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Abstract: Associated with a reductive algebraic group G and its rational representation (ρ,M) over
an algebraically closed filed k, the authors define the enhanced reductive algebraic group G := Gnρ M,
which is a product variety G×M and endowed with an enhanced cross product in [5]. If G = GL(V)nη
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group. And the authors give a precise classification of finite nilpotent orbits via a finite set of so-called
enhanced partitions of n = dim V for the enhanced group G = GL(V) nη V in [6, Theorem 3.5]. We
will give another way to prove this classification theorem in this paper. Then we focus on the support
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the closure of an enhanced nilpotent orbit under some mild condition.
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1. Introduction

This is a sequel to [5, 6]. The authors introduced the semi-reductive algebraic group in [5]. In [6],
the authors studied on the nilpotent orbit theory for the enhanced general linear algebraic group. They
gave the finiteness criterion of nilpotent orbits under the enhanced group action and decribed the precise
indexing for the enhanced nilpotent cone N(g) under the adjoint action of G = GL(V) nη V based on
GJ-conjugacy classes in Ṽ = V/imJ, where GJ is the centralizer of nipotent element J in G = GL(V)
and imJ is the image of J on V . They made a research about the related intersection cohomology.
In this paper, we will give another way to classify the G-orbits on N(g). Our work is based on the
results of G = GL(V)-orbits on N(g) in the paper [1]. It proved that G-orbits in N(g) are parametrized
by the bipartitions (µ; ν) of n, where n = dim V . We define an equivalence relation on the set Qn

of bipartitions (µ; ν) of n and there exists an unique maximal element in every equivalence class 3.6
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under the well-defined partial order on Qn. On the other hand, the main classification problem about
the G = GL(V) nη V-orbits in N(g) are one-to-one correspondence to the equivalent class on Qn

(Lemma 3.7). Hence we get the main classification Theorem 3.8.
Jantzen proposed in [2, 2.7(1)] a conjecture for a reductive algebraic group G over k with char(k) =

p good, which says that the variety of an induced module must be the closure of a certain Richardson
orbit. He verified this is true for type A (the conjecture for any case is proved by Nakano-Parshall-Vella
in [3]). We repeat the same story in §4.1 for the enhanced case, and find that it still true under the mild
condition char(k) > dim(V).

2. Semi-reductive groups and semi-reductive Lie algebras

In this section, all vector spaces and varieties are over a field k which stands for either the complex
number field C, or an algebraically closed field of characteristic p > 0.

Definition 2.1. An algebraic group G over k is called semi-reductive if G = G0 n U with G0 being a
reductive subgroup, and U the unipotent radical. Let g = Lie(G), and g0 = Lie(G0) and u = Lie(U),
then g = g0 ⊕ u.

Example 2.2. (Enhanced reductive algebraic groups) Let G0 be a connected reductive algebraic group
over k, and (M, ρ) be a finite-dimensional rational representation of G0 with representation space M
over k. Consider the product variety G0 × M. Regard M as an additive algebraic group. The variety
G0 × M is endowed with an enhanced cross product structure denoted by G0 ×ρ M, by defining for any
(g1, v1), (g2, v2) ∈ G0 × M

(g1, v1) · (g2, v2) := (g1g2, ρ(g1)v2 + v1). (2.1)

Then it’s easy to check that G0 := G0 ×ρ M becomes a group with identity (e, 0) for the identity e ∈ G0,
and (g, v)−1 = (g−1,−ρ(g)−1v) by a straightforward computation. And G0 ×ρ M has a subgroup G0

identified with (G0, 0) and a subgroup M identified with (e,M). Furthermore, G0 is connected since
G0 and M are irreducible varieties. We call G0 an enhanced reductive algebraic group associated with
the representation space M. What is more, G0 and M are closed subgroups of G0, and M is a normal
closed subgroup. Actually, we have (g,w)(e, v)(g,w)−1 = (e, ρ(g)v) for any (g,w) ∈ G0. From now on,
we will write down ġ for (g, 0) and ev for (e, v) unless other conventions. It is clear that ev · ew = ev+w

for v,w ∈ V.
Suppose g0 = Lie(G0). Then (M, d(ρ)) becomes a representation of g0. Naturally, Lie(G0) = g0 ⊕M,

with Lie bracket

[(X1, v1), (X2, v2)] := ([X1, X2], d(ρ)(X1)v2 − d(ρ)(X2)v1),

which is called an enhanced reductive Lie algebra.
Clearly, G0 is a semi-reductive group with M being the unipotent radical.

