Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Research article

A posteriori error estimates of hp spectral element method for parabolic optimal control problems

  • Received: 18 October 2021 Revised: 19 December 2021 Accepted: 20 December 2021 Published: 04 January 2022
  • MSC : 49J20, 65N30

  • In this paper, we investigate the spectral element approximation for the optimal control problem of parabolic equation, and present a hp spectral element approximation scheme for the parabolic optimal control problem. For improve the accuracy of the algorithm and construct an adaptive finite element approximation. Under the Scott-Zhang type quasi-interpolation operator, a L2(H1)L2(L2) posteriori error estimates of the hp spectral element approximated solutions for both the state variables and the control variable are obtained. Adopting two auxiliary equations and stability results, a L2(L2)L2(L2) posteriori error estimates are derived for the hp spectral element approximation of optimal parabolic control problem.

    Citation: Zuliang Lu, Fei Cai, Ruixiang Xu, Chunjuan Hou, Xiankui Wu, Yin Yang. A posteriori error estimates of hp spectral element method for parabolic optimal control problems[J]. AIMS Mathematics, 2022, 7(4): 5220-5240. doi: 10.3934/math.2022291

    Related Papers:

    [1] Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677
    [2] Yonghang Chang, Menglan Liao . Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254
    [3] Shulin Zhang . Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations. AIMS Mathematics, 2022, 7(1): 1015-1034. doi: 10.3934/math.2022061
    [4] Xionghui Xu, Jijiang Sun . Ground state solutions for periodic Discrete nonlinear Schrödinger equations. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755
    [5] Fugeng Zeng, Peng Shi, Min Jiang . Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. AIMS Mathematics, 2021, 6(3): 2559-2578. doi: 10.3934/math.2021155
    [6] Yang Pu, Hongying Li, Jiafeng Liao . Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents. AIMS Mathematics, 2022, 7(10): 18311-18322. doi: 10.3934/math.20221008
    [7] Meixia Cai, Hui Jian, Min Gong . Global existence, blow-up and stability of standing waves for the Schrödinger-Choquard equation with harmonic potential. AIMS Mathematics, 2024, 9(1): 495-520. doi: 10.3934/math.2024027
    [8] Dengfeng Lu, Shuwei Dai . On a class of three coupled fractional Schrödinger systems with general nonlinearities. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875
    [9] Yingying Xiao, Chuanxi Zhu, Li Xie . Existence of ground state solutions for the modified Chern-Simons-Schrödinger equations with general Choquard type nonlinearity. AIMS Mathematics, 2022, 7(4): 7166-7176. doi: 10.3934/math.2022399
    [10] Ramzi Alsaedi . Existence of multiple solutions for a singular p()-biharmonic problem with variable exponents. AIMS Mathematics, 2025, 10(2): 3779-3796. doi: 10.3934/math.2025175
  • In this paper, we investigate the spectral element approximation for the optimal control problem of parabolic equation, and present a hp spectral element approximation scheme for the parabolic optimal control problem. For improve the accuracy of the algorithm and construct an adaptive finite element approximation. Under the Scott-Zhang type quasi-interpolation operator, a L2(H1)L2(L2) posteriori error estimates of the hp spectral element approximated solutions for both the state variables and the control variable are obtained. Adopting two auxiliary equations and stability results, a L2(L2)L2(L2) posteriori error estimates are derived for the hp spectral element approximation of optimal parabolic control problem.



    In this paper, we consider the existence of standing waves for the following coupled system of biharmonic Schrödinger equations

    {itE12E1+|E1|2E1+β|E2|2E1=0,itE22E2+|E2|2E2+β|E1|2E2=0, (1.1)

    where E1=E1(x,t)C, E2=E2(x,t)C and β is a constant. This system describes the interaction of two short dispersive waves. By standing waves we mean solutions of type

    (E1(x,t),E2(x,t))=(eiλ1tu(x),eiλ2tv(x)), (1.2)

    where u,v are real functions. This leads us to study the following biharmonic Schrödinger system

    {Δ2u+λ1u=u3+βuv2,Δ2v+λ2v=v3+βu2v, (1.3)

    where (u,v)H2(RN)×H2(RN). In this paper we assume that 1N7,λi>0(i=1,2) and β is a coupling parameter.

    In order to describe wave propagation, some models with higher-order effects and variable coefficients, such as the third-, fourth- and fifth-order dispersions, self-steepening and symmetric perturbations, have been proposed in physical literatures (see e.g.[26]). Karpman investigated the stability of the soliton solutions for fourth-order nonlinear Schrödinger equations (see [13,14]). To understand the differences between second and fourth order dispersive equations, one can refer to [11].

