Research article Special Issues

On a generalized Lyapunov inequality for a mixed fractional boundary value problem

  • Received: 09 March 2019 Accepted: 10 May 2019 Published: 23 May 2019
  • MSC : 34A08, 26A33

  • In this paper, we establish a new Lyapunov-type inequality for a differential equation involving left Riemann-Liouville and right Caputo fractional derivatives subject to Dirichlet-type boundary conditions.

    Citation: Rabah Khaldi, Assia Guezane-Lakoud. On a generalized Lyapunov inequality for a mixed fractional boundary value problem[J]. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506

    Related Papers:

  • In this paper, we establish a new Lyapunov-type inequality for a differential equation involving left Riemann-Liouville and right Caputo fractional derivatives subject to Dirichlet-type boundary conditions.


    加载中


    [1] P. Ravi Agarwal and A. Özbekler, Lyapunov type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term, J. Comput. Appl. Math., 314 (2017), 69-78. doi: 10.1016/j.cam.2016.10.009
    [2] R. Almeida, S. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations, London: Imperial College Press, 2015.
    [3] A. Chidouh and D. F. M. Torres, A generalized Lyapunovs inequality for a fractional boundary value problem, J. Comput. Appl. Math., 312 (2017), 192-197. doi: 10.1016/j.cam.2016.03.035
    [4] D. Ma, A generalized Lyapunov inequality for a higher-order fractional boundary value problem, J. Inequal. Appl., 2016 (2016), 1-11. doi: 10.1186/s13660-015-0952-5
    [5] S. Dhar, Q. Kong and M. McCabe, Fractional boundary value problems and Lyapunov-type inequalities with fractional integral boundary conditions, Electron. J. Qual. Theory Differ. Equations, 2016 (2016), 1-16.
    [6] R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16 (2013), 978-984.
    [7] R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058-1063. doi: 10.1016/j.jmaa.2013.11.025
    [8] R. A. C. Ferreira, Lyapunov-type inequalities for some sequential fractional boundary value problems, Adv. Dyn. Syst. Appl., 11 (2016), 33-43.
    [9] R. A. C. Ferreira, Novel Lyapunov-type inequalities for sequential fractional boundary value problems, RACSAM Rev. R. Acad. A, 113 (2019), 171-179.
    [10] M. Jleli and B. Samet, Lyapunov-type inequalities for fractional boundary value problems, Electron. J. Differ. Equations, 2015 (2015), 1-11.
    [11] A. Guezane-Lakoud, R. Khaldi and D. F. M. Torres, Lyapunov-type inequality for a fractional boundary value problem with natural conditions, SeMA J., 75 (2018), 157-162. doi: 10.1007/s40324-017-0124-2
    [12] P. Hartman and A. Wintner, On an oscillation criterion of Lyapunov, Amer. J. Math., 73 (1951), 885-890. doi: 10.2307/2372122
    [13] R. Khaldi and A. Guezane-Lakoud, Lyapunov inequality for a boundary value problem involving conformable derivative, Prog. Frac. Diff. Appl., 3 (2017), 323-329. doi: 10.18576/pfda/030407
    [14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science, 2006.
    [15] A. M. Lyapunov, Problème général de la stabilité du mouvement, (French translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse, 2 (1907), 27-247, Reprinted as Ann. Math. Studies, No. 17, Princeton, 1947.
    [16] A. B. Malinowska, T. Odzijewicz and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations, In series of Springer Briefs in Applied Sciences and Technology, Springer Cham Heidelberg, 2015.
    [17] A. B. Malinowska and D. F. M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. Math. Appl., 59 (2010), 3110-3116. doi: 10.1016/j.camwa.2010.02.032
    [18] S. K. Ntouyas, B. Ahmad and T. P. Horikis, Recent developments of Lyapunov-type inequalities for fractional differential equations, in press. Available from: https://arxiv.org/pdf/1804.10760.pdf.
    [19] I. Podlubny, Fractional Differential Equation, Sain Diego: Academic Press, 1999.
    [20] Q. Ma, Ch. Ma and J. Wang, A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative, J. Math. Inequal., 11 (2011), 135-141.
    [21] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Yverdon, Switzerland: Gordon and Breach, 1993.
    [22] D. O'Regan and B. Samet, Lyapunov-type inequalities for a class of fractional differential equations, J. Inequal. Appl., 2015 (2015), 1-10. doi: 10.1186/1029-242X-2015-1
    [23] J. Rong and C. Bai, Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions, Adv. Differ. Equations, 2015 (2015), 1-10.
    [24] A. Wintner, On the non-existence of conjugate points, Amer. J. Math., 73 (1951), 368-380. doi: 10.2307/2372182
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4157) PDF downloads(681) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog