We investigated a novel stochastic fractional partial differential equation (FPDE) characterized by a mixed operator that integrated the standard Laplacian, the fractional Laplacian, and the gradient operator. The equation was driven by a random noise, which admitted a covariance measure structure with respect to the time variable and behaved as a Wiener process in space. Our analysis included establishing the existence of a solution in the general case and deriving an explicit form for its covariance function. Additionally, we delved into a specific case where the noise was modeled as a generalized fractional Brownian motion (gfBm) in time, with a particular emphasis on examining the regularity of the solution's sample paths.
Citation: Mounir Zili, Eya Zougar, Mohamed Rhaima. Fractional stochastic heat equation with mixed operator and driven by fractional-type noise[J]. AIMS Mathematics, 2024, 9(10): 28970-29000. doi: 10.3934/math.20241406
We investigated a novel stochastic fractional partial differential equation (FPDE) characterized by a mixed operator that integrated the standard Laplacian, the fractional Laplacian, and the gradient operator. The equation was driven by a random noise, which admitted a covariance measure structure with respect to the time variable and behaved as a Wiener process in space. Our analysis included establishing the existence of a solution in the general case and deriving an explicit form for its covariance function. Additionally, we delved into a specific case where the noise was modeled as a generalized fractional Brownian motion (gfBm) in time, with a particular emphasis on examining the regularity of the solution's sample paths.
[1] | P. S. Addison, The illustrated wavelet transform handbook: Introductory theory and applications in science, engineering, medicine and finance, CRC Press, 2016. https://doi.org/10.1201/9781315372556 |
[2] | R. Balan, D. Conus, A note on intermittency for the fractional heat equation, Stat. Probab. Lett., 95 (2014), 6–14. https://doi.org/10.1016/j.spl.2014.08.001 doi: 10.1016/j.spl.2014.08.001 |
[3] | R. M. Balan, C. A. Tudor, The stochastic wave equation with fractional noise: A random field approach, Stoch. Proc. Appl., 120 (2010), 2468–2494. https://doi.org/10.1016/j.spa.2010.08.006 doi: 10.1016/j.spa.2010.08.006 |
[4] | G. Boffetta, R. E. Ecke, Two-dimensional turbulence, Annu. Rev. Fluid Mech., 44 (2012), 427–451. https://doi.org/10.1146/annurev-fluid-120710-101240 |
[5] | Z. Q. Chen, E. Hu, Heat kernel estimates for $\Delta+\Delta_{\alpha/2}$ under gradient perturbation, Stoch. Proc. Appl., 125 (2015), 2603–2642. https://doi.org/10.1016/j.spa.2015.02.016 doi: 10.1016/j.spa.2015.02.016 |
[6] | C. Elnouty, M. Zili, On the sub-mixed fractional Brownian motion, Appl. Math. J. Chin. Univ., 30 (2015), 27–43. https://doi.org/10.1007/s11766-015-3198-6 doi: 10.1007/s11766-015-3198-6 |
[7] | A. W. Jayawardena, Environmental and hydrological systems modelling, CRC Press, 2013. https://doi.org/10.1201/9781315272443 |
[8] | Z. Jie, M. Ijaz Khan, K. Al-Khaled, E. El-Zahar, N. Acharya, A. Raza, et al., Thermal transport model for Brinkman type nanofluid containing carbon nanotubes with sinusoidal oscillations conditions: a fractional derivative concept, Wave. Random Complex, 2022 (2022), 1–20. https://doi.org/10.1080/17455030.2022.2049926 doi: 10.1080/17455030.2022.2049926 |
[9] | B. Guo, X. Pu, F. Huang, Fractional partial differential equations and their numerical solutions, World Scientific, 2015. |
[10] | C. Tudor, Z. Khalil-Mahdi, On the distribution and q-variation of the solution to the heat equation with fractional Laplacian, Probab. Math. Stat. 39 (2019), 315–335. https://doi.org/10.19195/0208-4147.39.2.5 |
[11] | Z. Khalil-Mahdi, C. Tudor, Estimation of the drift parameter for the fractional stochastic heat equation via power variation, Mod. Stoch. Theory App., 6 (2019), 397–417. https://doi.org/10.15559/19-VMSTA141 doi: 10.15559/19-VMSTA141 |