    Physically, the interaction of the long and short waves can be described by a system of coupled nonlinear Schrödinger and Korteweg-de Vries equations. Recently, a fourth-order version of such system was considered by P. Alvarez-Caudevilla and E. Colorado [5]. Using the method of Nehari manifold, they proved the existence of ground state in radially symmetric space H2r(RN)×H2r(RN). In their proof, the compact embedding of radially symmetric function space is essential. A natural problem is whether there exists a ground state in the Sobolev space H2(RN)×H2(RN).

    On the other hand, the second order counterparts of (1.1) and (1.3) are respectively

    {itE1E1+|E1|2E1+βE1|E2|2=0,itE2E2+|E2|2E2+β|E1|2E2=0. (1.4)

    and

    {Δu+λ1u=u3+βuv2,Δv+λ2v=v3+βu2v. (1.5)

    Since pioneering works of [2,3,4,18,19,22], system (1.5) and its extensions to more general second order elliptic systems have been extensively studied by many authors, e.g. [8,9,12,21,23]. For the similar problem for fractional order elliptic system, one can refer to [7,10,25].

    Motivated by the above developments, using techniques of variation principle and concentration-compactness lemma, we consider the existence of ground state for system (1.3). By ground state, we mean a nontrivial least energy solution of the system.

    We organize the paper as follows. In Section 2, we give some notations, elementary results and statements of our main theorems. In Section 3, we study some properties of Palais-Smale sequence. In Section 4, we give the proof of our main theorems.

    In H2(RN), we define the following norm:

    u,vi:=RN(ΔuΔv+λiuv),u2i:=u,ui,i=1,2. (2.1)

    For uLp(RN), we set |u|p=(RN|u|p)1p for 1p<. Accordingly, the inner product and induced norm on

    H:=H2(RN)×H2(RN).

    are given by

    (u,v),(ξ,η)=RN(ΔuΔξ+ΔvΔη+λ1uξ+λ2vη),(u,v)2=u21+v22. (2.2)

    The energy functional associated with system (1.3) is

    Φ(u)=12u21+12v2214RN(u4+v4)12βRNu2v2. (2.3)

    for u=(u,v)H.

    Set

    I1(u)=12u2114RNu4,I2(v)=12v2114RNv4,
    Ψ(u)=Φ(u)[u]=u2RN(u4+v4)2βRNu2v2. (2.4)

    and the Nehari manifold

    N={u=(u,v)H{(0,0)}:Ψ(u)=0}.

    Remark 2.1. (see [1,5,16])

    Let

     2={2NN4,ifN>4,,if1N4.

    Then we have the following Sobolev embedding:

    H2(RN)Lp(RN),for{2p2,if N4,2p<2,if N=4.

    Proposition 2.1. Let ΦN be the restriction of Φ on N.The following properties hold.

    i) N is a locally smooth manifold.

    ii) N is a complete metric space.

    iii) uN is a critical point of Φ if and only if u is a critical point of ΦN.

    iv) Φ is bounded from below on N.

    Proof. i) Differentiating expression (2.4) yields

    Ψ(u)[u]=2u24RN(u4+v4)8βRNu2v2. (2.5)

    By the definition of Nehari manifold, for uN, Ψ(u)=0 and hence

    Ψ(u)[u]=Ψ(u)[u]3Ψ(u)=2u2<0. (2.6)

    It follows that N is a locally smooth manifold near any point u0 with Ψ(u)=0.

    ii) Let {un}N be a sequence such that unu00 as n+. By Gagliardo-Nirenberg-Sobolev inequality and interpolation formula for Lp space, we have |unu0|p0 and |vnv0|p0 for 2p<2. It easily follows that Φ(un)[un]Φ(u0)[u0]0. Since Φ(un)[un]=0, we have Φ(u0)[u0]=0.

    Claim: There exists ρ>0 such that for all uN, ||u||>ρ.

    Since unN for all n and unu00, we get u0(0,0). Hence unNand N is a complete metric space.

    Proof of the claim: Taking the derivative of the functional Φ in the direction h=(h1,h2), it follows that

    Φ(u)[h]=RN(Δuh1+λ1uh1+Δvh2+λ2vh2)RN(u3h1+v3h2)βRN(uv2h1+u2vh2).

    Taking the derivative of Φ(u)[h] in the direction h again, it follows that

    Φ(u)[h]2=h23RN(u2h21+v2h22)βRN(u2h22+v2h21+4uvh1h2).

    Note that [h]2 means [h,h] and h=(h1,h2). Let u=0, we obtain Φ(0)[h]2=h2, which implies that 0 is a strict minimum critical point of Φ. In a word, we can deduce that N is a smooth complete manifold and there exists a constant ρ>0 such that

    u2>ρfor alluN. (2.7)

    iii) Assume that (u0,v0)N is a critical point of ΦN. Then there is a Lagrange multiplier ΛR such that

    Φ(u0,v0)=ΛΨ(u0,v0). (2.8)

    Hence

    0=(Φ(u0,v0),(u0,v0))=Λ(Ψ(u0,v0),(u0,v0)). (2.9)

    From (2.6) and (2.9), we get Λ=0. Now (2.10) shows that Φ(u0,v0)=0, i.e. (u0,v0) is a critical point of Φ.

    iiii) By (2.3), (2.4) and (2.7), we have

    ΦN(u)=14u2, (2.10)

    and

    Φ(u)14ρfor alluN. (2.11)

    Then Φ is bounded from below on N.

    Lemma 2.1. For every u=(u,v)H{(0,0)}, there is a unique number t>0 such that tuN.

    Proof. For (u,v)H{(0,0)} and t>0, define

    ω(t):=Φ(tu,tv)=12t2u214t4RN(u4+v4)12βt4RNu2v2.

    For fixed (u,v)(0,0), we have ω(0)=0 and ω(t)Ct2 for small t. On the other hand, we have ω(t) as t. This implies that there is a maximum point tm>0 of ω(t) such that ω(tm)=Φ(tmu)u=0 and hence tmuN. Actually, since Φ has special structure, by direct computation we can also get the unique tm.

    Lemma 2.2. ([20,page 125])

    Let uLq(RN) and DmuLr(RN) for 1r,q. For 0j<m, there exists a constant C>0 such that the following inequalities hold:

    DjuLpCDmuαLru1αLq,

    where

    1p=jN+(1rmN)α+1αq,jmα1.

    and C=C(n,m,j,q,r,α).

    The main results of the present paper are as follows:

    Theorem 2.1. There exist two positive numbers Λ and Λ+, ΛΛ+, such that

    (i) If β>Λ+, the infimum of Φ on N is attained at some ˜u=(˜u,˜v) with Φ(˜u)<min{Φ(u1),Φ(v2)} and both ˜u and ˜v are non-zero.

    (ii) If 0<β<Λ, then Φ constrained on N has a mountain pass critical point u with Φ(u)>max{Φ(u1),Φ(v2)}.

    The definitions of Λ+,Λ,u1 and v2 will be given in section 4.

    Let

    c=infNΦ(u).

    Lemma 3.1. There exists a bounded sequence un=(un,vn)N such that Φ(un)c and Φ(un)0 as n+.

    Proof. From Proposition 1, Φ is bounded from below on N. By Ekeland's variational principle [24], we obtain a sequence unN satisfying

    Φ(un)infNΦ(u)+1n,Φ(u)Φ(un)1nunufor anyuN. (3.1)

    Since

    c+1nΦ(un)=14un2, (3.2)

    there exists C>0 such that

    un2C. (3.3)

    For any (y,z)H with (y,z)1, denote

    Fn(s,t)=Φ(un+sy+tun,vn+sz+tvn)(un+sy+tun,vn+sz+tvn). (3.4)

    Obviously, Fn(0,0)=Φ(un,vn)(un,vn)=0 and

    Fnt(0,0)=(Ψ(un,vn),(un,vn))=2un2<0. (3.5)

    Using the implicit function theorem, we get a C1 function tn(s):(δn,δn)R such that tn(0)=0 and

    Fn(s,tn(s))=0,s(δn,δn). (3.6)

    Differentiating Fn(s,tn(s)) in s at s=0, we have

    Fns(0,0)+Fnt(0,0)tn(0)=0. (3.7)

    From (2.4) and (2.7), it follows that

    |Fnt(0,0)|=|(Ψ(un,vn),(un,vn))|=2||un2>2ρ. (3.8)

    By Hölder's inequality and Sobolev type embedding theorem, it yields

    |Fns(0,0)|=|(Ψ(un,vn),(y,z))||2((un,vn),(y,z))|+|4RN(u3ny+v3nz)|+|4βRN(unv2ny+u2nvnz)|C1. (3.9)

    From (3.7)–(3.9), we obtain

    |tn(0)|C2. (3.10)

    Let

    (¯y,¯z)n,s=s(y,z)+tn(s)(un,vn),(y,z)n,s=(un,vn)+(¯y,¯z)n,s. (3.11)

    In view of (3.1), we have

    |Φ(y,z)n,sΦ(un,vn)|1n(¯y,¯z)n,s. (3.12)

    Applying a Taylor expansion on the left side of (3.12), we deduce that

    Φ(y,z)n,sΦ(un,vn)=(Φ(un,vn),(¯y,¯z)n,s)+r(n,s)=(Φ(un,vn),s(y,z))+(Φ(un,vn),tn(s)(un,vn))+r(n,s)=s(Φ(un,vn),(y,z))+r(n,s), (3.13)

    where r(n,s)=o(¯y,¯z)n,s as s0.

    From (3.3), (3.10), (3.11) and tn(0)=0, we have

    lim sup|s|0(¯y,¯z)n,s|s|C3, (3.14)

    where C3 is independent of n for small s. Actually, it follows from (3.10), (3.11) that r(n,s)=O(s) for small s.