In fact, the enhanced reductive algebraic group G0 can be realized as an subgroup of GL(V ⊕ M) in
the above Example 2.2, where G0 ⊂ GL(V) and V ⊕ M is one dimensional extension of V ⊕ M. For
saving the notations, we still write G0 to represent the subgroup its realization in GL(V). So we claim

AIMS Mathematics Volume 8, Issue 7, 14997–15007.



14999

that the G0 have the block matrix form as follows
G0 0 0
0 ρ(G0) M
0 0 1

 .
The element (g, v) ∈ G0 have the form as follows

g 0 0
0 ρ(g) v
0 0 1

 .
Let IG0 ⊂ k[GL(V ⊕ M)] be the ideal of regular fuctions that vanish on G0. Similarly, we have the

ideals IG0 ,IM ⊂ k[GL(V ⊕ M)]. Then we IG0 ' IG0 ⊗ 1 + 1 ⊗ IM. By the definition of Lie algebra,
we can have Lie(G0) = g0 ⊕ M , where g0 = Lie(G0). By the communication of dρ with the Lie bracket
on g0 = Lie(G0), we get the Lie bracket on Lie(G0) = g0 ⊕ M are as follows

[(X1, v1), (X2, v2)] := ([X1, X2], d(ρ)(X1)v2 − d(ρ)(X2)v1).

Since ρ is the rational reperesentation, we can write the block matrix form(
g v
0 1

)
for the (g, v) ∈ G0 throughout the article.

3. Nilpotent orbits in general linear semi-reductive Lie algebras

Keep the same notations and convention as before. In particular, V is an n-dimensional vector space
over k, g = gln(V), and g = g ⊕ V is a general linear semi-reductive Lie algebra. In this section, we
classify nilpotent orbits in g under the action of G = G n V , where G = GLn(V), i.e., we determine
G-orbits of N = N × V , where N and N are the nilpotent cones of g and g, respectively.

3.1. The classification of G-orbits in N

3.1.1. The GL(V)-orbits in N

A partition of n is a nonincreasing sequence λ = (λ1, λ2, · · · ) of nonnegative integers such that∑
λi = n. The set of all partitions of size n is denoted by Pn. Its length, denoted l(λ), is the number of

nonzero terms. The transpose partition λt is defined by λt
i = |{ j|λ j ≥ i}|.

It is well known that G-orbits inN are in bijection with Pn, via the Jordan normal form. Explicitly,
the G-orbit Oλ consists of the following elements X ∈ N . For X ∈ Oλ, there exist positive integers
r = l(λ) and vectors v1, v2, · · · , vr such that all X jvi with 1 ≤ i ≤ r and 1 ≤ j ≤ λi are a basis for V and
such that Xλ

i vi = 0 for all i.
Let vi, j = Xλi− jvi, then

Xvi, j =

vi, j−1, i f j > 1
0, i f j = 1

,

this basis of V is called the Jordan basis with X and λ is the Jordan type of X.
Following [1], we have the following definition and two conclusions.
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Definition 3.1. (1) A bipartition (µ; ν) of n is an ordered pair of partitions such that
∑
µi +

∑
νi = n.

The set of bipartitions of n is denoted by Qn.
(2) A normal basis of an element (X, v) ∈ N = N×V is a Jordan basis {vi j}(1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi)

in V for X of Jordan type λ = (λ1, λ2, · · · ) such that v =
l(λ)∑

i
vi,µi and µ = (µ1, µ2, · · · ), ν = (ν1, ν2, · · · ) =

λ−µ = (λ1 −µ1, λ2 −µ2, · · · ) are partitions. The bipartition (µ; ν) is called the type of the normal basis
{vi j} or of the element (X, v).

Lemma 3.2. For any (X, v) ∈ N × V, there exists a normal basis for (X, v) of some type (µ; ν) ∈ Qn.

Proof. Let {vi j}(1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi) be the Jordan basis for X such that v =
l(λ)∑
i=1

λi∑
j=1

ci, jvi, j.

Let µi ∈ {0, 1, ..., λi} be minimal such that ci, j = 0 if µi < j ≤ λi and νi = λi−µi. If µi , 0, we change
basis of the ith Jordan block as follows such that the decomposition component is vi,µi .

v′i,λi
=

µi∑
j=1

ci, jvi, j+νi and v′i, j = Xλi− jv′i,λi
for 1 ≤ j ≤ λi − 1,

and then redefine vi, j to be v′i, j. Then we have

v =

l(λ)∑
i=1,µi,0

vi,µi (∗).

If (µ1, µ2, ...) and (ν1, ν2, ...) are partitions, we have done. If not, we need to choose the first position
between (µ1, µ2, ...) and (ν1, ν2, ...) that does not conform to the size order relation. Since λi ≥ λi+1,
µi < µi+1 and νi < νi+1 can’t both exist. According to these two situations, we take different adjustment
operations. Let’s take µ1 < µ2 and ν1 < ν2 as two examples.

Case (I). If µ1 < µ2, we redefine µ = (µ2, µ2, ...) and ν = (λ1 − µ2, ν2, ...) (λ1 − µ2 ≥ λ2 − µ2 = ν2) by
the two following actions. We adjust the basis of the second Jordan block first. Refine v21, v22, ..., v2λ2

to be
v21 − v11, v22 − v12, ..., v2λ2 − v1λ2 .

But the equation (∗) no longer holds, we should repeat the first operation the first Jordan block to
change v1µ1 + v1µ2 (or v1µ2 if µ1 = 0) and to recovery equation (∗).

Case (II). If ν1 < ν2, we redefine ν = (ν1, ν1, ...) and µ = (µ1, λ2 − ν1, ...) (µ1 = λ1 − ν1 ≥ λ2 − ν1)
by the two following actions. We adjust the basis of the first Jordan block first. Refine v11, v12, ..., v1λ1

to be
v11, ..., v1,λ1−λ2; v1,λ1−λ2+1 − v21, ..., v1,µ1 − v2,λ2−ν1 , ..., v1λ1 − v2λ2 .

The equation (∗) no longer holds after this change, we should also repeat the first operation in the
second Jordan block to change v2µ2 + v2,λ2−ν1 (or v2,λ2−ν1 if µ2 = 0) and to recovery equation (∗).

Arguing by induction on the number l(λ) and Repeating the above operations, we can draw the
desired conclusion. �

Proposition 3.3. The set of G-orbits in N × V is in one-to-one correspondence with Qn. The orbit
corresponding to (µ; ν), denoted Oµ;ν, consists of pairs (X, v) for which there exists normal basis of type
(µ; ν).
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In addition to the Lemma 3.2, we also need to prove the type of the normal basis is detemined
uniquely by (X, v) for this proposition. But that’s not the point of this article and interested readers
refer to [1].

3.1.2. The clasification of the G-orbits in N

We now give the definition of the partial order on G-orbits in N × V =
⋃

(µ;ν)∈Qn

Oµ;ν.

Definition 3.4. (1) For (ρ;σ), (µ; ν) ∈ Qn, we say that (ρ;σ) ≤ (µ; ν) if and only if the following
inequalities hold for all k ≥ 0:

ρ1 + σ1 + ρ2 + σ2 + · · · + ρk + σk ≤ µ1 + ν1 + µ2 + ν2 + · · · + µk + νk, and

ρ1 + σ1 + · · · + ρk + σk + ρk+1 ≤ µ1 + ν1 + · · · + µk + νk + µk+1.

(2) If (ρ;σ) < (µ; ν) and there is no (τ; υ) ∈ Qn such that (ρ;σ) < (τ; υ) < (µ; ν) for (ρ;σ), (µ; ν) ∈
Qn, then we say that (µ; ν) dominates (ρ;σ).

Note that the inequalities of the first kind simply say that ρ + σ ≤ µ + ν for the dominant order.
Obviously ρ ≤ µ and σ ≤ ν together imply (ρ;σ) ≤ (µ; ν), but the converse is false.

