Citation: Ghodratallah Fasihi-Ramandi. Hamilton’s gradient estimate for fast diffusion equations under geometric flow[J]. AIMS Mathematics, 2019, 4(3): 497-505. doi: 10.3934/math.2019.3.497
[1] | M. Bailesteanu, X. D. Cao, A. Pulemotov, Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal., 258 (2010), 3517–3542. doi: 10.1016/j.jfa.2009.12.003 |
[2] | L. R. Evangelista, E. K. Lenzi, Fractional diffusion equations and anomalous diffusion, Cambridge University Press, 2018. |
[3] | S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255 (2008), 1008–1023. doi: 10.1016/j.jfa.2008.05.014 |
[4] | H. Li, H. Bai, G. Zhang, Hamiltons gradient estimates for fast diffusion equations under the Ricci flow, J. Math. Anal. Appl., 444 (2016), 1372–1379. doi: 10.1016/j.jmaa.2016.07.017 |
[5] | G. A. Mendes, M. S. Ribeiro, R. S. Mendes, et al. Nonlinear Kramers equation associated with nonextensive statistical mechanics, Phys. Rev. E, 91 (2015), 052106. doi: 10.1103/physreve.91.052106 |
[6] | P. Li, S.-T. Yau, On the parabolic kernel of the Schrdinger operator, Acta Math., 156 (1986), 153–201. doi: 10.1007/bf02399203 |
[7] | S. P. Liu, Gradient estimates for solutions of the heat equation under Ricci flow, Pac. J. Math., 243 (2009), 165–180. doi: 10.2140/pjm.2009.243.165 |
[8] | J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow, Pac. J. Math., 253 (2011), 489–510. doi: 10.2140/pjm.2011.253.489 |
[9] | C. Tsallis, D. J. Bukman, Anomalous diffusion in the presence of external forces: Exact timedependent solutions and their thermostatistical basis, Phys. Rev. E, 54 (1996). |
[10] | J. L. Vzquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Ser. Math. Appl., Vol. 33, Oxford University Press, Oxford, 2006. |