    From (3.3), (3.12)–(3.14), we have

    |(Φ(un,vn),(y,z))|C3n. (3.15)

    Hence Φ(un,vn)0 as n. We complete the proof of the lemma.

    From the above lemma, we have a bounded PS sequence such that Φ(un,vn)0 and Φ(un,vn)c. Then, there exists (u0,v0)H2(RN)×H2(RN) such that (un,vn)(u0,v0).

    Lemma 3.2. Assume that (un,vn)(u0,v0) and Φ(un,vn)0 as n. Then Φ(u0,v0)=0.

    Proof. For any {\bf{ \pmb{\mathsf{ ν}}}} = (\varphi, \psi), \varphi, \psi\in C^{\infty}_{0}({\mathbb{R}}^{N}) , we have

    \begin{equation} \Phi^{'}(u_{n},v_{n}){\bf{ \pmb{\mathsf{ ν}}}} = \langle(u_{n},v_{n}),(\varphi,\psi)\rangle-\int_{{\mathbb{R}}^{N}}(u_{n}^{3}\varphi+ v_{n}^{3}\psi)-\beta\int_{{\mathbb{R}}^{N}}(u_{n}v_{n}^{2}\varphi-u_{n}^{2}v_{n}\psi). \end{equation} (3.16)

    The weak convergence \{{\bf{u}}_{n}\} implies that \langle(u_{n}, v_{n}), (\varphi, \psi)\rangle\rightarrow \langle(u_{0}, v_{0}), (\varphi, \psi)\rangle . Let K\subset{\mathbb{R}}^{N} be a compact set containing supports of \varphi, \psi , then it follows that

    \begin{equation*} \begin{aligned} &(u_{n},v_{n})\rightarrow (u_{0},v_{0}) \quad \text{in}\; \; L^{p}(K)\times L^{p}(K)\; \; \text{for}\; \; 2\leq p < 2^{\ast}, \\ &(u_{n},v_{n})\rightarrow (u_{0},v_{0}) \quad \text{for a.e.}\; x\in {\mathbb{R}}^{N}. \end{aligned} \end{equation*}

    From [6], there exist a_{K} and b_{K} \in L^{4}(K) such that

    \begin{equation*} |u_{n}(x)|\leq a_{K}(x)\quad \text{and} \quad |v_{n}(x)|\leq b_{K}(x)\quad \text{for a.e.}\; x\in K. \end{equation*}

    Define c_{K}(x): = a_{K}(x)+b_{K}(x) for x\in K . Then c_{K}\in L^{4}(K) and

    \begin{equation*} |u_{n}(x)|,|v_{n}(x)|\leq|u_{n}(x)|+|v_{n}(x)|\leq a_{K}(x)+b_{K}(x) = c_{K}(x) \quad \\\text{ for a.e.}\; x\in K. \end{equation*}

    It follows that, for a.e. x\in K ,

    \begin{equation*} \begin{aligned} &u_{n}v_{n}^{2}\varphi\leq c_{K}^{3}|\varphi|, \\ &u_{n}^{2}v_{n}\psi\leq c_{K}^{3}|\psi|, \end{aligned} \end{equation*}

    and hence

    \begin{equation*} \begin{aligned} &\int_{K}c_{K}^{3}|\varphi|dx\leq |c_{K}\chi_{K}|^{3}_{4}|\varphi \chi_{K}|_{4}, \\ &\int_{K}c_{K}^{3}|\psi|dx\leq |c_{K}\chi_{K}|^{3}_{4}|\psi\chi_{K}|_{4}. \end{aligned} \end{equation*}

    By Lebesgue's dominated convergence theorem, we have

    \begin{equation} \begin{aligned} \int_{K}u_{n}v_{n}^{2}\varphi dx\rightarrow \int_{K}u_{0}v_{0}^{2}\varphi dx, \\ \int_{K}u_{n}^{2}v_{n}\psi dx\rightarrow \int_{K}v_{0}u_{0}^{2}\psi dx. \end{aligned} \end{equation} (3.17)

    Similarly, there exists d_{K}(x)\in L^{4}(K) such that |u_{n}|\leq d_{K}(x)\; \text{for a.e.}\; x\in K and

    \begin{equation*} u_{n}^{3}\varphi\leq|u_{n}|^{3}|\varphi|\leq d_{K}(x)^{3}|\varphi| \quad for \; a.e.\; x\in K. \end{equation*}

    By Lebesgue's dominated convergence theorem, it yields

    \begin{equation} \int_{K}u_{n}^{3}\varphi dx\rightarrow \int_{K}u_{0}^{3}\varphi dx. \end{equation} (3.18)

    By (3.16)–(3.18), we obtain

    \begin{equation} \Phi^{'}(u_{n},v_{n})(\varphi,\psi)\rightarrow \Phi^{'}(u_{0},v_{0})(\varphi,\psi) \end{equation} (3.19)

    and \Phi^{'}(u_{0}, v_{0}) = 0 . Thus (u_{0}, v_{0}) is a critical point of \Phi .