For convenience, assume that (1)k = (1, 1, · · · , 1)︸        ︷︷        ︸
k

. Denote (λ1 + 1, λ2 + 1, · · · , λk + 1, λk+1, · · · ) by

λ + (1)k and (λ1 − 1, λ2 − 1, · · · , λk − 1, λk+1, · · · ) by λ − (1)k for λ ∈ Pn. It’s worth noting that λ − (1)k

may be not a partition if λk = λk+1 on here.

Definition 3.5. Two bipartitions (µ; ν), (ς; τ) ∈ Qn are said to be equivalent, denoted by (µ; ν) ∼ (ς; τ),
if µ + ν = ς + τ and l(ν) = l(τ).

Lemma 3.6. Under the above definition, there exists an unique maximal element in every equivalent
class and its form is (λ − (1)k; (1)k) = (λ1 − 1, λ2 − 1, · · · , λk − 1, λk+1, · · · ; 1, 1, · · · , 1︸      ︷︷      ︸

k

) ∈ Qn for some

λ ∈ Pn.

Proof. Assume that (ρ;σ), (µ; ν) ∈ Qn and (ρ;σ) ∼ (µ; ν). Then µ + ν = ς + τ and l(ν) = l(τ).
Obviously, there is a partial order relationship between them. Let λ = µ + ν, k = l(ν) and r(ν) be
the maximal integer satisfing νr(ν) > 1 in the sequence ν = (ν1, · · · , νk) (r(ν) = 0 if ν1 ≤ 1). Then
ν − (1)r(ν) is also a partition and l(ν − (1)r(ν)) = l(ν). Denote (ρ;σ) = (µ + (1)r(ν); ν − (1)r(ν)), then
(ρ;σ) ∼ (µ; ν) and (ρ;σ) ≥ (µ; ν). Certainly, we have r(σ) ≤ r(ν). By the mathematical induction, we
can obtain a bipartition (λ − (1)k; (1)k) ∈ Qn which is equivalent to the given partition (µ; ν). It’s easy
to check that (λ − (1)k; (1)k) ∈ Qn is the maximal element in the equivalent class of (µ; ν). �

Lemma 3.7. For any (X, v), (Y,w) ∈ N with that their normal types are respectively (µ; ν) and (ρ; τ) ,
then (X, v), (Y,w) belong to a common G-orbit if and only if (ρ;σ) ∼ (µ; ν).

Proof. Since G is a subgroup of G, it follows from the group homomorphism G → G with g →
(g, 0). Note that we have (σ,w) = (σ, 0) · (1, σ−1w) for any (σ,w) ∈ G. Beside, Ad(G, 0)((X, v)) =

Oµ;ν (GL(V)-orbit). So we only need to consider the action Ad(1,V)((X, v)). We may assume that
(Y,w) ∈ Ad(1,V)((X, v)), there exists a vector u ∈ V such that (Y,w) = Ad(1,−u)((X, v)) = (X, Xu + v).

AIMS Mathematics Volume 8, Issue 7, 14997–15007.
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Suppose that {vi, j} is the normal basis of type (µ; ν) for (X, v) ∈ N and λ = µ+ν. For the k-th Jordan
block of rank λk of X

Jk =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


λk×λk

and the component coefficient of vectors v, u ∈ V corresponding to this block on this basis are as
follows:

uk =
(

vk,1 vk,2 · · · vk,λk

) 
ak,1

ak,2
...

ak,λk

 ,

vk =
(

vk,1 vk,2 · · · vk,λk

) 
bk,1

bk,2
...

bk,λk

 ,

i.e., uk =
λk∑
j=1

ak, jvk, j, vk =
λk∑
j=1

bk, jvk, j with ak, j, bk, j ∈ k.