[12] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[13] | I. Kruk, F. Russo, C. A. Tudor, Wiener integrals, Malliavin calculus and covariance measure structure, J. Funct. Anal., 249 (2007), 92–142. https://doi.org/10.1016/j.jfa.2007.03.031 doi: 10.1016/j.jfa.2007.03.031 |
[14] | A. Lejay, Monte Carlo methods for fissured porous media: a gridless approach, Monte Carlo Methods, 10 (2004), 385–392. https://doi.org/10.1515/mcma.2004.10.3-4.385 doi: 10.1515/mcma.2004.10.3-4.385 |
[15] | J. C. Long, R. C. Ewing, Yucca mountain: Earth-science issues at a geologic repository for high-level nuclear waste, Annu. Rev. Earth Pl. Sc., 32 (2004), 363–401. https://doi.org/10.1146/annurev.earth.32.092203.122444 doi: 10.1146/annurev.earth.32.092203.122444 |
[16] | Y. Mishura, M. Zili, Stochastic analysis of mixed fractional Gaussian processes, Elsevier, 2018. |
[17] | Y. Mishura, K. Ralchenko, M. Zili, E. Zougar, Fractional stochastic heat equation with piecewise constant coefficients, Stoch. Dynam., 21 (2021), 2150002. https://doi.org/10.1142/S0219493721500027 doi: 10.1142/S0219493721500027 |
[18] | S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission, In: Polynomes orthogonaux et applications, Berlin: Springer, 1985. https://doi.org/10.1007/BFb0076584 |
[19] | A. M. Selvam, Self-organized criticality and predictability in atmospheric flows, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-54546-2 |
[20] | K. Sobczyk, Stochastic differential equations with applications to physics and engineering, Springer Science & Business Media, 1991. https://doi.org/10.1007/978-94-011-3712-6 |
[21] | P. Tankov, Financial modelling with jump processes, Chapman and Hall/CRC, 2003. https://doi.org/10.1201/9780203485217 |
[22] | C. Tudor, Analysis of variations for self-similar processes, Cham: Springer, 2013. https://doi.org/10.1007/978-3-319-00936-0 |
[23] | C. Tudor, M. Zili, Covariance measure and stochastic heat equation with fractional noise, Fract. Calc. App. Anal., 17 (2014), 807–826. https://doi.org/10.2478/s13540-014-0199-8 doi: 10.2478/s13540-014-0199-8 |
[24] | C. Tudor, M. Zili, SPDE with generalized drift and fractional-type noise, Nonlinear Differ. Equ. Appl., 23 (2016), 53. https://doi.org/10.1007/s00030-016-0407-9 doi: 10.1007/s00030-016-0407-9 |
[25] | D. Xia, L. Yan, W. Fei, Mixed fractional heat equation driven by fractional Brownian sheet and Levy process, Math. Probl. Eng., 2017 (2017), 8059796. https://doi.org/10.1155/2017/8059796 doi: 10.1155/2017/8059796 |
[26] | B. J. West, Nature's patterns and the fractional calculus, Boston: De Gruyter, 2017. https://doi.org/10.1515/9783110535136 |
[27] | D. Xia, L. Yan, On a semi-linear mixed fractional heat equation driven by fractional Brownian sheet, Bound. Value Probl., 2017 (2017), 7. https://doi.org/10.1186/s13661-016-0736-y doi: 10.1186/s13661-016-0736-y |
[28] | M. Zili, On the mixed fractional Brownian motion, J. Math. Anal. Appl., 2006 (2006), 032435. https://doi.org/10.1155/JAMSA/2006/32435 doi: 10.1155/JAMSA/2006/32435 |
[29] | M. Zili, Mixed sub-fractional Brownian motion, Random Operators Sto., 22 (2014), 163–178. https://doi.org/10.1515/rose-2014-0017 doi: 10.1515/rose-2014-0017 |
[30] | M. Zili, Mixed sub-fractional-white heat equation, J. Numer. Math. Stoch., 8 (2016), 17–35. |
[31] | M. Zili, Generalized fractional Brownian motion, Mod. Stoch. Theory App., 4 (2017), 15–24. https://doi.org/10.15559/16-VMSTA71 doi: 10.15559/16-VMSTA71 |
[32] | M. Zili, Stochastic calculus with a special generalized fractional Brownian motion, Int. J. Appl. Math. Simul., 1 (2024), 1. |
[33] | M. Zili, E. Zougar, Stochastic heat equation with piecewise constant coefficients and generalized fractional type-noise, Theor. Probab. Math. St., 104 (2021), 123–144. https://doi.org/10.1090/tpms/1150 doi: 10.1090/tpms/1150 |
[34] | M. Zili, E. Zougar, Mixed stochastic heat equation with fractional Laplacian and gradient perturbation, Fract. Calc. Appl. Anal., 25 (2022), 783–802. https://doi.org/10.1007/s13540-022-00037-z doi: 10.1007/s13540-022-00037-z |