    Lemma 3.3. ([24,Lemma 1.21])If u_{n} is bounded in H^{2}({\mathbb{R}}^{N}) and

    \begin{equation} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|u_{n}|^{2}dx\rightarrow 0 \; \; \mathit{\text{as}}\; \; n\rightarrow \infty, \end{equation} (3.20)

    then u_{n}\rightarrow 0 in L^{p}({\mathbb R}^N) for 2 < p < 2^{\ast} .

    Lemma 3.4. Assume that \{{\bf{u}}_{n}\} is a PS sequence constrained on \mathcal{N} and

    \begin{equation} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|{\bf{u}}_{n}|^{2}dx = \sup\limits_{z\in{\mathbb{R}}^{N}}(\int_{B(z,1)}|u_{n}|^{2}dx+\int_{B(z,1)}|v_{n}|^{2}dx) \rightarrow 0. \end{equation} (3.21)

    Then \|{\bf{u}}_{n}\|\rightarrow 0 .

    Proof. Since \{{\bf{u}}_{n}\}\in\mathcal N and thus

    \begin{equation*} \|{\bf{u}}_{n}\| = \int_{{\mathbb{R}}^{N}}(u_{n}^{4}+v_{n}^{4})+2\beta\int_{{\mathbb{R}}^{N}}u_{n}^{2}v_{n}^{2}. \end{equation*}

    From Lemma 3.3, we have that u_{n}\rightarrow 0, v_{n}\rightarrow 0 in L^{p}({\mathbb{R}}^{N}) for 2 < p < 2^{\ast} . By Hölder's inequality, it follows that

    \begin{equation*} \int_{{\mathbb{R}}^{N}}(u_{n}^{4}+v_{n}^{4})+2\beta\int_{{\mathbb{R}}^{N}}u_{n}^{2}v_{n}^{2}\rightarrow0, \end{equation*}

    and hence \|{\bf{u}}_{n}\|\rightarrow0 .

    System (1.3) has two kinds of semi-trivial solutions of the form (u, 0) and (0, v) . So we take {\bf{u}}_{1} = (U_{1}, 0) and {\bf{v}}_{2} = (0, V_{2}) , where U_{1} and V_{2} are respectively ground state solutions of the equations

    \triangle^{2}f+\lambda_{i}f = f^{3},\; \; i = 1,2

    in H^{2}({\mathbb{R}}^{N}) which are radially symmetric(see [15]). Moreover, if we denote w a ground state solution of (4.1)

    \begin{equation} \triangle^{2}w+w = w^{3}, \end{equation} (4.1)

    by scaling we have

    \begin{equation} U_{1}(x) = \sqrt{\lambda_{1}} \; w(\sqrt[4]{\lambda_{1}}\; x), \quad V_{2}(x) = \sqrt{\lambda_{2}} \; w(\sqrt[4]{\lambda_{2}}\; x). \end{equation} (4.2)

    Thus two kinds of semi-trivial solutions of (1.3) are respectively {\bf{u}}_{1} = (U_{1}, 0) and {\bf{v}}_{2} = (0, V_{2}) .

    Definition 4.1. We define the two constants related to U_{1} and V_{2} as follows:

    \begin{equation} S_{1}^{2}: = \inf\limits_{\varphi\in H^2(\mathbb R^N)\backslash\{0\}}\frac{\|\varphi\|_{2}^{2}}{\int_{{\mathbb{R}}^{N}}U_{1}^{2}\varphi^{2}}, \quad S_{2}^{2}: = \inf\limits_{\varphi\in H^2(\mathbb R^N)\backslash\{0\}}\frac{\|\varphi\|_{1}^{2}}{\int_{{\mathbb{R}}^{N}}V_{2}^{2}\varphi^{2}}, \end{equation} (4.3)

    and

    \begin{equation*} \Lambda^{+} = \max\{S_{1}^{2},S_{2}^{2}\},\ \Lambda^{-} = \min\{S_{1}^{2},S_{2}^{2}\}. \end{equation*}

    Proposition 4.1. i). If 0 < \beta < \Lambda^{-} , then {\bf{u}}_{1}, {\bf{v}}_{2} are strict local minimum elements of \Phi constrained on \mathcal{N} .

    ii). If \beta > \Lambda^{+} , then {\bf{u}}_{1}, {\bf{v}}_{2} are saddle points of \Phi constrained on \mathcal{N} . Moreover

    \begin{equation} \inf\limits_{\mathcal{N}}\Phi({\bf{u}}) < \min\{\Phi({\bf{u}}_{1}),\Phi({\bf{v}}_{2})\}, \end{equation} (4.4)

    Proof. Since the proof is similar to [5], we omit it.

    Next, we will see that the infimum of \Phi constrained on the Nehari manifold \mathcal{N} is attained under appropriate parameter conditions. We also give the existence of a mountain pass critical point.

