\ltimes_\rho M $, which is a product variety $ G\times M $ and endowed with an enhanced cross product in [
Citation: Yunpeng Xue. On enhanced general linear groups: nilpotent orbits and support variety for Weyl module[J]. AIMS Mathematics, 2023, 8(7): 14997-15007. doi: 10.3934/math.2023765
Associated with a reductive algebraic group $ G $ and its rational representation $ (\rho, M) $ over an algebraically closed filed $ {\bf{k}} $, the authors define the enhanced reductive algebraic group $ {\underline{G}}: = G\ltimes_\rho M $, which is a product variety $ G\times M $ and endowed with an enhanced cross product in [
[1] | P. N. Achar, A. Henderson, Orbit closures in the enhanced nilpoten cone, Adv. Math., 219 (2008), 27–62. https://doi.org/10.1016/j.aim.2008.04.008 doi: 10.1016/j.aim.2008.04.008 |
[2] | J. C. Jantzen, Support varieties of Weyl modules, Bull. London Math. Soc., 19 (1987), 238–244. https://doi.org/10.1112/blms/19.3.238 doi: 10.1112/blms/19.3.238 |
[3] | D. K. Nakano, B. J. Parshall, D. C. Vella, Support varieties for algebraic groups, J. Reine Angew. Math., 547 (2002), 15–49. https://doi.org/10.1515/crll.2002.049 doi: 10.1515/crll.2002.049 |
[4] | J. C. Jantzen, Representations of algebraic groups, 2 Eds., American Mathematical Society, 2003. |
[5] | K. Ou, B. Shu, Y. Yao, On Chevalley restriction theorem for semi-reductive algebraic groups and its applications, arXiv, 2021. https://doi.org/10.48550/arXiv.2101.06578 |
[6] | B. Shu, Y. Xue, Y. Yao, On enhanced reductive groups (Ⅱ): finiteness of nilpotent orbits under enhanced group action and their closures, arXiv, 2021. https://doi.org/10.48550/arXiv.2110.06722 |
[7] | E. M. Friedlander, B. J. Parshall, Geometry of $p$-unipotent Lie algebras, J. Algebra, 109 (1987), 25–45. https://doi.org/10.1016/0021-8693(87)90161-X doi: 10.1016/0021-8693(87)90161-X |
[8] | E. M. Friedlander, B. J. Parshall, Support varieties for restricted Lie algebras, Invent. Math., 86 (1986), 553–562. https://doi.org/10.1007/BF01389268 doi: 10.1007/BF01389268 |