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Abstract: Suppose that M is a complete noncompact Riemannian manifold of dimension n. In the
present paper, we obtain a Hamilton’s gradient estimate for positive solutions of the fast diffusion

equations
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ot “ n+8

on M X (—oo, 0] under the geometric flow.
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1. Introduction

Starting with the pioneering work of P. Li and S. T. Yau in the seminal paper [6], gradient
estimates are also called differential Harnack inequalities, because one can obtain the classical
Harnack inequality after integrating the gradient estimate along paths in space-time. These concepts
are very powerful tools in geometric analysis. For example, R. Hamilton established differential
Harnack inequalities for the mean curvature along the mean curvature flow and for the scalar
curvature along the Ricci flow. Both have important applications in the analysis of singularities.

In Perelman’s work on the Poincar conjecture and the geometrization conjecture, differential
Harnack inequality played an important role. Since then, there have been many works on gradient
estimates along the Ricci flow or the conjugate Ricci flow for the solution of the heat equation or the
conjugate heat equation; examples include ([3], [7]). Later, Sun [8] extended these results to general
geometric flow.

Under some curvature constraints, in [4] the authors have established a Hamilton’s gradient
estimates for the fast diffusion equations under Ricci flow on a complete noncompact Riemannian
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manifold. We can strengthen the assumption of their results by considering the general geometric
flow. In this paper, we will study the interesting Li-Yau type estimate for positive solutions of fast

diffusion equations (FDE for short)
ou

ot
on complete noncompact Riemannian manifold M with evolving metric under the general geometric
flow.

Before presenting our main results about the equation, it seems necessary to support our idea of
considering this equation. FDE describes physical processes of diffusion in plasma, gas kinetics, thin
liquid film dynamics and so on. This equation also arises in many geometric phenomena, and we refer
the reader to the book [10] for more details. The exact solutions have obtained for anomalous
diffusions in the context of the Tsallis statistics [9]. Also, fractional diffusion equation and diffusion
equation associated with non-extensive statistical mechanics have been studied (for instance, see [2]
and [5]).

=Au",m<1 (1.1)

Lett € [0,T] and (M, g(¢)) be a complete solution to the general geometric flow

%o~ om, (12)
To study the positive solution of FDE, we use the following transformation,
=@ =) (1.3)
which is known as Hopf transformation of u, and it is very useful in forgoing because
rlnlir} f =logu.

By above assumption (3.1) can be rewritten as

m? 2m -1

Ji= (Af+(l—m)f+m

A m V£F). (1.4)

Now we can present our main result for the system (3.1) and (1.4) in the following theorem.

Theorem 1.1. Suppose (M", g())wci0.7) is a complete solution to (1.2) and

k

—58ij < hij <

k
2 28

k
~8ij ij = 2

k < R;
8ij lJ—2

2

4
on B, 1 for some positive constant k. Assume that f is any positive solution to (1.4) and 1 — p— <

1
m<1.If0 < f <1-—in B, for each m, then there exists a constant C = C(n) such that
m

1|V_fj|v<c[(7 + D) Vi+ - +\/Ln7t]

in By r with t # 0. Together with the transformation (1.3), we have

|Vu| 1 1 1 11-mu
—<C(—+1)\/§+—+
u" [ Vm p V@E] 1 —m

1-m

in By r with t # 0.
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Bailesteanu, Cao and Pulemotov in [1] proved a gradient estimate for positive solutions to the heat
equation u#, = Au under the Ricci flow. Now, as a corollary we obtain the same inequality when the
Riemannain metric is evolved by the general geometric flow (1.2).

Corollary 1.2. Whenm — 1 and 0 < u < A, we have

V| 11 A
TM SC(‘/%+E+$)(1+log;).

2. Proof of the main theorem

In this section we clue on the proof of our main result. To this end, we need two important lemmas.

Lemma 2.1. Let the smooth positive function f : M X [0,T] — R satisfies (1.4) and denote w =

2
(1|V_f]|6)2 then by assumptions of Theorem (1.1), we have
m?>(42m — 1)(1 — m) — n(1 — m)?) 5 o, mGm(l-f+f-2) ,
L= (A —m)f +my G = —mreme "
2(1—m)|m+f|" mz((1+m)f+2—m)
T ammram e mrempa-
where

m> 0

L= mrn "o

Proof. We have,

L 2hifify 26V | 2VSPS,
A= A= (1-fP
:Zhijf,-fj N 2m2ijj(Af) _ 2m2(1 —m)AflVfl2
(1= ([(A-mf+m)(l—f?2 ((A-mf+m1 - f)?
N 4m*(2m — D fififii i 4m*(2m — 1)(1 —m)IVfI4
(I=-m)f+m2A-£)? (A -mf+mP(l-f)?
2m2|Vf|2Af N 2m2(2m— 1)|Vf|4
(I-mf+m(A - (A-mf+mAl-f)>

Also, notice that
_2fify | 2AVFRS
VWA Ay
_ 5 2AG) | SAffy | 2AN9AP 6V
(-2 A-2 A= A=  (d-H"

The above computations follow that

= Aw

2m f;, 8m fififi;

O ST e =77 T - mf w1 - 77

AIMS Mathematics Volume 4, Issue 3, 497-505.



500

N 6m?|V f|* N 2m*(1 — m)Af|Vf|? N 4m*(1 — m)2m — D|VfJ?
A=-mf+md - ([(A-mf+m-f)> (1-mf+m3-[f)>
N 2m? fiA(f)) _ 2m* £,V (Af) _ 2R f:f;i
A-mf+mA-/)? (A-mf+md-[f)* 1-f)7
4m*(2m — D fififii 2m*(2m — )|V f*

(U =mf +mP(U =[P (L=m)f +m>(1 = f)
By the Bochner formula, we have
filfiji = fiij) = Rijfif;
and
i fifify _ 3mPYwvf 6m|V 1
(A=-mf +m)A =3 (A=-mf+m(1-f) (1-mf+md-f7

so, we deduce that

2m* f; . 2m*fififi;
A -mf+md-fy ((A-mf+md-f)
L2 - mAfVEE AP = m)@m = DIV
(A =mf +mPA = f)? (1 =m)f+m3 - [)>

Lw) =

N 2m2Rl~jfl-fj N 2hiififi N 2m*(2m — )|V f*
(A=-mf+mA-f> A= (1-mf+m?1-f)
3m*VwV f 2m*(2m — 1)

- VwVf.
+((1—m)f+m)(1—f) (A-mf+me " f

We have the following estimate for the first three terms of the above formula,
2m’ f7 . 2m? ffif) . 2m*(1 — m)AfIV f?
(A=mf+m)(1-fP (I-mf+m1-fP (1-mf+m?1-f)y>
n 24242
S (el
(A=m)f +m &= (=)~ (@ =m)f +m)(T =
. m A ) s s
(I =m)f +m)(1 - f)? (I =m)f +m)*(1 - f)?

v (A—myftm
L mRE - mPiv
T (A-mf+m)d -t (A=-mf+mP1 - f)>
On the other hand,

2m’Riififi 2hijfifi 20— m)kim + fIVS §
(A=-mf+mA-fP (A= (QA-mf+md-f)>*

2
where we have used inequalities —kg;; < R;; + h;j < kg;;, f < 0 and fj > % Therefore,

m i1 (1 — mP|V fI*

Llw) 2 - (T=m)f +m)(1—F* (1—m)f +mP( - f)?
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B 2(1 — m)klm + f||Vf|2 N 4m2(1 —-m)(2m — 1)|Vf|4
(A =mf+m—f2 (A =mf +mpd -7
N 2m2(2m - 1)|Vf|4 N mz((l +m)f +2—m) VWV f
(A=mf+mrd - (A =mf+mP =1
_m2(4(2m - DA -m)—-n(1l - m)z) 5 2 m2(3m(1 -NH+f-2) )
- (A —m)f +my S L G et
2(1 —m)im + flk mz((l +m)f +2—m)
T =mfem U A =mpempa=p

O

In order to get the desired result, we take a cut-off function ¥’ by Li-Yau [6] on B; ;. Define a smooth
function ¥ : M X [0,T] —» R by ¥Y(x,¢) = ‘T’(dis(x, Xo,1),1), supported in Bg - The construction of ¥
depends on its properties as came in the following lemma.

Lemma 2.2. [4] For a given T € (0, T], the smooth function ¥ satisfies the following properties:
1. 0<¥<1lon [0,p]x][0,TI.

_ ov
2. W(rt) =1lon [o,g] X [r.T) and —==(r.1) = 0 on [o,g] x [0, T].

Y C _
3. l\;l'5_0”[O,OO)X[,T],C>0and‘P(r,0):Owherere[O,oo).
2 T
AT *Y  C,
4. —&S{ <0 and = Sc—zforae(O,l).
p g Yo o p

Now we are prepare to prove our main theorem.

\%
Proof of Theorem 1.1: Assume the same notation of f and w in the Lemma (2.1). Denote 5 = —%.
Straightforward computations show that
m? m?
Yw) = Y+ —V9¥Ww+ ——FAYw-¥
L) = Lo e Y T A Y T
S m?*(42m — 1)(1 —m) — n(1 - m)z)(1 e
(L =m)f +m)

mwGm( =N+ [ =2, 5 2L—mm+ Sl
(1 = m)f +m)> (1 —m)f +m
_mH (L +m)f +2-m) m*((1 + m)f +2 — m)

A—myfmp P O oy me PO
om: VY o VP
Ty s —
2
m AW.w — W,

+ —_—

(1-mf+m

Let (x1, ;) be a point, at which the function Ww attains its maximum value and x; is not in the cut-locus
of M by [6]. Then at the point (xy, t;) the following conditions are hold.

APw) <0, (¥w), >0, V(¥w)=0.
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It follows that

(L=m)E@n =1 =n(l=m) | ooy Gt — fra f— 2w

1-mf+m
L 2 =md _Z)sz’m)lerf'k\Pw— (1 +m)f +2 — mBVY.w @.1)
2 _ 2
£ 201 = myf + ) (1 = m)f + myAaw + O m){er) P,

¥
Since m € (1 - . 1) the first term on the left side of the above inequality is positive,
n

(1-m@@m—1) —n(l —m) _

Ad-mf+m =0

1
Because, 0 < f < 1 — —, the second term satisfies
m
3m(1-f)+f-2>0-m)f +m.

The above inequalities together with (2.1), yield that

ZS2(1—m)|m+f|klP _d+mf+2-m

N VY. 22
v e W T am PO 22)
PP 1 — 2 -
P, Ag,, U mmir2omy
Y m?

In foregoing, we estimate each term on the right hand side of (2.2). Using W1 < 1, for the fist term we

have ) )
2(1 — m)jm + ﬂk‘I’w < l‘sz N (1 =m)y*(m+ f)
m?2 8 m*

C 1k2,
where c; is a positive constant. And for the second term, we proceed as in the following

A+mf+2-m A+mf+2-m 3
B Ry e A Sy s A A
3 %(1+m)f+2—m|V‘I’|
P v —
., (A+m)f+2-m’c,
8 T T A mfrmy o

with chosen positive constant ¢,. Straightforward computations show that the following inequalities
hold

V¥? Ve? 1
2| | w:‘{’%w.Zl 3| < -py? 4 2
¥ p: 8 p*

1
AW < W+ 24 ok,
8 p*
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1-mf+m

where c¢3 and ¢4 = c4(n) are positive constants. Finally, for the last term, denote y = > and
m

it follows that

oY
Yo" s 7|—|W )’I—Il—dlstlw

1 €1 o . (dL(s) di(s)

< 1—6‘Pw +9? 1-2 +y?‘I’2.sup£ Ich( 5 ds )Ids
1
16‘Pw +y +yC w2
1

<1—8‘Pw +y—+c6yk cs,cq > 0.

Adding these inequalities into (2.2), we deduce

P2u? < Pw?

1= 2 2 1 _ 2
col@mmime S (omiem e
(((1+m)f+2—m)4+1) (1 =m)f +m)* 1 ]
(I =m)f +m)* o m' =

at (x;, 1) with C” = C”(n) = 2max{cy, ..., cs} is a positive real. Applying the inequality /x> + y* <
x +y which holds for x, y > 0 and using ¥(x, 7) < 1, then for all x € M we have the following estimate

w(x, 7) = (Fw)(x, 1) < (FPw)(x1, 1)

—m)? -
SC,z[((l m312|m+f|+(1 n’:1)2f+m+1)k

(((1+m)f+2—m)2+1)l+(1—m)f+ml]
(T=mf+mp ~ /p? m 1l

where C’ = VC”. Since 7 € (0, T] was chosen arbitrary, we obtain

Vi C’[( V(1 = m)lm + f| N Va —Z)f+m )k

1 - f(x,t) m
((1+m)f+2—m+1)l+ (1—m)f+mi].
1-mf+m 0 m \i
Since0 < f <1 —l,weknow
" A4mf+2-m
(1-mf+m B
Notice that |
e+ fl= g <

(A =m)f+m=mu"™"<m.
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Finally we obtain

VA _ e [
l—fSC[(\/n_1+1)\/I;+p+\/ﬁt]

with C = C(n). Now by replacing f with u, the above inequality yields

|Vu| 1 1 1 11 —mu'™
m— < Cl(—= + ) Vk+ — +
u" [ Vm p \/mt]

which finishes the proof of the theorem. O

9

1-m

Now we present the proof of Corollary 1.2 . Indeed, when m — 1 and 0 < u < A, we have

1 — mut A

lim — % —lim( - f)=1+log2

m—1 l—m m—1 u

Then Vil | | A
u

= <(Vik+ -+ —=)(1+1log=

<V e L)1)

which completes the desired result.
3. Conclusion

Fast diffusion equations are important types of partial differential equations. These equations play
an important role in describing physical processes of diffusion in plasma, gas kinetics, thin liquid film
dynamics and so on. Also, this equation also arises in many geometric phenomena. In this paper, we
considered the fast diffusion equations

P
a—bt‘ = Au"m < 1 3.1)

on complete noncompact Riemannian manifold M with evolving metric under the general geometric
flow. Under some curvature constraints, we established a Hamiltons gradient estimates for this equation
under general geometric flows. Depending on the physical problem and how the metric evolves, this
estimate will have important interpretation in that physical phenomena.
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