    Proof. We first give the proof of Theorem 2.1 (i) .

    By Lemma 3, there exists a bounded PS sequence \{{\bf{u}}_{n}\}\subset \mathcal{N} of \Phi , i.e.

    \begin{equation*} \Phi({\bf{u}}_{n}) \rightarrow c: = \inf\limits_{\mathcal{N}}\Phi \; \; \text{and} \; \; \Phi^{'}_{\mathcal{N}}({\bf{u}}_{n})\rightarrow 0. \end{equation*}

    We can assume that the sequence \{{\bf{u}}_{n}\} possesses a subsequence such that

    \begin{equation*} \begin{aligned} &{\bf{u}}_{n}\rightharpoonup \widetilde{{\bf{u}}} \; \; \text{in}\; \mathbb H, \\ &{\bf{u}}_{n}\rightarrow \widetilde{{\bf{u}}} \; \; \text{in}\; L_{loc}^{p}({\mathbb{R}}^{N})\times L_{loc}^{p}({\mathbb{R}}^{N}) \; \text{for}\; 2\leq p < 2^{\ast}, \\ &{\bf{u}}_{n}\rightarrow \widetilde{{\bf{u}}} \; \; \text{for a.e.}\; x\in {\mathbb{R}}^{N}. \end{aligned} \end{equation*}

    Suppose that

    \begin{equation*} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|{\bf{u}}_{n}|^{2}dx = \sup\limits_{z\in{\mathbb{R}}^{N}}(\int_{B(z,1)}|u_{n}|^{2}dx+\int_{B(z,1)}|v_{n}|^{2}dx) \rightarrow 0. \end{equation*}

    From Lemma 3.4, we have {\bf{u}}_{n}\rightarrow 0 . This contradicts with {\bf{u}}_{n}\in\mathcal{N} . In view of Lions' Lemma, there exists y_{n}\subset{\mathbb{R}}^{N} such that

    \begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta \; \; \text{or}\; \; \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|v_{n}|^{2}dx > \delta. \end{equation*}

    Without loss of generality, we assume that

    \begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta. \end{equation*}

    For each y_{n}\subset{\mathbb{R}}^{N} , we can find z_{n}\subset{\mathbb{\mathbb{Z}}}^{N} such that {B(y_{n}, 1)}\subset B(z_{n}, 1+\sqrt{N}) , and thus

    \begin{equation} \liminf\limits_{n\rightarrow \infty}\int_{B(z_{n},1+\sqrt{N})}|u_{n}|^{2}dx \geq\liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta. \end{equation} (4.5)

    If z_{n} is bounded in {\mathbb{Z}}^{N} , by u_{n}\rightarrow \widetilde{u} in L_{loc}^{2}({\mathbb{R}}^{N}) , it follows that \widetilde{u}\neq0 . We assume that z_{n} is unbounded in {\mathbb{Z}}^{N} . Define \overline{u}_{n} = u_{n}(\cdot+z_{n}) and \overline{v}_{n} = v_{n}(\cdot+z_{n}) . For any compact set K , up to a subsequence, we have

    \begin{equation*} \begin{aligned} &\overline{{\bf{u}}}_{n}\rightharpoonup \overline{{\bf{u}}} \; \; \text{in}\; \mathbb H,\\ &\overline{{\bf{u}}}_{n}\rightarrow \overline{{\bf{u}}}\; \; \text{in}\; L^{p}(K)\times L^{p}(K) \; \text{for}\; 2\leq p < 2^{\ast},\\ &\overline{{\bf{u}}}_{n}\rightarrow \overline{{\bf{u}}}\; \; \text{for a.e.}\; x\in {\mathbb{R}}^{N}, \end{aligned} \end{equation*}

    where \overline{{\bf{u}}} = (\overline{u}, \overline{v}) . From (4.5), we have that

    \begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(0,1+\sqrt{N})}|\overline{u}_{n}|^{2}dx > \delta, \end{equation*}

    and thus \overline{{\bf{u}}} = (\overline{u}, \overline{v})\neq (0, 0) .

    From Lemmas 3.1 and 3.2, we notice that \overline{{\bf{u}}}_{n}, \overline{{\bf{u}}}\in\mathcal{N} and {\bf{u}}_{n} is PS sequence for \Phi on \mathcal{N} . Moreover, by Fatou's Lemma, we obtain the following:

    \begin{equation*} c = \liminf\limits_{n\rightarrow \infty}\Phi({\bf{u}}_{n}) = \liminf\limits_{n\rightarrow \infty}\Phi_{\mathcal{N}}({\bf{u}}_{n})\geq \Phi_{\mathcal{N}}({\bf{\overline{u}}}) = \Phi({\bf{\overline{u}}}). \end{equation*}

    Hence \Phi(\overline{u}, \overline{v}) = c and (\overline{u}, \overline{v})\neq(0, 0) is a ground state solution of the system (1.3).

