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1. Introduction

The well-known classical Lyapunov inequality [15] states that, if u is a nontrivial solution of the
Hill’s equation

u′′ (t) + q (t) u (t) = 0, a < t < b, (1.1)

subject to Dirichlet-type boundary conditions:

u (a) = u (b) = 0, (1.2)

then ∫ b

a
|q (t)| dt >

4
b − a

, (1.3)

where q : [a, b]→ R is a real and continuous function.
Later, in 1951, Wintner [24], obtained the following inequality:∫ b

a
q+ (t) dt >

4
b − a

, (1.4)

where q+(t) = max {q (t) , 0} .
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A more general inequality was given by Hartman and Wintner in [12], that is known as Hartman
Wintner-type inequality: ∫ b

a
(t − a) (b − t) q+ (t) dt > b − a, (1.5)

Since max
t∈[a,b]

(t − a) (b − t) =
(b−a)2

4 , then, (1.5) implies (1.4).

The Lyapunov inequality and its generalizations have many applications in different fields such in
oscillation theory, asymptotic theory, disconjugacy, eigenvalue problems.

Recently, many authors have extended the Lyapunov inequality (1.3) for fractional differential
equations [1–13,15,18,20,22–24]. For this end, they substituted the ordinary second order derivative
in (1.1) by a fractional derivative or a conformable derivative. The first result in which a fractional
derivative is used instead of the ordinary derivative in equation (1.1), is the work of Ferreira [6]. He
considered the following two-point Riemann-Liouville fractional boundary value problem

Dα
a+u (t) + q(t)u (t) = 0, a < t < b, 1 < α ≤ 2

u (a) = u (b) = 0.

And obtained the Lyapunov inequality:∫ b

a
|q (t)| dt > Γ (α)

(
4

b − a

)α−1

.

Then, he studied in [7], the Caputo fractional differential equation

CDα
a+u (t) + q(t)u (t) = 0, a < t < b, 1 < α ≤ 2

under Dirichlet boundary conditions (1.2). In this case, the corresponding Lyapunov inequality has the
form ∫ b

a
|q (t)| dt >

ααΓ (α)
((α − 1) (b − a))α−1 .

Later Agarwal and Özbekler in [1], complimented and improved the work of Ferreira [6]. More
precisely, they proved that if u is a nontrivial solution of the Riemann-Liouville fractional forced
nonlinear differential equations of order α ∈ (0, 2]:

Dα
a+u (t) + p (t) |u (t)|µ−1 u (t) + q (t) |u (t)|γ−1 u (t) = f (t) , a < t < b,

satisfying the Dirichlet boundary conditions (1.2), then the following Lyapunov type inequality(∫ b

a

[
p+ (t) + q+ (t)

]
dt

) (∫ b

a

[
µ0 p+ (t) + γ0q+ (t) + | f (t)|

]
dt

)
>

42α−3Γ2 (α)
(b − a)2α−2 .

holds, where p, q, f are real-valued functions, 0 < γ < 1 < µ < 2, µ0 = (2 − µ) µµ/(2−µ)22/(µ−2) and
γ0 = (2 − γ) γγ/(2−γ)22/(γ−2).

In 2017, Guezane-Lakoud et al. [11], derived a new Lyapunov type inequality for a boundary value
problem involving both left Riemann-Liouville and right Caputo fractional derivatives in presence of
natural conditions
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−CDα
b−D

β
a+u (t) + q(t)u (t) = 0, a < t < b, 0 < α, β ≤ 1

u (a) = Dβ
a+u (b) = 0,

then, they obtained the following Lyapunov inequality:∫ b

a
|q (t)| dt >

(α + β − 1) Γ (α) Γ (β)
(b − a)α+β−1 .

Recently, Ferreira in [9], derived a Lyapunov-type inequality for a sequential fractional right-focal
boundary value problem

CDα
a+ Dβ

a+u (t) + q(t)u (t) = 0, a < t < b

u (a) = Dγ
a+u (b) = 0,

where 0 < α, β, γ ≤ 1, 1 < α + β ≤ 2, then, they obtained the following Lyapunov inequality:∫ b

a
(b − s)α+β−γ−1

|q (t)| dt >
1
C
,

where

C = (b − a)γ max
{

Γ (β − γ + 1)
Γ (α + β − γ) Γ (β + 1)

,

1 − α
βΓ (α + β)

(
Γ (β − γ + 1) Γ (α + β − 1)

Γ (α + β − γ) Γ (β)

) α+β−1
α−1

, with α < 1


Note that more generalized Lyapunov type inequalities have been obtained for conformable

derivative differential equations in [13]. For more results on Lyapunov-type inequalities for fractional
differential equations, we refer to the recent survey of Ntouyas et al. [18].

In this work, we obtain Lyapunov type inequality for the following mixed fractional differential
equation involving both right Caputo and left Riemann-Liouville fractional derivatives

−C Dα
b−D

β
a+u (t) + q(t)u (t) = 0, a < t < b, (1.6)

satisfying the Dirichlet boundary conditions (1.2), here 0 < β ≤ α ≤ 1, 1 < α + β ≤ 2, CDα
b− denotes

right Caputo derivative, Dβ
a+ denotes the left Riemann-Liouville and q is a continuous function on

[a, b] .
So far, few authors have considered sequential fractional derivatives, and some Lyapunov type

inequalities have been obtained. In this study, we place ourselves in a very general context, in that in
each fractional operator, the order of the derivative can be different. Such problems, with both left and
right fractional derivatives arise in the study of Euler-Lagrange equations for fractional problems of the
calculus of variations [2,16,17]. However, the presence of a mixed left and right Caputo or Riemann-
Liouville derivatives of order 0 < α < 1 leads to great difficulties in the study of the properties of the
Green function since in this case it’s given as a fractional integral operator.

We recall the concept of fractional integral and derivative of order p > 0. For details, we refer the
reader to [14,19,21]
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The left and right Riemann-Liouville fractional integral of a function g are defined respectively by

I p
a+g(t) =

1
Γ (p)

∫ t

a

g(s)
(t − s)1−p ds,

I p
b−g(t) =

1
Γ (p)

∫ b

t

g(s)
(s − t)1−p ds.

The left and right Caputo derivatives of order p > 0, of a function g are respectively defined as
follows:

CDp
a+g(t) = In−p

a+ g(n)(t),
CDp

b−g(t) = (−1)n In−p
b− g(n)(t),

and the left and right Riemann-Liouville fractional derivatives of order p > 0, of a function g are
respectively defined as follows:

Dp
a+g(t) =

dn

dtn

(
In−p
a+ g

)
(t),

Dp
b−g(t) = (−1)n dn

dtn In−p
b− g(t),

where n is the smallest integer greater or equal than p.
We also recall the following properties of fractional operators. Let 0 < p < 1, then:
1- I pC

a+ Dp
a+ f (t) = f (t) − f (a).

2- I pC
b− Dp

b− f (t) = f (t) − f (b) .
3-

(
I p
a+c

)
(t) =

c(t−a)p

Γ(p+1) , c ∈ R
4- Dp

a+u(t) =C Dp
a+u(t), when u (a) = 0.

5- Dp
b−u(t) =C Dp

b−u(t), when u (b) = 0.

2. Lyapunov inequality

Next we transform the problem (1.6) with (1.2) to an equivalent integral equation.

Lemma 1. Assume that 0 < α, β ≤ 1. The function u is a solution to the boundary value problem (1.6)
with (1.2) if and only if u satisfies the integral equation

u (t) =

∫ b

a
G(t, r)q(r)u(r)dr, (2.1)

where

G(t, r) =
1

Γ (α) Γ (β)

(∫ inf{r,t}

a
(t − s)β−1 (r − s)α−1 ds

−
(t − a)β

(b − a)β

∫ r

a
(b − s)β−1 (r − s)α−1 ds

)
(2.2)

is the Green’s function of problem (1.6) with (1.2).
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Proof. Firstly, we apply the right side fractional integral Iαb− to equation (1.6), then the left side
fractional integral Iβa+ to the resulting equation and taking into account the properties of Caputo and
Riemann-Liouville fractional derivatives and the fact that Dβ

a+u(t) =C Dβ
a+u(t), we get

u (t) = Iβa+ Iαb−q(t)u(t) +
c (t − a)β

Γ (β + 1)
. (2.3)

In view of the boundary condition u (b) = 0, we get

c =
−Γ (β + 1)
(b − a)β

Iβa+ Iαb−q(t)u(t) |t=b .

Substituting c in (2.3), it yields

u (t) = Iβa+ Iαb−q(t)u(t) −
(t − a)β

(b − a)β
Iβa+ Iαb−q(t)u(t) |t=b

=
1

Γ (α) Γ (β)

∫ t

a
(t − s)β−1

(∫ b

s
(r − s)α−1 q(r)u(r)dr

)
ds

−
(t − a)β

Γ (α) Γ (β) (b − a)β

∫ b

a
(b − s)β−1

(∫ b

s
(r − s)α−1 q(r)u(r)dr

)
ds.

Finally, by exchanging the order of integration, we get

u (t) =
1

Γ (α) Γ (β)

∫ t

a

(∫ r

a
(t − s)β−1 (r − s)α−1 ds

)
q(r)u(r)dr

+
1

Γ (α) Γ (β)

∫ b

t

(∫ t

a
(t − s)β−1 (r − s)α−1 ds

)
q(r)u(r)dr

−
(t − a)β

Γ (α) Γ (β) (b − a)β

∫ b

a

(∫ r

a
(b − s)β−1 (r − s)α−1 ds

)
q(r)u(r)dr,

thus

u (t) =

∫ b

a
G(t, r)q(r)u(r)dr,

with

G(t, r) =
1

Γ (α) Γ (β)



∫ r

a
(t − s)β−1 (r − s)α−1 ds

−
(t−a)β

(b−a)β

∫ r

a
(b − s)β−1 (r − s)α−1 ds, a ≤ r ≤ t ≤ b,∫ t

a
(t − s)β−1 (r − s)α−1 ds

−
(t−a)β

(b−a)β

∫ r

a
(b − s)β−1 (r − s)α−1 ds, a ≤ t ≤ r ≤ b.

that can be written as

G(t, r) =
1

Γ (α) Γ (β)

(∫ inf{r,t}

a
(t − s)β−1 (r − s)α−1 ds

−
(t − a)β

(b − a)β

∫ r

a
(b − s)β−1 (r − s)α−1 ds

)
.

Conversely, we can verify that if u satisfies the integral equation (2.1), then u is a solution to the
boundary value problem (1.6) with (1.2). The proof is completed. �
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In the next Lemma we give the property of the Green function G that will be needed in the sequel.

Lemma 2. Assume that 0 < β ≤ α ≤ 1, 1 < α+ β ≤ 2, then the Green function G (t, r) given in (2.2) of
problem (1.6) with (1.2) satisfies the following property:

|G(t, r)| ≤
1

Γ (α) Γ (β) (α + β − 1) (α + β)

(
α (b − a)
(β + α)

)α+β−1

,

for all a ≤ r ≤ t ≤ b.

Proof. Firstly, for a ≤ r ≤ t ≤ b, we have G(t, r) ≥ 0. In fact, we have

G(t, r) =
1

Γ (α) Γ (β)

(∫ r

a
(t − s)β−1 (r − s)α−1 ds

−
(t − a)β

(b − a)β

∫ r

a
(b − s)β−1 (r − s)α−1 ds

)
≥

1
Γ (α) Γ (β)

(∫ r

a
(b − s)β−1 (r − s)α−1 ds

−
(t − a)β

(b − a)β

∫ r

a
(b − s)β−1 (r − s)α−1 ds

)

=
1

Γ (α) Γ (β)

(
1 −

(t − a)β

(b − a)β

) ∫ r

a
(b − s)β−1 (r − s)α−1 ds ≥ 0 (2.4)

in addition,

G(t, r) ≤
1

Γ (α) Γ (β)

(∫ r

a
(r − s)β−1 (r − s)α−1 ds

−
(r − a)β

(b − a)β

∫ r

a
(b − s)β−1 (r − s)α−1 ds

)
≤

1
Γ (α) Γ (β)

(
(r − a)α+β−1

(α + β − 1)

−
(r − a)β

(b − a)β

∫ r

a
(b − a)β−1 (r − s)α−1 ds

)

=
1

Γ (α) Γ (β)

(
(r − a)α+β−1

(α + β − 1)
−

(r − a)β+α

α (b − a)

)
. (2.5)

Thus, from (2.4) and (2.5), we get

0 ≤ G(t, r) ≤ h (r) , a ≤ r ≤ t ≤ b, (2.6)

where

h (s) :=
1

Γ (α) Γ (β)

(
(s − a)α+β−1

(α + β − 1)
−

(s − a)β+α

α (b − a)

)
,

it is clear that h (s) ≥ 0, for all s ∈ [a, b].
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Now, for a ≤ t ≤ r ≤ b, we have

G(t, r) =
1

Γ (α) Γ (β)

(∫ t

a
(t − s)β−1 (r − s)α−1 ds

−
(t − a)β

(b − a)β

∫ r

a
(b − s)β−1 (r − s)α−1 ds

)
≤

1
Γ (α) Γ (β)

(∫ t

a
(t − s)β−1 (t − s)α−1 ds

−
(t − a)β

(b − a)

∫ r

a
(r − s)α−1 ds

)
=

1
Γ (α) Γ (β)

(
(t − a)α+β−1

(α + β − 1)
−

(t − a)β (r − a)α

α (b − a)

)

≤
1

Γ (α) Γ (β)

(
(t − a)α+β−1

(α + β − 1)
−

(t − a)β+α

α (b − a)

)
= h(t). (2.7)

On the other hand,

G(t, r) ≥
1

Γ (α) Γ (β)
(r − a)α−1

∫ t

a
(t − s)β−1 ds

−
(t − a)β

(b − a)β

∫ r

a
(r − s)β−1 (r − s)α−1 ds

)
≥

1
Γ (α) Γ (β)

(
(t − a)α (t − a)β

β (b − a)
−

(t − a)β

(b − a)β
(r − a)α+β−1

(α + β − 1)

)
≥

1
Γ (α) Γ (β)

(
(t − a)α+β

β (b − a)
−

(t − a)β (r − a)α−1

(α + β − 1)

)
≥

1
Γ (α) Γ (β)

(
(t − a)α+β

β (b − a)
−

(t − a)α+β−1

(α + β − 1)

)
,

since β ≤ α, we get
G(t, r) ≥ −h (t) , a ≤ t ≤ r ≤ b. (2.8)

From (2.7) and (2.8) we obtain

|G(t, r)| ≤ h (t) , a ≤ t ≤ r ≤ b. (2.9)

Finally, by differentiating the function h, it yields

h′(s) =
1

Γ (α) Γ (β)
(s − a)α+β−2

(
1 −

(β + α) (s − a)
α (b − a)

)
.

We can see that h′(s) = 0 for s0 = a +
α(b−a)
(β+α) ∈ (a, b) , h′(s) < 0 for s > s0 and h′(s) > 0 for s < s0.

Hence, the function h(s) has a unique maximum given by

max
s∈[a,b]

h (s) = h (s0)
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=
1

Γ (α) Γ (β)


(
α(b−a)
(β+α)

)α+β−1

(α + β − 1)
−

(
α(b−a)
(β+α)

)β+α

α (b − a)


=

1
Γ (α) Γ (β) (α + β − 1) (α + β)

(
α (b − a)
(β + α)

)α+β−1

.

From (2.6) and (2.9), we get |G(t, r)| ≤ h(s0), from which the intended result follows. �

Next, we state and prove the Lyapunov type inequality for problem (1.6) with (1.2).

Theorem 3. Assume that 0 < β ≤ α ≤ 1 and 1 < α + β ≤ 2. If the fractional boundary value problem
(1.6) with (1.2) has a nontrivial continuous solution, then∫ b

a
|q (r)| dr ≥

Γ (α) Γ (β) (α + β − 1) (α + β)α+β

(α (b − a))α+β−1 . (2.10)

Proof. Let X = C[a, b] be the Banach space endowed with norm ||u|| = max
t∈[a,b]

|u (t)|. It follows from

Lemma 1 that a solution u ∈ X to the boundary value problem (1.6) with (1.2) satisfies

|u (t)| ≤
∫ b

a
|G(t, r)| |q (r)| |u (r)| dr

≤ ‖u‖
∫ b

a
|G(t, r)| q (r) dr,

Now, applying Lemma 2 to equation (2.1), it yields

|u (t)| ≤
1

Γ (α) Γ (β) (α + β − 1) (α + β)

(
α (b − a)
(β + α)

)α+β−1

‖u‖
∫ b

a
|q (r)| dr

Hence,

‖u‖ ≤
(α (b − a))α+β−1

Γ (α) Γ (β) (α + β − 1) (α + β)α+β
‖u‖

∫ b

a
|q (r)| dr,

from which the inequality (2.10) follows. Note that the constant in (2.10) is not sharp. The proof is
completed. �

Remark 4. Note that, according to boundary conditions (1.2), the Caputo derivatives CDα
b− and CDβ

a+

coincide respectively with the Riemann-Liouville derivatives Dα
b− and Dβ

a+ . So, equation (1.6) is reduced
to the one containing only Caputo derivatives or only Riemann-Liouville derivatives, i.e.,

−CDαC
b− Dβ

a+u (t) + q(t)u (t) = 0, a < t < b

or
−Dα

b−D
β
a+u (t) + q(t)u (t) = 0, a < t < b

Furthermore, by applying the reflection operator (Q f )(t) = f (a + b− t) and taking into account that
QCDα

a+ =C Dα
b−Q and QCDβ

b− =C Dβ
a+ Q (see [21]), we can see that, the boundary value problem (1.6)

with (1.2) is equivalent to the following problem

−CDα
a+ Dβ

b−u (t) + q(t)u (t) = 0, a < t < b,

u (a) = u (b) = 0.
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Remark 5. If we take α = β = 1, then the Lyapunov type inequality (2.3) is reduced to∫ b

a
|q (t)| dt ≥

4
b − a

.
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