(⇒) (Proof by contradiction): If (X, v), (Y,w) are belong to a common G-orbit, the normal type
(ρ;σ) of (Y,w) must be satisfied with ρ + τ = µ + ν = λ. Assume that (ρ; τ) / (µ; ν), then we have
l(ν) , l(τ). If l(ν) < l(τ), we have µl(ν)+1 = λl(ν)+1 > ρl(ν)+1. Note that the component vl(ν)+1,µl(ν)+1 , 0

of v =
l(µ)∑

i
vi,µi , then the element Xu + v still contains this part and Xu never offer this part, in this

particular position for any u ∈ V . If ei, j is the normal basis of type (ρ, τ) for (X, Xu + v), we have

that Xu + v =
l(ρ)∑

i
ei,ρi and el(ν)+1,λl(ν)+1 does not exist here for ρl(ν)+1 < λl(ν)+1. There exists an reversible

linear transformation σ ∈ GL(V)X between vi, j and ei, j. The component of Xu + v on last position
of (l(ν) + 1)-th Jordan block does not disappear under the transformation σ ∈ GL(V)X. It contradicts

what we know that el(ν)+1,λl(ν)+1 does not exist in Xu + v =
l(ρ)∑

i
ei,ρi . In a similar way, l(ν) > l(τ) is also

impossible. Then the assumption about (ρ; τ) / (µ; ν) is incorrect. So we have that (ρ; τ) ∼ (µ; ν) if
(X, v), (Y,w) are belong to a same G-orbit.

(⇐): For any (ρ;σ) ∼ (µ; ν), and denote t = l(ν) = l(σ). Let {vi, j} be the normal basis of V for

(X, v), then we have that v =
l(µ)∑

i
vi,µi . We only need to choose a vector u ∈ V such that the normal type

of Ad(1,−u)((X, v)) = (X, Xu + v) is just (ρ;σ). Let λ = µ + ν and u =
l(λ)∑
i=1

λi∑
j=1

ai, jvi, j =
l(λ)∑
i=1

ui, where

ui =
λi∑
j=1

ai, jvi, j. Denote t = l(ν) = l(σ):

(1) If 1 ≤ i ≤ t and ρi = µi, take ai, j = 0 (2 ≤ j ≤ λi); if 1 ≤ i ≤ t and ρi = µi, ρi , µi ,
take ai,ρi+1 = 1 , ai,µi+1 = −1 , and ai, j = 0 (2 ≤ j ≤ λi, j , ρi + 1, µi + 1).
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(2) If i > t , take ai, j = 0 (2 ≤ j ≤ λi). Then we have that Xu + v =
l(ρ)∑

i
vi,ρi and the normal type of

Ad(1,−u)((X, v)) = (X, Xu + v) is (ρ;σ), and {vi, j} is also the normal basis for (X, Xu + v) in V .
As a result, the lemma is proved and the G-orbit of (X, v) is in one-to-one correspondence with the

equivalent class of (µ; ν) in Qn by the Definition 3.5. �

Theorem 3.8. The set of G-orbits in N = N × V is in one-to-one correspondence with Qn/∼ =

{(λ1 − 1, λ2 − 1, · · · , λk − 1, λk+1, · · · ; 1, 1, · · · , 1, 0, · · · ) ∈ Qn|λ ∈ Pn, k ∈ Z≥0} = {(λ − (1)k; (1)k) ∈
Qn|k ∈ Z≥0}. The G-orbits corresponding to (λ1 − 1, λ2 − 1, · · · , λk − 1, λk+1, · · · ; 1, 1, · · · , 1, 0, · · · ) =

(λ − (1)k; (1)k) ∈ Qn, denoted by O(λ−(1)k;(1)k), consists of pairs (x, v) ∈ N × V such that a normal basis
of type (µ; ν) ∼ (λ − (1)k; (1)k) exists, i.e., there is a Jordan basis vi j for x such that v =

∑
vi,µi .

Proof. The Lemma 3.6 implies that there is an bijection map between {(λ − (1)k; (1)k) ∈ Qn | k ∈ Z≥0}

and the set of equivalent class in the sense of 3.5, denote Qn/∼ by this set. On the other hand, the set of
G-orbits in N = N × V is in one-to-one correspondence with Qn/∼. Therefore, the theorem is proved.

�

Remark 3.9. Since (λ − (1)k; (1)k) ∈ Qn, the number k does not have to take all the numbers in
{1, 2, ..., l(λ)} .

Certainly, the partial order in the paper [1] is still valid in here. Furthermore, we still have the
definition of covering relations.

3.2. The dimension of G-orbits

Lemma 3.10. Keep the notations and we have the following conclusions.
(1) Assume that λ ∈ Pn and N(λ) = {k ∈ N | (λ − (1)k; (1)k) ∈ Qn} , then⋃

k∈N(λ)

O(λ−(1)k;(1)k) = Oλ × V.

(2) For any λ ∈ Pn, O(λ−(1)k;(1)k) ⊆ Oλ × V.

Proof. In fact, O(λ−(1)k;(1)k) ⊆ Oλ × V . Conversely, for any (X, v) ∈ Oλ × V , its normal type (µ, ν) must
be satisfied with the condition µ + ν = λ, then the G-orbit of the element (X, v) is O(λ−(1)r;(1)r) for some
nonnegative integer r by the Theroem 3.8. So the conclusion (1) is satisfied.

Firstly, we have Oλ × V ⊂ Oλ × V by Oλ × V ⊂ Oλ × V . On the other hand, they are irreducible and
share the common dimension, so Oλ × V = Oλ × V . Hence the equation⋃

k∈N(λ)

O(λ−(1)k;(1)k) = Oλ × V

is true by (1). So
O(λ−(1)k;(1)k) ⊆ Oλ × V.

�

Definition 3.11. (1) For (x, v) ∈ N , define

A(X,v) = {(Y,w) ∈ g | XY = YX,−Xw + Yv = 0};
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B(X,v) = {(Y,w) ∈ g | XY = YX,−Xw + Yv = v};

G(X,v) = {(σ,w) ∈ G | Xσ = σX,−Xw + σv = v}.

(2) For any λ ∈ Pn, define n(λ) =
∑

(i − 1)λi.

The following result determines dimensions of stablizers of nilpotent elements in a general linear
semi-reductive Lie algebra, so that we obtain the dimensions of nilpotent orbits.

Theorem 3.12. Let (λ − (1)k; (1)k) ∈ Qn and (X, v) ∈ O(λ−(1)k;(1)k). Then,
(1) both A(X,v) and B(X,v) are irreducible affine varieties, and G(X,v) is a principal open subvarieties

of B(X,v);
(2) G(X,v) is a connected algebraic group of dimension n + 2n(λ) + k;
(3) dimO(λ−(1)k;(1)k) = n2 − 2n(λ) − k.

Proof. (1) is obvious.
(2) Let gX = {Y ∈ g|XY = YX}, and W = {−Xw + Yv | (Y,w) ∈ gX × V}. Then W is a subspaces of V .

Moreover, it follows from Proposition 2.8(5) in [1] that dimW = n − k.
Let

ψ : gX × V −→ W,

(Y,w) −→ −Xw + Yv,

which is a surjective morphism with kernel A(x,v). Hence

dimA(X,v) = dim(gX × V) − dimW

= dimgX + dimV − dimW

= n + 2n(λ) + k,

where the last equality hold by Proposition 2.8(2) in [1]. Cosequently, (2) follows from (1). (3) follows
(2), since

dimO(λ−(1)k;(1)k) = dimG − dimG(X,v)

= n2 + n − (n + 2n(λ) + k)
= n2 − 2n(λ) − k.

�

Corollary 3.13. Let (λ − (1)k; (1)k) ∈ Qn. Then O(λ−(1)k;(1)k) = Oλ × V if only if k = 0.

Proof. The inclusion ⊆ is obvious, so the equation holds when the right-hand side is the same
dimension as the left-hand side. �

4. Enhanced nilpotent cones and support varieties

In this section, we always assume k be an algebraically closed field of positive characteristic p > 0.
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4.1. Equivariant line bundles on B

G is a connected reductive group over k, and T a maximal torus. B is the Borel subgroups of G that
contain T . Let X(T ) be the set of rational characters.

Let λ ∈ X(T ) be a character of T . The composite of λ and the homomorphism B → B/Bu → T
defines a character of B. Let V = kvλ be the one dimensional B-module with underling vector space
over k and action b · vλ = λ(b)−1vλ for any b ∈ B. We can write the fiber bundle

L (λ) = G ×B V.

This is a G-variety, on which the action comes from left translations in G. The natural G-morphism
ρ : L (λ) → B has local sections. The fibers of ρ is just k. So L (λ) is an equivariant line bundle
on B defined by λ. Denote by Γ(λ) the global section Γ(L (λ),B). By [4, Proposition I.5.12 and
§I.5.15(1)], Γ(λ) can be regarded as H0(B,L (λ)), denoted by H0

G(λ). Furthermore, H0(λ) coincides
with the induced G-module IndG

B(λ) from the one-dimensional representation given by λ of the Borel
subgroup B. We have an analogue to the classical result on equivariant line bundles on the flag varieties
of reductive groups (see [4, Proposition II.2.6]).

Lemma 4.1. The global section Γ(λ) = Γ(L (λ),B) is a finite dimensional vector space, which is
non-zero if and only if λ ∈ X(T )+.

4.2. Weyl modules

Let G0 be a connected reductive group over k and G = G0 n V be the corresponding semi-reductive
group. Let X(T )+ be the set of dominant weights. For each λ ∈ X(T ), denote by IndG

B−(λ) the G-
modules induced from the one-dimensional representation given by λ of the Borel subgroup B− of G
generated by all subgroup Uα with α ∈ Φ(G,T )− and the unipotent radical V .

By the arguments as in §4.1, we know Γ(λ) for λ ∈ X(T )+. Furthermore, in the enhanced case, as a
G-module Γ(λ) coincides with the dual Weyl module H0

G(λ).

Lemma 4.2. (1) As a G0-module, H0
G(λ) coincides with H0

G0
(λ) := IndG0

B0
λ.

(2) The action of the unipotent radical V of G on the induced modules H0
G(λ) is identical, i.e.

H0
G(λ)V = H0

G(λ).

Proof. (1) Note that we have algebraic group isomorphism G0 � G/V and B0 � B/V . On the other
hand, the one-dimensional B-module λ is endowed with identical action of V . Hence by the definition
we have the first statement.

(2) Recall that

H0
G(λ) = { f ∈ k[G] | f (gb) = λ(b)−1 f (g) ∀g ∈ G(A), b ∈ B(A), for all A}.

Here A stands for any commutative k-algebra. The action of G is given by left translation. For any
f ∈ H0(λ) we want to prove

v · f = f ∀v ∈ V(A) := V ⊗k A.

Actually, for any g ∈ G(A) we can write g = (u1tu2, v′) for u1 ∈ U+(A), t ∈ T (A) and u2 ∈ U(A) and
v′ ∈ V(A). Then we have

v · f (g) = v · f ((u1tu2, v′))
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= f (v−1(u1tu2, v′)
= f ((u1tu2,−ρ(u1tu2)−1v + v′)
= λ(t)−1 f (u1).

On the other hand,
f (g) = f ((u1tu2, v′)) = λ(t)−1 f (u1).

Hence f ∈ H0
G(λ)V . We complete the proof. �

Note that Lie(V) = V . We have the following corollary.

Corollary 4.3. As a g-module, H0
G(λ) is annihilated by V.

4.3. Support varieties for enhanced general linear group

Let g be a finite dimensional restricted Lie algebra over k (with p-th power operation denoted by
x → x[p]) One can associate to each finite-dimensional restricted -module M a subvariety of g which
is defined using cohomology theory (compare [7]), but has the following more elementary description
(see [8]). It consists of 0 and of all nonzero elements X ∈ g, with X[p] = 0 such that M is not injective
(= projective) as a restricted module for the one dimensional p-Lie algebra k[X]. Hence we have

Vg(H0
G(λ)) = {(X, v) ∈ g : (X, v)[p] = 0

and H0
G(λ) is not projective as a restricted

k[(X, v)] −module} ∪ {(0, 0)}.

Theorem 4.4. Let G0 = GL(V) over k, G = G0 n V and char(k) = p > dim(V). Then for any Weyl-
module H0

G(λ) of the enhanced general linear group G, there exists an G-orbit Oλ−(1)k ,(1)k in the sense
of Theorem 3.8, such that the support variety of H0

G(λ) coincides with Oλ−(1)k ,(1)k .

Proof. According to Corollary 3.13, O(λ−(1)k;(1)k) = Oλ × V if only if k = 0 . On the one hand, by [2]
there exists a unique dominant integer weight λ such that the support varietyVg0(H

0
G0

(λ)) of H0
G0

(λ) is
just Oλ. By the realization of matrix form for (X, v), we have X[p] = 0 if (X, v)[p] = 0 and the reverse is
true when char(k) = p > dim(V).

On the other hand, the second condition of the description of Vg0(H
0
G0

(λ)) and Vg(H0
G(λ)) is also

equivalent by Corollary 4.3. So we claimVg(H0
G(λ)) = Oλ × V = O(λ;(0)). The proof is completed. �

5. Conclusions

As we all know that the nilpotent orbital theory of reductive Lie algebras over algebraically closed
fields is quite perfect. But there are relatively few theories for the non-reductive case. This article is a
discussion of a special non-reductive case (the Enhanced general linear Lie algebra) and it guarantees
that the number of nilpotent orbits is finite. It is difficult to ensure the finite condition of the number
of nilpotent orbits for other semi-reductive Lie algebras, which makes our further study more difficult.
These challenging issues will be our future research topics.

AIMS Mathematics Volume 8, Issue 7, 14997–15007.



15007

Acknowledgements

The author would like to thank Professor Bin Shu for his guidence and suggestions. He also thanks
the referees for their time and comments.

Conflict of interest

The author declares no conflict of interest.

References

1. P. N. Achar, A. Henderson, Orbit closures in the enhanced nilpoten cone, Adv. Math., 219 (2008),
27–62. https://doi.org/10.1016/j.aim.2008.04.008

2. J. C. Jantzen, Support varieties of Weyl modules, Bull. London Math. Soc., 19 (1987), 238–244.
https://doi.org/10.1112/blms/19.3.238

3. D. K. Nakano, B. J. Parshall, D. C. Vella, Support varieties for algebraic groups, J. Reine Angew.
Math., 547 (2002), 15–49. https://doi.org/10.1515/crll.2002.049

4. J. C. Jantzen, Representations of algebraic groups, 2 Eds., American Mathematical Society, 2003.

5. K. Ou, B. Shu, Y. Yao, On Chevalley restriction theorem for semi-reductive algebraic groups and
its applications, arXiv, 2021. https://doi.org/10.48550/arXiv.2101.06578

6. B. Shu, Y. Xue, Y. Yao, On enhanced reductive groups (II): finiteness of nilpotent orbits under
enhanced group action and their closures, arXiv, 2021. https://doi.org/10.48550/arXiv.2110.06722

7. E. M. Friedlander, B. J. Parshall, Geometry of p-unipotent Lie algebras, J. Algebra, 109 (1987),
25–45. https://doi.org/10.1016/0021-8693(87)90161-X

8. E. M. Friedlander, B. J. Parshall, Support varieties for restricted Lie algebras, Invent. Math., 86
(1986), 553–562. https://doi.org/10.1007/BF01389268

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 7, 14997–15007.

http://dx.doi.org/https://doi.org/10.1016/j.aim.2008.04.008
http://dx.doi.org/https://doi.org/10.1112/blms/19.3.238
http://dx.doi.org/https://doi.org/10.1515/crll.2002.049
http://dx.doi.org/https://doi.org/10.48550/arXiv.2101.06578
http://dx.doi.org/https://doi.org/10.48550/arXiv.2110.06722
http://dx.doi.org/https://doi.org/10.1016/0021-8693(87)90161-X
http://dx.doi.org/https://doi.org/10.1007/BF01389268
http://creativecommons.org/licenses/by/4.0

	Introduction
	Semi-reductive groups and semi-reductive Lie algebras
	Nilpotent orbits in general linear semi-reductive Lie algebras
	The classification of G-orbits in N
	The GL(V)-orbits in N
	The clasification of the G-orbits in N

	The dimension of G-orbits

	Enhanced nilpotent cones and support varieties
	Equivariant line bundles on B
	Weyl modules
	Support varieties for enhanced general linear group 

	Conclusions