    In addition, we can conclude that both components of \overline{{\bf{u}}} are non-trivial. In fact, if the second component \overline{v}\equiv 0 , then \overline{{\bf{u}}} = (\overline{u}, 0) . So \overline{{\bf{u}}} = (\overline{u}, 0) is the non-trivial solution of the system (1.3). Hence, we have

    \begin{equation*} I_{1}(\overline{u}) = \Phi(\overline{{\bf{u}}}) < \Phi({\bf{u}}_{1}) = I_{1}(U_{1}). \end{equation*}

    However, this is a contradiction due to the fact that U_{1} is a ground state solution of \triangle^{2}u+\lambda u = u^{3} . Similarly, we conclude that the first component \overline{u}\neq0 . From Proposition 4.1-(ii) and \beta > \Lambda^{+} , we have

    \begin{equation} \Phi(\overline{{\bf{u}}}) < \min\{\Phi({\bf{u}}_{1}),\Phi({\bf{v}}_{2})\}. \end{equation} (4.6)

    Next we give the proof of Theorem 2.1 (ii) .

    From Proposition 4.1-(i), we obtain that {\bf{u}}_{1}, {\bf{v}}_{2} are strict local minima \Phi of on \mathcal{N} . Under this condition, we are able to apply the mountain pass theorem to \Phi on \mathcal{N} that provide us with a PS sequence {\bf{v}}_{n}\in\mathcal{N} such that

    \begin{equation*} \Phi({\bf{v}}_{n})\rightarrow c: = \inf\limits_{\gamma\in\Gamma} \ \max\limits_{0\leq t\leq 1}\Phi(\gamma(t)), \end{equation*}

    where

    \begin{equation*} \Gamma: = \{\gamma:[0,1]\rightarrow \mathcal{N}\; |\; \gamma \text{ is continuous and } \gamma(0) = {\bf{u}}_{1}, \gamma(1) = {\bf{v}}_{2}\}. \end{equation*}

    From Lemmas 3.1 and 3.2, we have that c = \Phi({\bf{u}}^{\ast}) and thus {\bf{u}}^{\ast} is a critical point of \Phi .

    In this paper, using Nehari manifold method and concentration compactness theorem, we prove the existence of ground state solution for a coupled system of biharmonic Schrödinger equations. Previous results on ground state solutions are obtained in radially symmetric Sobolev space. We consider ground state solutions in the space without radially symmetric restriction, which can be viewed as extension of previous one.

    Yanhua Wang was partially supported by NSFC (Grant No.11971289, 11871071).

    There is no conflict of interest of the authors.



