Citation: Yadigar Sekerci. Adaptation of species as response to climate change: Predator-prey mathematical model[J]. AIMS Mathematics, 2020, 5(4): 3875-3898. doi: 10.3934/math.2020251
[1] | W. C. Allee, Animal Aggregations: A Study in General Sociology, The University of Chicago Press, Chicago, IL, USA, 1931. |
[2] | A. Morozov, S. Petrovskii, B. L. Li, Spatiotemporal complexity of patchy invasion in a predatorprey system with the Allee effect, J. Theor. Biol., 238 (2006), 18-35. doi: 10.1016/j.jtbi.2005.05.021 |
[3] | S. Petrovskii, A. Morozov, E. Venturino, Allee effect makes possible patchy invasion in a predatorprey system, Ecol. Lett., 5 (2002), 345-352. doi: 10.1046/j.1461-0248.2002.00324.x |
[4] | S. W. Yao, Z. P. Ma, Z. B. Cheng, Pattern formation of a diffusive predator-prey model with strong Allee effect and nonconstant death rate, Physica A, 527 (2019), 1-11. |
[5] | R. Han, B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear crossdiffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal.: Real World Appl., 45 (2019), 822-853. doi: 10.1016/j.nonrwa.2018.05.018 |
[6] | S. Yan, D. Jia, T. Zhang, et al. Pattern dynamics in a diffusive predator-prey model with hunting cooperations, Chaos, Soliton. Fract., 130 (2020), 1-12. |
[7] | S. Petrovskii, A. Morozov, B. L. Li, Regimes of biological invasion in a predator-prey system with the Allee effect, B. Math. Biol., 67 (2005), 637-661. doi: 10.1016/j.bulm.2004.09.003 |
[8] | H. Berestycki, L. Desvillettes, O. Diekmann, Can climate change lead to gap formation?, Ecol. Complex., 20 (2014), 264-270. doi: 10.1016/j.ecocom.2014.10.006 |
[9] | C. Cosner, Challenges in modelling biological invasions and population distributions in a changing climate, Ecol. Complex., 20 (2014), 258-263. doi: 10.1016/j.ecocom.2014.05.007 |
[10] | Y. Sekerci, Climate change effects on fractional order prey-predator model, Chaos, Soliton. Fract., 134 (2020), 1-16. doi: 10.1016/j.chaos.2020.109690 |
[11] | O. Bonnefon, J. Coville, J. Garnier, et al. The spatio-temporal dynamics of neutral genetic diversity, Ecol. Complex., 20 (2014), 282-292. doi: 10.1016/j.ecocom.2014.05.003 |
[12] | P. Kyriazopoulos, J. Nathan, E. Meron, Species coexistence by front pinning, Ecol. Complex., 20 (2014), 271-281. doi: 10.1016/j.ecocom.2014.05.001 |
[13] | J. T. Curtis, The Vegetation of Wisconsin: An Ordination of Plant Communities, University of Wisconsin Press, 1959. |
[14] | R. H. Whittaker, Vegetation of the great smoky mountains, Ecol. Monogr., 26 (1956), 1-80. doi: 10.2307/1943577 |
[15] | M. Doebeli, U. Dieckmann, Speciation along environmental gradients, Nature, 421 (2003), 259-264. doi: 10.1038/nature01274 |
[16] | H. A. Gleason, The structure and development of the plant association, Bull. Torrey Bot. Club, 44 (1917), 463-81. doi: 10.2307/2479596 |
[17] | H. A. Gleason, The individualist concept of the plant association, Bull. Torrey Bot. Club, 53 (1926), 7-26. doi: 10.2307/2479933 |
[18] | H. A. Gleason, The individualistic concept of the plant association, Am. Midl. Nat., 21 (1939), 92-110. doi: 10.2307/2420377 |
[19] | M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proc. R. Soc. Lond. B., 251 (1993), 1-7. doi: 10.1098/rspb.1993.0001 |
[20] | E. Post, Large-scale spatial gradients in herbivore population dynamics, Ecology, 86 (2005), 2320-2328. doi: 10.1890/04-0823 |
[21] | J. Z. Farkas, A. Y. Morozov, E. G. Arashkevich, et al. Revisiting the stability of spatially heterogeneous predator-prey systems under eutrophication, B. Math. Biol., 77 (2015), 1886-1908. doi: 10.1007/s11538-015-0108-2 |
[22] | L. Jonkers, H. Hillebrand, M. Kucera, Global change drives modern plankton communities away from the pre-industrial state, Nature, 570 (2019), 372-375. doi: 10.1038/s41586-019-1230-3 |
[23] | M. Siccha, M. Kucera, ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples, Sci. Data, 4 (2017), 1-12. doi: 10.1007/s40745-016-0096-6 |
[24] | G. T. Pecl, M. B. Araújo, J. D. Bell, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being, Science, 355 (2017), 1-9. |
[25] | S. Levin, L. A. Segel, Hypothesis for origin of planktonic patchiness, Nature, 259 (1976), 659. doi: 10.1038/259659a0 |
[26] | H. Malchow, S. V. Petrovskii, E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation, CRC Press, 2007. |
[27] | T. Singh, R. Dubey, V. N. Mishra, Spatial dynamics of predator-prey system with hunting cooperation in predators and type I functional response, AIMS Mathematics, 5 (2019), 673-684. doi: 10.3934/math.2020045 |
[28] | A. M. Turing, The chemical basis of morphogenesis, Philos. T. R. Soc. B., 237 (1952), 37-72. |
[29] | S. A. Levin, T. M. Powell, J. H. Steele, Patch Dynamics, Springer Science & Business Media, 2012. |
[30] | A. Morozov, K. Abbott, K. Cuddington, et al. Long transients in ecology: Theory and applications, Phys. Life Rev., 2019. |
[31] | S. Petrovskii, Y. Sekerci, E. Venturino, Regime shifts and ecological catastrophes in a model of plankton-oxygen dynamics under the climate change, J. Theor. Biol., 424 (2017), 91-109. doi: 10.1016/j.jtbi.2017.04.018 |
[32] | Y. Sekerci, S. Petrovskii, Global warming can lead to depletion of oxygen by disrupting phytoplankton photosynthesis: a mathematical modelling approach, Geosciences, 8 (2018), 1-21. doi: 10.3390/geosciences8060201 |
[33] | Y. Sekerci, S. Petrovskii, Mathematical modelling of plankton-oxygen dynamics under the climate change, B. Math. Biol., 77 (2015), 2325-2353. doi: 10.1007/s11538-015-0126-0 |
[34] | A. S. Ackleh, L. J. Allen, J. Carter, Establishing a beachhead: a stochastic population model with an Allee effect applied to species invasion, Theor. Popul. Biol., 71 (2007), 290-300. doi: 10.1016/j.tpb.2006.12.006 |
[35] | Y. Sekerci, S. Petrovskii, Pattern formation in a model oxygen-plankton system, Computation, 6 (2018), 59. doi: 10.3390/computation6040059 |
[36] | J. Wang, J. Shi, J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291-331. doi: 10.1007/s00285-010-0332-1 |
[37] | J. Wang, J. Shi, J. Wei, Nonexistence of periodic orbits for predator-prey system with strong Allee effect in prey populations, Electron. J. Differ. Eq., 2013 (2013), 1-14. doi: 10.1186/1687-1847-2013-1 |
[38] | G. A. Van Voorn, L. Hemerik, M. P. Boer, et al., Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect, Math. Biosci., 209 (2007), 451-469. doi: 10.1016/j.mbs.2007.02.006 |
[39] | R. M. Nisbet, W. Gurney, Modelling Fluctuating Populations, Chichester, 1982. |
[40] | J. D. Murray, Mathematical Biology, Springer, Berlin, 1993. |
[41] | J. A. Sherratt, Periodic travelling waves in cyclic predator-prey systems, Ecol. Lett., 4 (2001), 30-37. doi: 10.1046/j.1461-0248.2001.00193.x |
[42] | M. H. Wang, M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2001), 83-97. doi: 10.1016/S0025-5564(01)00048-7 |
[43] | S. Chen, H. Yang, J. Wei, Global dynamics of two phytoplankton-zooplankton models with toxic substances effect, J. Appl. Anal. Comput., 9 (2019), 796-809. |
[44] | H. Liu, T. Li, F. Zhang, A prey-predator model with Holling II functional response and the carrying capacity of predator depending on its prey, J. Appl. Anal. Comput., 8 (2018), 1464-1474. |
[45] | M. A. Lewis, P. Kareiva, Allee dynamics and the spread of invading organisms, Theor. Popul. Biol., 43 (1993), 141-158. doi: 10.1006/tpbi.1993.1007 |
[46] | S. V. Petrovskii, H. Malchow, Wave of chaos: New mechanism of pattern formation in spatiotemporal population dynamics, Theor. Popul. Biol., 59 (2001), 157-174. doi: 10.1006/tpbi.2000.1509 |
[47] | W. F. Fagan, J. G. Bishop, Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens, Am. Nat., 155 (2000), 238-251. doi: 10.1086/303320 |
[48] | M. R. Owen, M. A. Lewis, How predation can slow, stop or reverse a prey invasion, B. Math. Biol., 63 (2001), 655-684. doi: 10.1006/bulm.2001.0239 |
[49] | S. Petrovskii, H. Malchow, B. L. Li, An exact solution of a diffusive predator-prey system, Proc. R. Soc. A., 461 (2005), 1029-1053. doi: 10.1098/rspa.2004.1404 |
[50] | S. Petrovskii, A. Morozov, M. Sieber Noise can prevent onset of chaos in spatiotemporal population dynamics, Eur. Phys. J. B., 78 (2010), 253-264. |
[51] | W. Alharbi, S. Petrovskii, Critical domain problem for the reaction-telegraph equation model of population dynamics, Mathematics, 6 (2018), 1-15. doi: 10.3390/math6040059 |
[52] | J. Martin, B. van Moorter, E. Revilla, et al. Reciprocal modulation of internal and external factors determines individual movements, J. Anim. Ecol., 82 (2013), 290-300. doi: 10.1111/j.1365-2656.2012.02038.x |
[53] | B. Chakraborty, N. Bairagi, Complexity in a prey-predator model with prey refuge and diffusion, Ecol. Complex., 37 (2019), 11-23. doi: 10.1016/j.ecocom.2018.10.004 |
[54] | V. Dakos, E. H. van Nes, R. Donangelo, et al. Spatial correlation as leading indicator of catastrophic shifts, Theor. Ecol., 3 (2010), 163-174. doi: 10.1007/s12080-009-0060-6 |
[55] | A. Hastings, K. C. Abbott, K. Cuddington, et al. Transient phenomena in ecology, Science, 361 (2018), 1-11. doi: 10.1126/science.aat6412 |
[56] | S. Kéfi, M. Rietkerk, C. L. Alados, et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems, Nature, 449 (2007), 213-217. doi: 10.1038/nature06111 |
[57] | M. Pascual, F. Guichard, Critically and disturbance in spatial ecological system, Trends Ecol. Evol., 20 (2005), 88-95. doi: 10.1016/j.tree.2004.11.012 |
[58] | M. Rietkerk, S. C. Dekker, P. C. de Ruiter, et al. Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305 (2004), 1926-1929. doi: 10.1126/science.1101867 |