In this paper a finite difference method (FDM) is provided for pricing perpetual timer options under the Heston volatility model. Considering the degeneracy of the pricing equation, we first prove the existence and uniqueness of the solution of the pricing problem with a new notion of boundary conditions at degenerate boundary and the infinity. Then we discuss the choice of artificial boundary value conditions and obtain a prior estimate of the internal error caused by the boundary value error. This estimate helps to choose appropriate artificial boundary values and solution domain to reduce internal error of the numerical solution. Furthermore, We build a FDM with second-order convergence for the pricing problem. Finally, we implement our method and show the visualization results.
Citation: Yaoyuan Zhang, Lihe Wang. Pricing perpetual timer options under Heston Model by finite difference method: Theory and implementation[J]. AIMS Mathematics, 2023, 8(7): 14978-14996. doi: 10.3934/math.2023764
In this paper a finite difference method (FDM) is provided for pricing perpetual timer options under the Heston volatility model. Considering the degeneracy of the pricing equation, we first prove the existence and uniqueness of the solution of the pricing problem with a new notion of boundary conditions at degenerate boundary and the infinity. Then we discuss the choice of artificial boundary value conditions and obtain a prior estimate of the internal error caused by the boundary value error. This estimate helps to choose appropriate artificial boundary values and solution domain to reduce internal error of the numerical solution. Furthermore, We build a FDM with second-order convergence for the pricing problem. Finally, we implement our method and show the visualization results.
[1] | N. Sawyer, SG CIB launches timer options, Risk, 20 (2007), 6–7. |
[2] | Managing volatility risk, C. Li., Doctoral Dissertation of Columbia University, 2010. Available From: http://www.math.columbia.edu/thaddeus/theses/2010/li.pdf |
[3] | A. Board, Stochastic modelling and applied probability, Berlin: Springer, 2005. https://doi.org/10.1007/978-0-387-22593-7_1 |
[4] | A. Bick, Quadratic-variation-based dynamic strategies, Manage. Sci., 41 (1995), 722–732. https://doi.org/10.1287/mnsc.41.4.722 doi: 10.1287/mnsc.41.4.722 |
[5] | P. Carr, R. Lee, Volatility derivativess, Annual Review of Financial Economics, 1 (2009), 319–339. https://doi.org/10.1146/annurev.financial.050808.114304 doi: 10.1146/annurev.financial.050808.114304 |
[6] | C. Bernard, Z. Cui, Pricing timer options, J. Comput. Financ., 15 (2011), 69–104. https://doi.org/10.21314/JCF.2011.228 doi: 10.21314/JCF.2011.228 |
[7] | C. Bernard, Z. Cui, D. McLeish, On the martingale property in stochastic volatility models based on time-homogeneous diffusions, Math. Financ., 27 (2014), 194–223. http://dx.doi.org/10.1111/mafi.12084 doi: 10.1111/mafi.12084 |
[8] | M. Li, F. Mercurio, Time for a timer, Risk, 26 (2013), 76–81. |
[9] | M. Li, F. Mercurio, Closed-form approximation of perpetual timer option prices, International Journal Of Theoretical And Applied Finance, 17 (2014), 1450026. https://doi.org/10.1142/s0219024914500265 doi: 10.1142/s0219024914500265 |
[10] | M. Li, F. Mercurio, Analytic approximation of finite-maturity timer option prices, J. Futures Markets, 35 (2015), 245–273. https://doi.org/10.1002/fut.21659 doi: 10.1002/fut.21659 |
[11] | X. Wang, S. Wu, X. Yue, Pricing timer options: second-order multiscale stochastic volatility asymptotics, ANZIAM J., 63 (2021), 249–267. https://doi.org/10.21914/anziamj.v63.15291 doi: 10.21914/anziamj.v63.15291 |
[12] | Y. Kwok, W. Zheng, Timer Options, Pricing Models of Volatility Products Exotic Variance Derivatives, 16 (2022), 217–248. https://doi.org/10.1201/9781003263524-6 doi: 10.1201/9781003263524-6 |
[13] | L. Liang, D. Lemmens, J. Tempere, Path integral approach to the pricing of timer options with the Duru-Kleinert time transformation, Phys. Rev. E, 83 (2011), 056112. https://doi.org/10.1103/physreve.83.056112 doi: 10.1103/physreve.83.056112 |
[14] | Z. Cui, J. L. Kirkby, G. Lian, D. Nguyen, Integral representation of probability density of stochastic volatility models and timer options, Int. J. Theor. Appl. Fin., 20 (2017), 1750055. https://doi.org/10.1142/s0219024917500558 doi: 10.1142/s0219024917500558 |
[15] | J. Zhang, X. Lu, Y. Han, Pricing perpetual timer option under the stochastic volatility model of Hull–White, ANZIAM J., 58 (2017), 406–416. https://doi.org/10.1017/s1446181117000177 doi: 10.1017/s1446181117000177 |
[16] | S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327 |
[17] | H. Kuo, N. Trudinger, On the Krylov maximum principle for discrete parabolic schemes, Tamkang J. Math., 40 (2009), 437–450. https://doi.org/10.5556/j.tkjm.40.2009.607 doi: 10.5556/j.tkjm.40.2009.607 |
[18] | G. M. Lieberman, Second order parabolic differential equations, New York: World scientific, 1996. https://doi.org/10.1142/3302 |