    [1] R. Ghanem, H. Sissaoui, A posteriori error estimate by a spectral method of an elliptic optimal control problem, J. Comput. Math. Optim., 2 (2006), 111–125.
    [2] Y. Chen, Superconvergence of optimal control problems by rectangular mixed finite element methods, Math. Comput., 77 (2008), 1269–1291. https://doi.org/10.1090/S0025-5718-08-02104-2 doi: 10.1090/S0025-5718-08-02104-2
    [3] Y. Chen, W. Liu, Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Mod., 3 (2006), 311–321. https://doi.org/10.1080/00207160601117354 doi: 10.1080/00207160601117354
    [4] Y. Chen, W. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Comput. Appl. Math., 211 (2008), 76–89. https://doi.org/10.1016/j.cam.2006.11.015 doi: 10.1016/j.cam.2006.11.015
    [5] Y. Chen, Z. Lu, High efficient and accuracy numerical methods for optimal control problems, Science Press, Beijing, 2015.
    [6] Y. Chen, Z. Lin, A posteriori error estimates of semidiscrete mixed finite element methods for parabolic optimal control problems, E. Asian J. Appl. Math., 5 (2015), 957–965. https://doi.org/10.4208/eajam.010314.110115a doi: 10.4208/eajam.010314.110115a
    [7] A. Kröner, B. Vexler, A priori error estimates for elliptic optimal control problems with a bilinear state equation, Comput. Math. Appl., 2 (2009), 781–802. https://doi.org/10.1016/j.cam.2009.01.023 doi: 10.1016/j.cam.2009.01.023
    [8] Y. Chen, N. Yi, W. Liu, A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. https://doi.org/10.1137/070679703 doi: 10.1137/070679703
    [9] L. Li, Z. Lu, W. Zhang, F. Huang, Y. Yang, A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem, J. Inequal. Appl., 1 (2018), 1–23. https://doi.org/10.1186/s13660-018-1729-4 doi: 10.1186/s13660-018-1729-4
    [10] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 41 (2002), 1321–1349. https://doi.org/10.1137/S0363012901389342 doi: 10.1137/S0363012901389342
    [11] J. L. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin, 1971.
    [12] J. L. Lions, E. Magenes, Non homogeneous boundary value problems and applications, Springer-Verlag, Berlin, 1972.
    [13] W. Liu, J. Barrett, Error bounds for the finite element approximation some degenerate quasilinear parabolic equations and variational inequalities, Adv. Comput. Math., 1 (1993), 223–239.
    [14] W. Liu, D. Tiba, Error estimates for the finite element approximation of nonlinear optimal control problems, J. Numer. Func. Optim., 22 (2001), 953–972.
    [15] W. Liu, N. Yan, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 15 (2001), 285–309. https://doi.org/10.1023/A:1014239012739 doi: 10.1023/A:1014239012739
    [16] W. Liu, N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), 497–521. https://doi.org/10.1007/s002110100380 doi: 10.1007/s002110100380
    [17] W. Liu, N. Yan, A posteriori error estimates for optimal control of stokes flows, SIAM J. Numer. Anal., 40 (2003), 1805–1869.
    [18] Y. Tang, Y. Chen, Recovery type a posteriori error estimates of fully discrete finite element methods for general convex parabolic optimal control problems, Numer. Math.-Theory Me., 4 (2012), 573–591. https://doi.org/10.1017/S1004897900001069 doi: 10.1017/S1004897900001069
    [19] Z. Lu, S. Zhang, L^\infty-error estimates of rectangular mixed finite element methods for bilinear optimal control problem, Appl. Math. Comp., 300 (2017), 79–94. https://doi.org/10.1016/j.amc.2016.12.006 doi: 10.1016/j.amc.2016.12.006
    [20] J. M. Melenk, hp-interpolation of non-smooth functions, SIAM J. Numer. Anal., 43 (2005), 127–155. https://doi.org/10.1137/S0036142903432930 doi: 10.1137/S0036142903432930
    [21] A. T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54 (1984), 468–488. https://doi.org/10.1016/0021-9991(84)90128-1 doi: 10.1016/0021-9991(84)90128-1
    [22] L. R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483–493. https://doi.org/10.1090/S0025-5718-1990-1011446-7 doi: 10.1090/S0025-5718-1990-1011446-7
    [23] X. Xing, Y. Chen, L^{\infty}-error estimates for general optimal control problem by mixed finite element methods, Int. J. Numer. Anal. Mod., 5 (2008), 441–456. https://doi.org/10.1007/s11424-010-8015-y doi: 10.1007/s11424-010-8015-y
    [24] X. Xing, Y. Chen, Error estimates of mixed methods for optimal control problems governed by parabolic equations, Int. J. Numer. Meth. Eng., 75 (2010), 735–754. https://doi.org/10.1002/nme.2289 doi: 10.1002/nme.2289
    [25] S. Boulaaras, Some new properties of asynchronous algorithms of theta scheme combined with finite elements methods for an evolutionary implicit 2-sided obstacle problem, Math. Meth. App., 40 (2017), 7231–7239. https://doi.org/10.1002/mma.4525 doi: 10.1002/mma.4525
    [26] S. Boulaaras, Polynomial decay rate for a new class of viscoelastic Kirchhoff equation related with Balakrishnan-Taylor dissipation and logarithmic source terms, Alex. Eng. J., 4 (2020), 1059–1071. https://doi.org/10.1016/j.aej.2019.12.013 doi: 10.1016/j.aej.2019.12.013
    [27] S. Boulaaras, M. S. Touati Brahim, S. Bouzenada, A. Zarai, An asymptotic behavior and a posteriori error estimates for the generalized Schwartz method of advection-diffusion equation, Acta Math. Sci., 4 (2018), 1227–1244. https://doi.org/10.1016/S0252-9602(18)30810-5 doi: 10.1016/S0252-9602(18)30810-5
    [28] S. Boulaaras, M. Haiour, The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms, Indagat. Math., 24 (2013), 161–173. https://doi.org/10.1016/j.indag.2012.07.005 doi: 10.1016/j.indag.2012.07.005
    [29] L. Bonifacius, K. Pieper, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic time-optimal control problems, Numer. Math., 120 (2018), 345–386. https://doi.org/10.1007/s00211-011-0409-9 doi: 10.1007/s00211-011-0409-9
    [30] Z. Lu, X. Huang, A priori error estimates of mixed finite element methods for general linear hyperbolic convex optimal control problems, Abst. Appl. Anal., 7 (2014), 1–10. https://doi.org/10.1155/2014/547490 doi: 10.1155/2014/547490
  • This article has been cited by:

    1. Muhammad Sajid Iqbal, M. S. Hashemi, Rishi Naeem, Muhammad Akhtar Tarar, Misbah Farheen, Mustafa Inc, Construction of solitary wave solutions of bi-harmonic coupled Schrödinger system through \phi ^6-methodology, 2023, 55, 0306-8919, 10.1007/s11082-023-04683-2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1886) PDF downloads(89) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog