Research article

The ordered implicit relations and related fixed point problems in the cone $ b $-metric spaces

  • Received: 09 September 2021 Revised: 01 December 2021 Accepted: 02 December 2021 Published: 04 January 2022
  • MSC : 47H09, 47H10, 54H25

  • In this paper, we introduce an ordered implicit relation. We present some examples for the illustration of the ordered implicit relation. We investigate conditions for the existence of the fixed points of an implicit contraction. We obtain some fixed point theorems in the cone $ b $-metric spaces and hence answer a fixed-point problem. We present several examples and consequences to explain the obtained theorems. We solve an homotopy problem and show existence of solution to a Urysohn Integral Equation as applications of the obtained fixed point theorem.

    Citation: Anam Arif, Muhammad Nazam, Aftab Hussain, Mujahid Abbas. The ordered implicit relations and related fixed point problems in the cone $ b $-metric spaces[J]. AIMS Mathematics, 2022, 7(4): 5199-5219. doi: 10.3934/math.2022290

    Related Papers:

  • In this paper, we introduce an ordered implicit relation. We present some examples for the illustration of the ordered implicit relation. We investigate conditions for the existence of the fixed points of an implicit contraction. We obtain some fixed point theorems in the cone $ b $-metric spaces and hence answer a fixed-point problem. We present several examples and consequences to explain the obtained theorems. We solve an homotopy problem and show existence of solution to a Urysohn Integral Equation as applications of the obtained fixed point theorem.



    加载中


    [1] R. P. Agarwal, M. A. El-Gebeily, D. Ó. Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109–116. https://doi.org/10.1080/00036810701556151 doi: 10.1080/00036810701556151
    [2] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl., 2010 (2010), 621492. https://doi.org/10.1155/2010/621469 doi: 10.1155/2010/621469
    [3] S. Aleksic, Z. Kadelburg, Z. D. Mitrovic, S. Radenovic, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst., 9 (2019), 93–121. https://doi.org/10.7251/JIMVI1901093A doi: 10.7251/JIMVI1901093A
    [4] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl., 157 (2010), 2778–2785. https://doi.org/10.1016/j.topol.2010.08.017 doi: 10.1016/j.topol.2010.08.017
    [5] I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwan. J. Math., 13 (2009), 1291–1304.
    [6] A. Azam, M. Arshad, I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., 3 (2009), 236–241. https://doi.org/10.2298/AADM0902236A doi: 10.2298/AADM0902236A
    [7] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrales, Fund. Math., 3 (1922), 133–181.
    [8] I. Beg, A. R. Butt, Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal., 71 (2009), 3699–3704. https://doi.org/10.1016/j.na.2009.02.027 doi: 10.1016/j.na.2009.02.027
    [9] I. Beg, A. R. Butt, Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces, Carpathian J. Math., 25 (2009), 1–12.
    [10] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math., 57 (2000), 31–37.
    [11] V. Berinde, Stability of Picard iteration for contractive mappings satisfying an implicit relation, Carpathian J. Math., 27 (2011), 13–23.
    [12] V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl., 2012 (2012), 105. https://doi.org/10.1186/1687-1812-2012-105 doi: 10.1186/1687-1812-2012-105
    [13] M. Boriceanu, M. Bota, A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367–377. https://doi.org/10.2478/s11533-010-0009-4 doi: 10.2478/s11533-010-0009-4
    [14] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
    [15] Z. Ercan, On the end of the cone metric spaces, Topol. Appl., 166 (2014), 10–14. https://doi.org/10.1016/j.topol.2014.02.004 doi: 10.1016/j.topol.2014.02.004
    [16] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [17] N. Hussian, M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), 1677–1684. https://doi.org/10.1016/j.camwa.2011.06.004 doi: 10.1016/j.camwa.2011.06.004
    [18] H. Huang, S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 2013 (2013), 112. https://doi.org/10.1186/1687-1812-2013-112 doi: 10.1186/1687-1812-2013-112
    [19] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [20] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1
    [21] S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: A survey, Nonlinear Anal., 74 (2011), 2591–2601. https://doi.org/10.1016/j.na.2010.12.014 doi: 10.1016/j.na.2010.12.014
    [22] K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021), 6663707. https://doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707
    [23] K. Javed, H. Aydi, F. Uddin, M. Arshad, On orthogonal partial b-metric spaces with an application, J. Math., 2021 (2021), 6692063. https://doi.org/10.1155/2021/6692063 doi: 10.1155/2021/6692063
    [24] M. Joshi, Existence theorems for Urysohn's integral equation, Proc. Amer. Math. Soc., 49 (1975), 387–392. https://doi.org/10.2307/2040651 doi: 10.2307/2040651
    [25] E. Karapinar, A. Fulga, R. P. Agarwal, A survey: F-contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 69. https://doi.org/10.1007/s11784-020-00803-7 doi: 10.1007/s11784-020-00803-7
    [26] E. Karapinar, S. Czerwik, H. Aydi, $(\alpha, \psi)$-Meir-Keeler contraction mappings in generalized b-metric spaces, J. Funct. spaces, 2018 (2018), 3264620. https://doi.org/10.1155/2018/3264620 doi: 10.1155/2018/3264620
    [27] S. O. Kim, M. Nazam, Existence theorems on the advanced contractions with applications, J. Funct. Spaces, 2021 (2021), 6625456. https://doi.org/10.1155/2021/6625456 doi: 10.1155/2021/6625456
    [28] K. Maleknejad, H. Derili, S. Sohrabi, Numerical solution of Urysohn integral equations using the iterated collocation method, Int. J. Comput. Math., 85 (2008), 143–154. https://doi.org/10.1080/00207160701411145 doi: 10.1080/00207160701411145
    [29] M. Nazam, N. Hussain, A. Hussain, M. Arshad, Fixed point theorems for weakly $\beta$-admissible pair of $F$-contractions with application, Nonlinear Anal.: Model. Control, 24 (2019), 898–918.
    [30] M. Nazam, A. Arif, C. Park, H. Mahmood, Some results in cone metric spaces with applications in homotopy theory, Open Math., 18 (2020), 295–306. https://doi.org/10.1515/math-2020-0025 doi: 10.1515/math-2020-0025
    [31] M. Nazam, On Jc-contraction and related fixed point problem with applications, Math. Meth. Appl. Sci., 43 (2020), 10221–10236. https://doi.org/10.1002/mma.6689 doi: 10.1002/mma.6689
    [32] M. Nazam, C. Park, M. Arshad, H. Mahmood, On a fixed point theorem with application to functional equations, Open Math., 17 (2019), 1724–1736. https://doi.org/10.1515/math-2019-0128 doi: 10.1515/math-2019-0128
    [33] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488.
    [34] J. J. Nieto, R. R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica, 23 (2007), 2205–2212. https://doi.org/10.1007/s10114-005-0769-0 doi: 10.1007/s10114-005-0769-0
    [35] M. Nazam, C. Park, M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Differ. Equ., 2021 (2021), 247. https://doi.org/10.1186/s13662-021-03405-w doi: 10.1186/s13662-021-03405-w
    [36] V. Popa, Fixed point theorems for implicit contractive mappings, Cerc. St. Ser. Mat. Univ. Bacau., 7 (1997), 127–133.
    [37] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32 (1999), 157–164. https://doi.org/10.1515/dema-1999-0117 doi: 10.1515/dema-1999-0117
    [38] V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math., 33 (2000), 159–164. https://doi.org/10.1515/dema-2000-0119 doi: 10.1515/dema-2000-0119
    [39] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443.
    [40] D. Ó Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., 341 (2008), 1241–1252. https://doi.org/10.1016/j.jmaa.2007.11.026 doi: 10.1016/j.jmaa.2007.11.026
    [41] S. Rezapour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl., 345 (2008), 719–724. https://doi.org/10.1016/j.jmaa.2008.04.049 doi: 10.1016/j.jmaa.2008.04.049
    [42] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $(\alpha, \psi)$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [43] S. Sedghi, I. Altun, N. Shobe, A fixed point theorem for multivalued maps satisfying an implicit relation on metric spaces, Appl. Anal. Discrete Math., 2 (2008), 189–196.
    [44] R. Singh, G. Nelakanti, J. Kumar, Approximate solution of Urysohn integral equations using the Adomian decomposition method, Sci. World J., 2014 (2014), 150483. https://doi.org/10.1155/2014/150483 doi: 10.1155/2014/150483
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2560) PDF downloads(150) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog