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1. Introduction

In recent decades, fractional partial differential equations (FPDEs) have garnered significant
attention across various fields such as mathematics [5, 34], physics [14], engineering [20],
chemistry [26], fluid mechanics [1], nuclear reactor dynamics [15], chaotic dynamical systems [19],
mechanics of materials [8], biology [18], hydrology [7], finance [21], and social sciences [9]. In this

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241406


28971

paper, we focus on the following specific FPDE for a fixed d ≥ 1:

∂u(t, x)
∂t

= La,bu(t, x), (1.1)

with (t, x) ∈ [0,T ] × Rd,∀T > 0. Here, La,b is the mixed fractional operator given as:

La,b = ∆ + aα ∆α/2 + b .∇, (1.2)

where α ∈ (1, 2], a ∈ (0,M], b =


b1
...

bd

 ∈ Rd, ∆ =

d∑
i=1

∂2

∂x2
i

is the Laplacian on Rd, ∇ =


∂
∂x1
...
∂
∂xd

 is the

gradient on Rd, b.∇ =
d∑

i=1

bi
∂

∂xi
, and ∆α/2 is the operator defined by:

∆α/2u(x) = A(d, α) lim
δ→0

∫
{z∈Rd;∥z−x∥>δ}

u(z) − u(x)
∥z − x∥d+α

dz, ∀u ∈ C2
c (Rd), (1.3)

withA(d, α) = α 2α−1 π−d/2
Γ
(

d+α
2

)
Γ
(
1 − α

2

) . Here, Γ is denoting the Gamma function and C2
c (Rd) is the space

of twice continuously differentiable functions on Rd with compact support.
Operator (1.2) was introduced in [5] in a more general case, where b is a function in a certain Kato

class, and it can be seen as the infinitesimal generator of some diffusion processes related to anomalous
diffusion (see [5, 34] and references therein).

In the present paper, we introduce a stochastic counterpart of Eq (1.1), defined by
∂u(t, x)
∂t

= La,bu(t, x) + Ẇ(t, x), t > 0, x ∈ Rd,

u(0, x) = 0,
(1.4)

where Ẇ denotes the formal derivative of a centered Gaussian field W, which behaves as a Wiener
process with respect to the space variable, and as a process that admits a covariance measure
structure, in the sense of [13], with respect to the time variable. In particular, for fixed x ∈ Rd, W(., x)
extends many interesting Gaussian fractional processes such as: mixed fractional Brownian
motion (mfBm) (see e.g., [28]), mixed subfractional Brownian motion (msfBm) (see, e.g., [6, 16]),
generalized fractional Brownian motion (gfBm) [29, 31, 32], and so on. Investigation of Eq (1.4)
represents a novel mathematical problem that has not been explored before. In [34], Zili and Zougar
have investigated equation of the form (1.4) with a different type of random force, specifically
space-time white noise {Wt}t≥0, that is, a centered Gaussian process with covariance function
EWtWs = t ∧ s. In this paper, we deal with a distinct and more general stochastic problem that
involves a different framework and additional complexity.

Equation (1.4) illustrates heat propagation in inhomogeneous media, influenced by anomalous
diffusion and subject to stochastic perturbations. Recent studies have uncovered atypical behaviors in
diffusion processes within nonhomogeneous media. These anomalous diffusion phenomena are best
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described by fractional-order models, as classical integer-order models fail to capture their unique
characteristics (see, for example, [12]). This can be considered as a main motivation for this work.

Stochastic FPDEs of type (1.4) have been widely studied in the literature with specific operators
that are special cases of the general operator considered in this work. For instance, the case where the
operator is limited to the fractional Laplacian ∆α/2 has been thoroughly investigated in works like [2,
11], considering various types of additive Gaussian noises. In [25,27], the authors examined equations
resembling (1.4), particularly when a = 1 and b = 0, resulting in the operator L1,0 = ∆ + ∆α/2. They
explored these equations under the influence of diverse additive drifts and various types of fractional
noises.

Therefore, in addition to the generalization of the stochastic FPDE introduced in [34], Eq (1.4)
represents a further extension of the fractional models investigated in [10, 11, 25, 27, 34], and this can
be regarded as another important motivation for the investigation of such an equation’s solution. It’s
worth noting that in numerous other papers (e.g., [17, 23, 24, 30, 33], and the references therein),
researchers have explored different types of fractional stochastic PDEs. In these cases, the
term “fractional” typically pertains to the additive noise rather than to the fractional Laplacian
operator, as is the case in our study.

This research represents a pioneering study of the solution for the novel, unexplored FPDE (1.4).
Our primary contribution lies in laying the foundational groundwork, providing a solid basis for future
investigations in this area. We first provide a sufficient condition for the existence of the solution, and
we give an explicit expression of its covariance function. Then, we focus our attention on the interesting
specific case, where W(., x) behaves as a gfBm, in the sense introduced by M. Zili in [29, 31, 32]. The
gfBm is an extension of both fBm and sfBm, defined as a linear combination of two independent
fBm and sfBm. So, it is about a process which depends on three parameters: the Hurst index and
the coefficients of the linear combination. This should allow researchers to construct more adequate
models, permitting, for example, to control the level of correlation between the increments of the
studied phenomena, and, consequently, to overcome the deficiency of fBm and sfBm models due to
their dependence on one single constant, which is the Hurst parameter. More information about the
gfBm and the motivations of its introduction can be found in [31].

The results of this paper are obtained by introducing the canonical Hilbert space associated to the
Gaussian noise W by applying many integration techniques, calculation, and analysis tools, and
especially by suitably exploiting the two-sided estimates of the fundamental solution Ga,b of the
operator La,b, already established in the case where d ≥ 1, by Zili and Zougar in [34], and moreover
by the explicit expression of its Fourier transform.

The paper is organized as follows: In next section, we give some examples of applications of the
fractional PDE. In Section 3, we first introduce the random noise that drives our stochastic FPDE
and, in particular, the processes admitting a covariance measure structure. We give some interesting
examples, and we explain the mode of Wiener integration with respect to our noise that we will use.
Then, we specify our meaning of solution and give some characteristics of the Green fundamental
function Ga,b of Eq (1.1) that will play a main role in the whole of this paper. After that, we give a
sufficient condition for the existence of the mild solution of the stochastic FPDE (1.4), and we present
an explicit expression of its covariance function. In Section 4, we focus on the interesting particular
case when the process is a white-space Gaussian field, behaving as a gfBm in time. We especially
analyze the regularity of the sample paths of the solution with respect to the time variable. Finally,
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Section 5 offers a discussion of the results, while Section 6 presents the conclusion of the paper.

2. Some application of the deterministic FPDE

As mentioned in the introduction, Eq (1.1) serves as a good model across various domains. It
has become increasingly important in modeling complex systems where classical integer-order models
fail to capture the full dynamics. By incorporating fractional derivatives, these equations provide a
more comprehensive framework for handling anomalous diffusion, nonlocal processes, and long-range
interactions. Below, we explore two examples of applications of FPDEs: one in fluid dynamics and the
other in financial mathematics.

2.1. Application 1: Fluid dynamics

FPDEs are vital in fluid dynamics, especially for systems involving turbulence, anomalous diffusion,
and non-Newtonian fluids. While traditional PDEs using the classical Laplacian operator ∆ effectively
model normal diffusion, many real-world systems, such as turbulent or porous media, involve more
complex transport processes. In turbulent flows, like those in atmospheric dynamics or ocean currents,
particles exhibit super-diffusive behavior, where their mean squared displacement grows faster than
under normal diffusion. This can be modeled using the fractional Laplacian, which captures nonlocal
transport mechanisms like Lévy flights, where particles make large, unpredictable jumps. The drift
term b.∇ models advection, representing directional transport driven by external forces or velocity
fields, such as wind or ocean currents. In oceanography, for example, this describes how water is
carried by currents, while diffusion terms capture smaller-scale turbulence and mixing. FPDEs are also
effective for modeling non-Newtonian fluids, like polymers or biological fluids, where the stress-strain
relationship is nonlinear, and memory effects are important.

Example 2.1. In the study of pollutant dispersion in turbulent ocean currents, the drift term accounts
for the overall flow of water carrying the pollutant, while the standard Laplacian ∆ represents local
diffusion. The fractional Laplacian ∆α/2 captures the nonlocal effects, such as sudden shifts in
concentration caused by turbulence. Together, these terms provide a full description of how pollutants
spread in complex fluid environments. For further details, readers are advised to consult [4].

2.2. Application 2: Finance mathematics

FPDEs are also extensively used in financial mathematics, particularly for modeling asset prices
and option pricing in markets with jumps and volatility clustering. In these models, FPDEs capture
the stochastic processes governing financial instruments. The classical Laplacian ∆ corresponds to
Brownian motion, which assumes continuous price changes, as seen in models like the Black-Scholes
equation. However, real-world markets often exhibit large price jumps and heavy-tailed distributions,
which the standard diffusion operator cannot account for. So, to address this, the fractional Laplacian
is used to model jumps and heavy-tailed returns. This operator captures the behavior of Lévy
processes, which describe sudden, unpredictable price changes, such as those caused by market
shocks or economic news. It is particularly useful for pricing exotic options or derivatives sensitive to
these large, infrequent movements. The drift term represents the expected return or trend of an asset,
influenced by predictable market factors like economic growth or interest rates. Combined with the
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fractional Laplacian, this term models both the overall direction and the random, jump-like
fluctuations of asset prices.

Example 2.2. In option pricing under jump-diffusion models, the drift term accounts for the average
return on an asset, while the fractional Laplacian captures the sudden jumps in asset prices caused
by market shocks. This approach is particularly relevant for pricing credit derivatives or insurance
contracts against market crashes, as it allows for a more accurate assessment of risk and pricing,
considering both gradual changes in asset prices and the possibility of rare but significant market
events. For more information, readers are encouraged to see [21].

3. Stochastic FPDE driven by a noise with covariance measure structure

Let us describe the random noise driving the stochastic FPDE (1.4), subject to this study.

3.1. Description of the random noise W

To start, we define the processes with covariance measure structure.

3.1.1. Processes with a covariance measure structure:

Consider a zero mean square integrable process (Xt)t∈[0,T ] with covariance function
RX(t, r) = E[XtXr], for (t, r) ∈ [0,T ]2. The covariance RX defines naturally a finite additive measure
µRX := µ on the algebra R of finite disjoint rectangles included in the set [0,T ]2 by:

µ(J) = ∆JRX

where ∆JRX denotes the rectangular increment of RX over the rectangle J = [a1, b1)× [a2, b2) given by:

∆JRX = RX(b1, b2) − RX(a1, b2) − RX(a2, b1) + RX(a1, a2).

The process X is said to have a covariance measure structure if µ can be extended to a signed sigma
finite measure on B([0,T ]2). Some important characteristics of such processes can be found in [13].
In particular, we have:

Lemma 3.1. Any zero mean square integrable process (Xt)t∈[0,T ] with covariance function R such that

∂2RX

∂r∂t
is integrable on [0,T ]2,

has a covariance measure structure. Furthermore, the measure µ generated by RX admits a density

with respect to the Lebesgue measure on [0,T ]2 given by
∂2RX

∂r∂t
.

Let us give a few examples of processes with covariance measure structure.

Example 3.1. Let us denote by MH = {MH
t (θ, ν); t ≥ 0} = {MH

t ; t ≥ 0} the mixed-fBm of parameters
θ, ν, and H such that H ∈ (0, 1), (θ, ν) ∈ R2 \ {(0, 0)}; that is, the centered Gaussian process, starting
from zero, with covariance

RH,θ,ν
M (t, r) := Cov

(
MH

t (θ, ν),MH
r (θ, ν)

)
= θ2(t ∧ r) +

ν2

2

(
t2H + r2H − |t − r|2H

)
, (3.1)
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where t ∧ r =
1
2

(t + r − |t − r|) . Some specific examples of this process include: MH(0, 1) = BH, which

represents an fBm and MH(1, 0) = B, which corresponds to standard Bm. So, the mfBm is clearly
an extension of the fBm and of the Wiener process. We refer to [28] for further information on this
process.

If (θ, ν,H) ∈ R × R⋆ ×
(1
2
, 1

)
or (θ, ν) ∈ R⋆ × {0}, MH(θ, ν) admits a covariance measure structure

on [0,T ]2 which has a density given by:

∂2RH,θ,ν
M

∂t∂r
(t, r) = θ2δ0(t − r) + ν2σH |t − r|2H−2,

where σH = H(2H − 1), δ0 is the Dirac measure and R⋆ is the set R \ {0}.

Example 3.2. Consider θ and ν two real constants such that (θ, ν) , (0, 0) and H ∈ (0, 1). A gfBm of
parameters θ, ν, and H is a process ZH = {ZH

t (θ, ν); t ≥ 0} = {ZH
t ; t ≥ 0}, defined on the probability

space (Ω, F,P) by:
∀t ∈ R+ ZH

t = ZH
t (θ, ν) = θBH

t + νBH
−t (3.2)

where (BH
t )t∈R is a two-sided fBm of parameter H. We offer several examples of this process: ZH(1, 0)

represents an fBm, while ZH
(

1
√

2
, 1
√

2

)
denotes the sfBm. So, the gfBm is in the same time, a

generalization of the fBm, of the sfBm, and of course of the standard Brownian motion. For more
information, the reader can read [29, 31, 32].

The gfBm (ZH
t (θ, ν))t∈R+ is a centered Gaussian process with covariance function

RH,θ,ν
Z (t, r) = Cov

(
ZH

t (θ, ν),ZH
r (θ, ν)

)
=

1
2

(θ + ν)2
(
t2H + r2H

)
− νθ (t + r)2H −

θ2 + ν2

2
|t − r|2H

(3.3)

for every t, r ∈ (0,+∞). Then, when H ∈ ( 1
2 , 1), ZH(θ, ν) admits a covariance measure structure

on [0,T ]2 which has a density given by:

∂2RH,θ,ν
Z

∂t∂r
(t, r) := σH

[
(θ2 + ν2) |t − r|2H−2 − 2νθ (t + r)2H−2

]
. (3.4)

3.1.2. The random noise with covariance measure structure:

In this section, we introduce the random noise that drives the parabolic Eq (1.4). On a complete
probability space (Ω,F ,P), we consider a zero-mean Gaussian field W = {W(t, A); t ∈ [0,T ], A ∈
Bb(Rd)} with covariance:

Cov (W(t, A)W(r, B)) = λd(A ∩ B) RW(t, r) (3.5)

where λd is the Lebesgue measure, and RW is the covariance of a stochastic process that generates a
covariance measure µ.

To the Gaussian field W, we can associate a Hilbert space that will be called the canonical Hilbert
space of W and will be denoted by H . Consider E the set of linear combinations of elementary
functions 1[0,t] × A, (t, A) ∈ [0,T ] × Bb(Rd), and letH be the Hilbert space defined as the closure of E
with respect to the inner product

< 1[0,t] × A, 1[0,r] × B >H := Cov (W(t, A)W(s, B)) .
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We have the following expression of the scalar product inH :

< φ, ψ >H=

∫ T

0

∫ T

0
µ(dr, dw)

∫
Rd
φ(r, z)ψ(w, z) dz (3.6)

for any φ, ψ ∈ H such that ∫ T

0

∫ T

0
|µ|(dr, dw)

∫
Rd
|φ(r, z)| |ψ(w, z)| dz < ∞, (3.7)

where |µ| denotes the total variation measure associated to µ.
Following [24], by a routine extension of the construction done in [13], it is possible to define

Wiener integrals with respect to the process W whose covariance is given by (3.5). This Wiener integral
will act as an isometry between the Hilbert spaceH and L2(Ω) in the sense that:

E

[∫ T

0

∫
Rd
φ(r, z)W(dr, dz)

∫ T

0

∫
Rd
ψ(r, z)W(dr, dz)

]
=

∫ T

0

∫ T

0
µ(dr, dw)

∫
Rd
φ(r, z)ψ(w, z) dz. (3.8)

3.2. The stochastic FPDE driven by a noise with covariance measure structure

In this part, we will analyze the existence of the solution to Eq (1.4) driven by a random noise
characterized by (3.5). The notion of the solution to Eq (1.4) is defined in the mild sense. We call a
mild solution to (1.4) the stochastic process

ua,b(t, x) =
∫ T

0

∫
Rd

Ga,b(t − r, x, z) 1(0,t)(r) W(dr, dz), ∀t ≥ 0, x ∈ Rd, (3.9)

where W is the Gaussian noise with covariance given by (3.5), Ga,b denotes the fundamental solution
for the operatorLa,b, and the integral in (3.9) is a Wiener integral with respect to the Gaussian noise W.

Let us first recall some useful properties of Ga,b.

3.2.1. Main properties of the fundamental solution Ga,b:

In [5], the authors established existence and uniqueness of a fundamental solution Ga,b of the
operator La,b, and they provide some characterizations and estimates, some of which we quote in the
following lemma.

Lemma 3.2. Let d ≥ 1. There exist two positive constants c1, c2 such that, for all t > 0, x, z, b ∈ Rd,

and a ∈ [0,M], we have

c−1
1 pa

c2
(t, x, z) ≤ Ga,b(t, x, z) ≤ c1 pa

1/c2
(t, x, z). (3.10)

with pa
c(t, x, z) = t−d/2 exp

(
−

c∥x − z∥2

t

)
+ t−d/2 ∧

aαt
∥x − z∥d+α

,∀c > 0.

The following useful characteristic of Ga,b was proved in [34].

Lemma 3.3. For every t > 0 and x ∈ Rd, the Fourier transform of Ga,b(t, x, .), denoted by
F

(
Ga,b(t, x, .)

)
, is given by

F
(
Ga,b(t, x, .)

)
(ξ) = exp (−i(x − tb).ξ) exp

(
−tAa

α(ξ)
)

(3.11)

for every ξ ∈ Rd, with Aa
α(ξ) = ∥ξ∥2 + aα ∥ξ∥α.

In the rest of the paper, we will denote the following function: at,r = t − r, ∀(t, r) ∈ [0,T ]2.
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3.2.2. Existence of the solution for the stochastic FPDE defined in (1.4):

It is well-known that the mild solution to (1.4) exists when the Wiener integral in (3.9) is well-
defined, and this happens when the integrand Ga,b belongs toH = L2([0,T ] × Rd).

Let us now give a sufficient condition for the existence of the mild solution defined in (3.9).

Theorem 1. We assume that
∫ t

0

∫ t

0
(2t − r − w)−d/α

|µ|(dr, dw) is finite, for every t ∈ [0,T ], then the

mild solution given in (3.9) is well-defined. Moreover, if sup
t∈[0,T ]

∫ t

0

∫ t

0
(2t − r − w)−d/α

|µ|(dr, dw) < ∞,

then
sup

(t,x)∈[0,T ]×Rd
E

[
|ua,b(t, x)|2

]
< ∞.

Proof. Consider t ∈ [0,T ]. By the Wiener isometry characteristic (3.8), we have

E[|ua,b(t, x)|2] =
∫ t

0

∫ t

0
µ(dr, dw)

∫
Rd

Ga,b(at,r, x, z) Ga,b(at,w, x, z) dz. (3.12)

By applying the Plancherel theorem, we obtain

E[|ua,b(t, x)|2] ≤ (2π)−d
∫ t

0

∫ t

0
|µ|(dr, dw)

∫
Rd

∣∣∣FGa,b(at,r, x, .)(ξ)
∣∣∣ ∣∣∣FGa,b(at,w, x, .)(ξ)

∣∣∣ dξ
= (2π)−d

∫ t

0

∫ t

0
|µ|(dr, dw)

×

∫
Rd

∣∣∣exp
(
−i(x − at,rb).ξ

)∣∣∣ e−at,rAa
α(ξ)

∣∣∣exp
(
i(x − at,wb).ξ

)∣∣∣ e−at,wAa
α(ξ)dξ

= (2π)−d

∫ t

0

∫ t

0
|µ|(dr, dw)

∫
Rd

∣∣∣eib.ξ(w−r)
∣∣∣ e−(2t−r−w)Aa

α(ξ)dξ.

Since α/2 ∈ (1/2, 1), the function x 7−→ xα/2 is concave on [0,+∞). Therefore, using the Jensen
inequality, we get:

Aa
α(ξ) ≥ aα∥ξ∥α = aα

 d∑
j=1

|ξ j|
2


α/2

≥ aαd
α
2−1

d∑
j=1

|ξ j|
α (3.13)

for every ξ ∈ Rd. Hence,

E[|ua,b(t, x)|2] ≤ (2π)−d

∫ t

0

∫ t

0
|µ|(dr, dw)

(∫
R

e−Dα(2t−r−w)|ξ1 |
α

dξ1

)d

with Dα = aα dα/2−1. By the change variable z1 =
(
2t − r − w

)1/α
ξ1, we get∫

R

e−Dα(2t−r−w)|ξ1 |
α

dξ1 = (2t − r − w)−1/α
∫
R

e−Dα |z1 |
α

dz1 = γα (2t − r − w)−1/α,

with

γd
α =

(∫
R

e−Dα |z1 |
α

dz1

)d

. (3.14)
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Consequently,

E[|ua,b(t, x)|2] ≤ (2π)−d γd
α

∫ t

0

∫ t

0
(2t − r − w)−d/α

|µ|(dr, dw) < +∞, (3.15)

which achieves the proof of Theorem 1. □

Remark 3.1. In the particular case where the noise W in Eq (1.4) is defined by a Wiener process, that
is, RW(t, s) = t ∧ s, W defines a covariance measure µ given by µ(du, dv) = δ0(u − v) du dv, where δ0

is the Dirac measure. This case was analyzed by Zili and Zougar in [34]. They established that a mild

solution exists precisely when the integral
∫ t

0
(t − r)−d/αdr is finite, which is equivalent to the condition

d = 1.

3.2.3. Covariance function of the solution:

In the following theorem, we give an explicit expression of the covariance function of the mild
solution for Eq (1.4).

Theorem 2. For every t, s ∈ [0,T ], x, b ∈ Rd, and a ∈ (0,M], we have:

E[ua,b(t, x)ua,b(s, x)] = (2π)−d
∫ t

0

∫ s

0
µ(dr, dw)

∫
Rd

eib.ξ(at,r−as,w)e−(at,r+as,w)Aa
α(ξ)dξ. (3.16)

Proof. Again, by the Wiener isometry characteristic (3.8) and the Plancheral formula, we get

E[ua,b(t, x)ua,b(s, x)]

=

∫ t

0

∫ s

0
µ(dr, dw)

∫
Rd

Ga,b(at,r, x, z) Ga,b(as,w, x, z) dz

= (2π)−d
∫ t

0

∫ s

0
µ(dr, dw)

∫
Rd
FGa,b(at,r, x, .)(ξ)FGa,b(as,w, x, .)(ξ) dξ

= (2π)−d

∫ t

0

∫ s

0
µ(dr, dw)

×

∫
Rd

exp
(
−i(x − at,rb).ξ

)
e−at,rAa

α(ξ) exp
(
i(x − as,wb).ξ

)
e−as,wAa

α(ξ)dξ

= (2π)−d

∫ t

0

∫ s

0
µ(dr, dw)

∫
Rd

eib.ξ(t−r−s+w)e−(t+s−r−w)Aa
α(ξ)dξ.

Then, the proof is established. □

An immediate consequence of the previous theorem.

Corollary 3.1. For every t ∈ [0,T ], x, b ∈ Rd, and a ∈ (0,M], we have:

E[|ua,b(t, x)|2] = (2π)−d
∫ t

0

∫ t

0
µ(dr, dw)

∫
Rd

e−ib.ξ(r−w)e−(2t−r−w)Aa
α(ξ)dξ. (3.17)
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Remark 3.2. (1) In the case where the noise W in Eq (1.4) is defined by a Wiener process, the
covariance and variance expressions, respectively, given by Eqs (3.16) and (3.17) become

E[ua,b(t, x)ua,b(s, x)] = (2π)−1
∫ t∧s

0

∫
R

eib.ξ(t−s)e−(t+s−2r)Aa
α(ξ)dξ dr

E[|ua,b(t, x)|2] = (2π)−1
∫ t

0

∫
R

e−2(t−r)Aa
α(ξ)dξ dr

(3.18)

for any x, y ∈ R and t, s ∈ [0,T ], leading to exactly the same expressions obtained in [34].
(2) In the particular case where a = 0 and b = 0, Eq (1.4) coincides with the standard stochastic heat

equation, which was studied in many references (see, for example, [24]). In fact, the expressions
for covariance and variance can be deduced from Theorem 2 and Corollary 3.1.

4. Case of the generalized-fBm ZH

In this section, we will focus on the particular case where the noise is the gfBm ZH(θ, ν) with
respect to the time variable (see Example 3.2), in the particular case when H > 1

2 . Consider R = RH,θ,ν
Z

the covariance function given in (3.3) and denote

αH = 2H(2H − 1), cH
1 (θ, ν) = αH

θ2 + ν2

2
and cH

2 (θ, ν) = −αHθν,

for any (θ, ν) ∈ R2 \ {(0, 0)}. Throughout, Cte denotes a generic positive constant, and, in what follows,
for any α ∈ (1, 2], we denote

λH,α
d = 2H −

d
α
. (4.1)

4.1. Existence of the solution and some elementary properties

We first justify the existence of the solution defined by (3.9).

Corollary 4.1. Suppose that the noise is the gfBm ZH with respect to the time variable. If λH,α
d > 0,

then the mild solution defined in (3.9) exists and, for every T > 0, we have

sup
(t,x)∈[0,T ]×Rd

E
[
|ua,b(t, x)|2

]
< ∞. (4.2)

Moreover, ∀t, s ∈ [0,T ], x, b ∈ Rd, and a ∈ (0,M],

E[ua,b(t, x)ua,b(s, x)] = (2π)−d
∫ t

0

∫ s

0
dr dw hH,θ,ν(r,w)

∫
Rd

eib.ξ(at,r−as,w)e−(at,r+as,w)Aa
α(ξ)dξ, (4.3)

with hH,θ,ν(r,w) = cH
1 (θ, ν)|r − w|2H−2 + cH

2 (θ, ν)(r + w)2H−2.

Proof. From (3.4), we have clearly that

∂2RH,θ,ν
Z

∂r∂w
(r,w) = cH

1 (θ, ν)|r − w|2H−2 + cH
2 (θ, ν)(r + w)2H−2 := hH,θ,ν(r,w),
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for any (r,w) ∈ [0,T ] × Rd. We first note that hH,θ,ν(r,w) ≥ 0. Indeed, the constant cH
1 (θ, ν) is clearly

positive. Moreover, on the one hand, if θν ≤ 0 then, since H >
1
2

, the constant cH
2 (θ, ν) is nonnegative,

and as consequence, hH,θ,ν is positive. Also, if θν ≥ 0, then by writing the covariance function of
ZH(θ, ν) in the following form

hH,θ,ν(r,w) = αH

{
(θ − ν)2

2
|r − w|2H−2 + θν

[
|r − w|2H−2 − (r + w)2H−2

]}
,

we clearly see that hH,θ,ν is positive too, because, for H > 1/2, we have |r−w|2H−2 ≥ (r+w)2H−2. Hence,
the covariance measure generated by RH,θ,ν is positive, and by applying Theorem 1, we deduce that, if∫ t

0

∫ t

0
(2t − r − w)−d/α µ(dr, dw) is finite for any t ∈ [0,T ], then the mild solution defined in (3.9) is

well-defined. Therefore, there exists a positive constant depending on H, θ, ν, such that∫ t

0

∫ t

0
(2t − r − w)−d/α hH,θ,ν(r,w) dr dw ≤ c(H, θ, ν)

∫ t

0

∫ t

0
(2t − r − w)−d/α

|r − w|2H−2 dr dw.

Then, by the change of variables r̃ = t − r and w̃ = t − w, we get∫ t

0

∫ t

0
(2t − r − w)−d/α hH,θ,ν(r,w)dr dw

≤ c(H, θ, ν)
∫ t

0

∫ t

0
(r + w)−d/α (r − w)2H−2dr dw

= c(H, θ, ν)
[∫ t

0

∫ r

0
(r + w)−d/α (r − w)2H−2drdw +

∫ t

0

∫ t

r
(r + w)−d/α (w − r)2H−2drdw

]
= c(H, θ, ν)

[∫ t

0

∫ r

0
(r + w)−d/α (r − w)2H−2drdw +

∫ t

0

∫ w

0
(r + w)−d/α (w − r)2H−2drdw

]
= 2 c(H, θ, ν)

∫ t

0

∫ r

0
(r + w)−d/α (r − w)2H−2dv du

= 2 c(H, θ, ν)
∫ t

0
r2H−2− d

α

∫ r

0

(
1 −

w
r

)2H−2 (
1 +

w
r

)−d/α
dw dr

= 2 c(H, θ, ν) C1

∫ t

0
r2H−1−d/αdr,

where in the last line we used the change of variables w̃ = w
r and the constant C1 is given by C1 =∫ 1

0
(1 − w̃)2H−2 (1 + w̃)−d/α dw̃, which is finite because 2H − 2 > −1.

Since d < 2αH, we have
∫ t

0
r2H−1−d/αdr < ∞, for every 0 ≤ t ≤ T . Therefore, using

Inequality (3.15), we get

sup
(t,x)∈I×Rd

E
[
|ua,b(t, x)|2

]
≤ Cte sup

t∈[0,T ]

∫ t

0

∫ t

0
(2t − r − w)−d/α hH,θ,ν(r,w) dr dw

≤ Cte sup
t∈[0,T ]

∫ t

0
r2H−1−d/αdr < ∞.

All this with Theorems 1 and 2 allow us to finish the proof of Corollary 4.1. □
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Remark 4.1. For any α ∈ (1, 2] and H ∈ (1
2 , 1), the sufficient condition, λH,α

d > 0, for the existence of
the mild solution defined in (3.9), is equivalent to

d = 1 or (d = 2 and αH > 1) or (d = 3 and αH > 3/2).

4.2. Temporal regularity of the sample paths

In this section, we will focus on the study of the regularity of the trajectories of the solution to the
stochastic FPDE (1.4) with respect to the time variable. In what follows, we suppose that H ∈ ( 1

2 , 1)
and α ∈ (1, 2] such that λH,α

d > 0.

Theorem 3. Let ua,b be the mild solution to Equation (1.4). There exists a positive constant Cte such
that,

E[|ua,b(t, x) − ua,b(s, x)|2] ≤ Cte |t − s|λ
H,α
d (4.4)

for any (t, s) ∈ [0,T ]2 and x ∈ Rd.

In order to prove Theorem 3, we need the following technical lemmas.

4.2.1. Technical lemmas

Lemma 4.1. For every λ ≥ 0, β ∈ (1, 2], H ∈ ( 1
2 , 1), and d ∈ {1, 2, 3} such that λH,β

d > 0, the improper
double integral is ∫ +∞

0

∫ +∞

0
|r − w|2H−2gd,β,λ(r,w) dr dw < ∞,

with gd,β,λ(r,w) := (2(1 + λ) + r + w)−
d
β − 2(1 + λ + r + w)−

d
β + (r + w)−

d
β .

Proof. Denoting J(β, d, λ) as the above double integral, we have

J(β, d, λ) =
∫ +∞

0

∫ r

0
|r − w|2H−2gd,β,λ(r,w) dr dw +

∫ +∞

0

∫ +∞

r
|r − w|2H−2gd,β,λ(r,w) dr dw

= 2
∫ +∞

0

∫ r

0
|r − w|2H−2gd,β,λ(r,w) dr dw.

For any r,w ∈ (0,∞), we have 2(1 + λ) + r + w ≥ 1 + λ + r + w ≥ r + w. So, by using the fact that the
function x ∈ R+ 7→ x−d/β is decreasing, we get

|r − w|2H−2gd,β,λ(r,w) = |r − w|2H−2
[
(2(1 + λ) + r + w)−

d
β − 2(1 + λ + r + w)−

d
β + (r + w)−

d
β

]
≤ 4|r − w|2H−2(r + w)−

d
β .

Hence, by the change of variables w̃ = w
r , we get∫ 1

0

∫ r

0
|r − w|2H−2gd,β,λ(r,w) dr dw ≤ 4

∫ 1

0

∫ r

0
(r − w)2H−2(r + w)−

d
β dr dw

= 4
∫ 1

0
r2H−1− d

β dr
∫ 1

0
(1 − w̃)2H−2(1 + w̃)−

d
β dw̃.

(4.5)
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Since H > 1/2, the integral
∫ 1

0
(1 − w̃)2H−2(1 + w̃)−

d
β dw̃ is finite, and since 2βH > d, the integral∫ 1

0
r2H−1− d

β dr is also finite. Therefore, we obtain
∫ 1

0

∫ r

0
|r − w|2H−2gd,β,λ(r,w) dw dr < ∞.

Now, when u + v is close to infinity,

|r − w|2H−2
[
(2(1 + λ) + r + w)−

d
β − 2(1 + λ + r + w)−

d
β + (r + w)−

d
β

]
= |r − w|2H−2(r + w)−

d
β

(1 + 2(1 + λ)
r + w

)− d
β

− 2
(
1 +

(1 + λ)
r + w

)− d
β

+ 1


�

d
β

(
d
β
+ 1

)
(1 + λ)2 |r − w|2H−2(r + w)−

d
β−2.

Therefore, for every (u, v) ∈ [0,+∞)2 such that r ≥ 1 and 0 ≤ w ≤ r, we have

|r − w|2H−2gd,β,λ(r,w) ≤ Cte |r − w|2H−2(r + w)−
d
β−2.

Hence, by the change of variables w̃ = w
r , we get

∫ +∞

1

∫ r

0
|r − w|2H−2gd,β,λ(r,w) ≤ Cte

∫ +∞

1

∫ r

0
|r − w|2H−2(r + w)−2− d

β drdw

≤ Cte
∫ ∞

1
r2H−3− d

β dr
∫ 1

0
|1 − w̃|2H−2(1 + w̃)−2− d

β dw̃.

Both integrals appearing in the last line are finite because H > 1
2 and 2H − d

β
< 2. As a consequence,∫ +∞

1

∫ r

0
|r − w|2H−2gd,β,λ(r,w) dw dr < ∞,

which implies that J(β, d, λ) is finite. □

The following useful lemma was obtained by Balan and Tudor in [3].

Lemma 4.2. We have∫ s

0

∫ s

0
|r − w|2H−2 exp

(
−

(r + w)z
2

)
dr dw ≤ c′H

(
s2H + 1

) ( 1
1 + z

)2H

(4.6)

for any s ∈ [0,T ] and z ≥ 0 where c′H denotes a positive constant depending only on H.

4.2.2. Proof of Theorem 3:

Consider t, s ∈ [0,T ] and x ∈ Rd. Without loss of generality, we assume that s ≤ t. By the Wiener
isometry characteristic (3.8), we have

E[|ua,b(t, x) − ua,b(s, x)|2] =
∫ T

0
du

∫ T

0
dv hH,θ,ν(u, v)

∫
R

dz
[
Ga,b(at,u, x, z)1(u)

(0,t) −Ga,b(as,u, x, z)1(u)
(0,s)

]
×

[
Ga,b(at,v, x, z)1(v)

(0,t) −Ga,b(as,v, x, z)1(v)
(0,s)

]
,

(4.7)
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where we recall that hH,θ,ν(u, v) = cH
1 (θ, ν)|u − v|2H−2 + cH

2 (θ, ν)(u + v)2H−2. Therefore,

E[|ua,b(t, x) − ua,b(s, x)|2]

≤

∫ t

s

∫ t

s
dv du hH,θ,ν(u, v)

∫
Rd

Ga,b(at,u, x, z) Ga,b(at,v, x, z) dz

+ 2
∫ t

s

∫ s

0
dv du hH,θ,ν(u, v)

∫
Rd

Ga,b(at,u, x, z)
[
Ga,b(at,v, x, z) −Ga,b(as,v, x, z)

]
dz

+

∫ s

0

∫ s

0
dv du hH,θ,ν(u, v)

∫
Rd

[
Ga,b(at,u, x, z) −Ga,b(as,u, x, z)

] [
Ga,b(at,v, x, y) −Ga,b(as,v, x, z)

]
dz

= Aa,b
1 (t, s, x) + Aa,b

2 (t, s, x) + Aa,b
3 (t, s, x).

Let us start by the first term. By applying the Plancherel theorem, we obtain

|Aa,b
1 (t, s, x)| = (2π)−d

∣∣∣∣∣∣
∫ t

s

∫ t

s
dv du hH,θ,ν(u, v)

∫
Rd
FGa,b(at,u, x, z)FGa,b(at,v, x, z) dz

∣∣∣∣∣∣
= (2π)−d

∣∣∣∣∣∣
∫ t

s

∫ t

s
dv du hH,θ,ν(u, v)

∫
Rd

eib.ξ(v−u)e−(2t−u−v)Aa
α(ξ)dξ

∣∣∣∣∣∣
≤ (2π)−d

∫ t

s

∫ t

s
dv du

∣∣∣hH,θ,ν(u, v)
∣∣∣ ∫
Rd

∣∣∣eib.ξ(v−u)
∣∣∣ e−(2t−u−v)Aa

α(ξ)dξ.

For every H ∈
(

1
2 , 1

)
, u ∈ (0, t), and v ∈ (0, s), we have |u − v|2H−2 ≥ (u + v)2H−2, which implies that

|hH,θ,ν(u, v)| ≤ cH(θ, ν) |au,v|
2H−2, (4.8)

with cH(θ, ν) = αH
(|θ| + |ν|)2

2
. This with Inequality (3.13) implies that

|Aa,b
1 (t, s, x)| ≤ (2π)−d cH(θ, ν)

∫ t

s

∫ t

s
dv du |au,v|

2H−2
∫
Rd

e−aα(2t−u−v)∥ξ∥αdξ

≤ (2π)−d cH(θ, ν)
∫ t

s

∫ t

s
dv du |au,v|

2H−2
(∫
R

e−Dα(2t−u−v)|ξ1 |
α

dξ1

)d

with Dα = aαd
α
2−1. By the change of variables z1 = (2t − u − v)1/α ξ1, we get∫
R

e−Dα(2t−u−v)|ξ1 |
α

dξ1 = (2t − u − v)−1/α
∫
R

e−Dα |z1 |
α

dz1 = γα (2t − u − v)−1/α,

with γα is defined in (3.14), which is clearly finite. This, with the change of variables U = at,u and
V = at,v, then, ũ =

u
at,S

and ṽ =
v

at,S
, allowing us to get:

|Aa,b
1 (t, s, x)| ≤ (2π)−dγd

α cH(θ, ν)
∫ t

s

∫ t

s
|au,v|

2H−2 (2t − u − v)−d/α dv du

= (2π)−dγd
α cH(θ, ν)

∫ t−s

0

∫ t−s

0
|au,v|

2H−2 (u + v)−d/α dv du

= (2π)−dγd
α cH(θ, ν) (t − s)2H− d

α

∫ 1

0

∫ 1

0
|au,v|

2H−2 (u + v)−d/α dv du

= Cd
α(H) (t − s)2H− d

α ,
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with Cd
α(H) = (2π)−dγd

α cH(θ, ν)
∫ 1

0

∫ 1

0
|au,v|

2H−2 (u + v)−d/α dv du, which is finite because 2αH > d.

Now, let us consider the second term. By applying the Plancherel theorem and from Lemma 3.3,
we obtain

|Aa,b
2 (t, s, x)|

= 2

∣∣∣∣∣∣
∫ t

s

∫ s

0
hH,θ,ν(u, v)

∫
Rd

Ga,b(at,u, x, y)
[
Ga,b(at,v, x, z) −Ga,b(as,v, x, z)

]
dz dv du

∣∣∣∣∣∣
= 21−dπ−d

∣∣∣∣∣ ∫ t

s

∫ s

0
dv du hH,θ,ν(u, v)

∫
Rd
FGa,b(at,u, x, z)

[
FGa,b(at,v, x, z) − FGa,b(as,v, x, z)

]
dz

∣∣∣∣∣
= 21−dπ−d

∣∣∣∣∣ ∫ t

s

∫ s

0
dv du hH,θ,ν(u, v)

∫
Rd

dξ exp
(
i(x − at,ub).ξ

)
e−at,uAa

α(ξ)

×
[
exp

(
−i(x − at,vb).ξ

)
e−at,vAa

α(ξ) − exp
(
−i(x − as,vb).ξ

)
e−as,vAa

α(ξ)
] ∣∣∣∣∣

(4.9)
for any s, t ∈ [0,T ] and x ∈ Rd. With a simple simplification, we get

|Aa,b
2 (t, s, x)| = 21−dπ−d

∣∣∣∣ ∫ t

s

∫ s

0
hH,θ,ν(u, v)

∫
Rd

eix.ξe−i(t−u)b.ξ e−(t−u)Aa
α(ξ) e−ix.ξ e−ivb.ξ

×
[
exp (itb.ξ) e−(t−v)Aa

α(ξ) − exp (isb.ξ) e−(s−v)Aa
α(ξ)

]
dξ dv du

∣∣∣∣
= 21−dπ−d

∣∣∣∣∣ ∫ t

s

∫ s

0
dv du hH,θ,ν(u, v)

∫
Rd

dξ e−(t−u)Aa
α(ξ) e−i(v−u)b.ξ

×

[
e−(t−v)Aa

α(ξ) − e−i(t−s)b.ξ e−(s−v)Aa
α(ξ)

]∣∣∣∣∣
= 21−dπ−d

∣∣∣∣∣ ∫ t

s

∫ s

0
dv du hH,θ,ν(u, v)

∫
Rd

dξ e−(t+s−u−v)Aa
α(ξ) e−i(v−u)b.ξ

×
[
e−(t−s)Aa

α(ξ) − e−i(t−s)b.ξ
] ∣∣∣∣∣

≤ 21−dπ−d

∫ t

s

∫ s

0
dv du |hH,θ,ν(u, v)|

∫
Rd

dξ e−(t+s−u−v)Aa
α(ξ)

∣∣∣e−i(v−u)b.ξ
∣∣∣

×
∣∣∣e−(t−s)Aa

α(ξ) − e−i(t−s)b.ξ
∣∣∣

≤ 21−dπ−d

∫ t

s

∫ s

0
dv du |hH,θ,ν(u, v)|

∫
Rd

dξ e−(t+s−u−v)Aa
α(ξ)

∣∣∣e−(t−s)Aa
α(ξ) − e−i(t−s)b.ξ

∣∣∣ .
(4.10)

We discuss here three cases:
First case: if d = 3 : It is clear that for any α ∈ (1, 2], 1 − 3

α
< 0. From (4.10), we have

|Aa,b
2 (t, s, x)| ≤ 22−dπ−d

∫ t

s

∫ s

0
|hH,θ,ν(u, v)|

(∫
R3

e−(t+s−u−v)Aa
α(ξ) dξ

)
dv du.

Following the same technique employed above, we get

|Aa,b
2 (t, s, x)| ≤ 22−dπ−d

∫ t

s

∫ s

0
|hH,θ,ν(u, v)|

(∫
R

e−(t+s−u−v)|ξ1 |
2

dξ1

)3

dv du.
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By (4.8) and by the change of variables z1 = (t + s − u − v)1/2ξ1, we get

|Aa,b
2 (t, s, x)| ≤ 22−dπ3/2−d cH(θ, ν)

∫ t

s

∫ s

0
(u − v)2H−2 (t + s − u − v)−3/2 dv du.

Now, since u ∈ (s, t) and v ∈ (0, s), we have (u − v)2H−2 ≤ (u − s)2H−2. Therefore, by the change of
variables ũ = u − s, and ũ =

u
at,s

, we get

|Aa,b
2 (t, s, x)| ≤ Cte

∫ t

s
(u − s)2H−2

[
(t + s − u)−1/2 − (t − u)−1/2

]
du

≤ Cte
∫ t

s
(u − s)2H−2 (t − u)−1/2du

= Cte (t − s)2H− 3
2

∫ 1

0
u2H−2 (1 − u)−1/2 du

= Cte (t − s)2H− 3
2 ,

where the last line is due to the fact that the integral
∫ 1

0
u2H−2 (1 − u)−1/2 du is finite since 2 − 2H < 1.

Second case: if d = 2 : It is clear that for any α ∈ (1, 2], 1 − 2
α
< 0. From (4.10), we have

|Aa,b
2 (t, s, x)| ≤ 22−dπ−d

∫ t

s

∫ s

0
|hH,θ,ν(u, v)|

∫
R2

e−(t+s−u−v)Aa
α(ξ) dξ dv du.

≤ 22−dπ−d

∫ t

s

∫ s

0
|hH,θ,ν(u, v)|

(∫
R

e−Dα(t+s−u−v)|ξ1 |
α

dξ1

)2

dv du.

By (4.8) and by the change of variables z1 = (t + s − u − v)1/αξ1, we get

|Aa,b
2 (t, s, x)| ≤ Cte

∫ t

s

∫ s

0
(u − v)2H−2 (t + s − u − v)−2/α dv du.

Now, since u ∈ (s, t) and v ∈ (0, s), we have (u − v)2H−2 ≤ (u − s)2H−2. Therefore, by the change of
variables ũ = u − s, and ũ =

u
at,s

, we get

|Aa,b
2 (t, s, x)| ≤ Cte

∫ t

s

∫ s

0
(u − s)2H−2 (t + s − u − v)−2/α dv du

= Cte
∫ t

s
(u − s)2H−2

[
(t − u)−

2
α+1 − (t + s − u)−

2
α+1

]
du

≤ Cte
∫ t

s
(u − s)2H−2 (t − u)−

2
α+1du

= Cte (t − s)2H− 2
α

∫ 1

0
u2H−2 (1 − u)−

2
α+1 du

= Cte (t − s)2H− 2
α ,
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where in the last line we used the fact that the integral
∫ 1

0
u2H−2 (1 − u)−2/α+1 du is finite because

2H − 1 > 0 and 2 −
2
α
> 0.

Third case: if d = 1 : Starting from (4.10) and using (4.8), we get

|Aa,b
2 (t, s, x)| ≤ π−1 cH(θ, ν)

∫ t

s

∫ s

0
(u − v)2H−2

∫
R

e−(t+s−u−v)Aa
α(ξ)

∣∣∣e−(t−s)Aa
α(ξ) − e−i(t−s)b.ξ

∣∣∣ dξ dv du

≤ Cte
{
Aa,b

2,1(t, s, x) + Aa,b
2,2(t, s, x)

}
, with

(4.11)

Aa,b
2,1(t, s, x) =

∫ t

s

∫ s

0
(u − v)2H−2

(∫
R

e−(t+s−u−v)Aa
α(ξ)

∣∣∣1 − e−(t−s)Aa
α(ξ)

∣∣∣ dξ) dv du

Aa,b
2,2(t, s, x) =

∫ t

s

∫ s

0
(u − v)2H−2

(∫
R

e−(t+s−u−v)Aa
α(ξ)

∣∣∣1 − e−i(t−s)bξ
∣∣∣ dξ) dv du.

Concerning the first term A2,1, from the mean theorem, we have for any ξ ∈ R and (t, s) ∈ I2∣∣∣1 − e−(t−s)Aa
α(ξ)

∣∣∣ ≤ |t − s| Aa
α(ξ).

Moreover, since u ∈ (s, t) and v ∈ (0, s), we have (u − v)2H−2 ≤ (u − s)2H−2. Therefore,

Aa,b
2,1(t, s, x) = |t − s|

∫ t

s

∫ s

0
(u − v)2H−2

∫
R

e−(t+s−u−v)Aa
α(ξ) Aa

α(ξ) dξ dv du

≤ |t − s|
∫ t

s

∫ s

0
(u − s)2H−2

∫
R

e−(t+s−u−v)Aa
α(ξ) Aa

α(ξ) dξ dv du

= |t − s|
∫
R

Aa
α(ξ)

∫ t

s
(u − s)2H−2e−(t−u)Aa

α(ξ)
∫ s

0
e−(s−v)Aa

α(ξ) dv dξ du

= |t − s|
∫
R

Aa
α(ξ)

∫ t

s
(u − s)2H−2e−(t−u)Aa

α(ξ)
(
1 − e−sAa

α(ξ)

Aa
α(ξ)

)
dξ du

≤ |t − s|
∫ t

s
(u − s)2H−2

∫
R

e−(t−u)Aa
α(ξ) dξ du

≤ |t − s|
∫ t

s
(u − s)2H−2

∫
R

e−aα(t−u)|ξ|α dξ du.

By the change of variables z = (t − u)1/αξ, v = u − s, and w =
v

at,s
, we get

Aa,b
2,1(t, s, x) ≤ |t − s|

∫
R

e−aα |z|αdz
∫ t

s
(u − s)2H−2 (t − u)−1/α du

= |t − s|2H−1/α
∫
R

e−aα |z|αdz
∫ 1

0
w2H−2 (1 − w)−1/α dw

= Cte |t − s|2H− 1
α ,

where the last line is due to the fact that both integrals
∫
R

e−aα |z|αdz and
∫ 1

0
w2H−2 (1 − w)−1/α dw are

finite.
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Now, concerning the second term A2,2, we have∣∣∣1 − e−iat,sbξ
∣∣∣ = ∣∣∣∣2i e−i at,sbξ

2

∣∣∣∣
∣∣∣∣∣∣∣ei at,sbξ

2 − e−i at,sbξ
2

2i

∣∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣sin
(
at,sb ξ

2

)∣∣∣∣∣∣ ≤ ∣∣∣at,s

∣∣∣ |b| |ξ|
for any ξ ∈ R. Therefore,

Aa,b
2,2(t, s, x) ≤ |b| |t − s|

∫ t

s

∫ s

0
(u − s)2H−2

∫
R

e−(t+s−u−v)Aa
α(ξ) |ξ| dξ dv du

= |b| |t − s|
∫
R

|ξ|

∫ t

s
(u − s)2H−2e−(t−u)aα |ξ|α

(∫ s

0
e−(s−v)aα |ξ|α dv

)
dξ du

= |b| |t − s|
∫
R

|ξ|

∫ t

s
(u − s)2H−2e−(t−u)aα |ξ|α

(
1 − e−aαs|ξ|α

aα|ξ|α

)
dξ du

≤ a−α |b| |t − s|
∫ t

s
(u − s)2H−2

∫
R

e−(t−u)aα |ξ|α 1
|ξ|α−1 dξ du.

By the change of variables z = (t − u)1/α ξ, v = u − s, and w = v
t−s , we get

Aa,b
2,1(t, s, x) ≤ a−α |b| |t − s|

∫
R

e−aα |z|α

|z|α−1 dz
∫ t

s
(u − s)2H−2 (t − u)1− 2

α du

= Cte|t − s|2H− 2
α+1

∫ 1

0
w2H−2 (1 − w)1− 2

α dw

≤ Cte |t − s|2H− 1
α

where the second line is due to the fact that the integral
∫
R

e−aα |z|α

|z|α−1 dz is finite, and in the last line we

used that
∫ 1

0
w2H−2 (1 − w)1− 2

α dw < ∞, because 1 − 2
α
> −1 and 2H − 2 > −1.

Now, let us consider the third term Aa,b
3 . By applying the Plancherel theorem, using again (4.8), and

with some simple computations, we get:

|Aa,b
3 (t, s, x)| ≤ cH(θ, ν)

∫ s

0

∫ s

0
dv du |u − v|2H−2

×

∫
Rd

∣∣∣Ga,b(at,u, x, z) −Ga,b(as,u, x, z)
∣∣∣ ∣∣∣Ga,b(at,v, x, z) −Ga,b(at,v, x, z)

∣∣∣ dz

= (2π)−dcH(θ, ν)
∫ s

0

∫ s

0
dv du |u − v|2H−2

×

∫
Rd

∣∣∣FGa,b(at,u, x, z) − FGa,b(as,u, x, z)
∣∣∣ ∣∣∣FGa,b(at,v, x, z) − FGa,b(as,v, x, z)

∣∣∣ dz

= Cte
∫ s

0

∫ s

0
dv du |u − v|2H−2

∫
Rd

∣∣∣exp
(
i(x − at,ub).ξ

)
e−at,uAa

α(ξ) − exp
(
i(x − as,ub).ξ

)
e−as,uAa

α(ξ)
∣∣∣∣∣∣exp

(
−i(x − at,vb).ξ

)
e−as,vAa

α(ξ) − exp
(
−i(x − as,vb).ξ

)
e−as,vAa

α(ξ)
∣∣∣ dξ

= Cte
∫ s

0

∫ s

0
dv du |au,v|

2H−2
∫
Rd

e−(2s−u−v)Aa
α(ξ)

∣∣∣exp
(
−(t − s)

[
Aa
α(ξ) − ib.ξ

])
− 1

∣∣∣2 dξ.
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Note that for any ξ ∈ Rd, s, t ∈ [0,T ], we have,∣∣∣∣e−(t−s)(∥ξ∥2+aα ∥ξ∥α−ib.ξ) − 1
∣∣∣∣2 = ∣∣∣e−x+iy − 1

∣∣∣2
with x = (t − s)

(
∥ξ∥2 + aα ∥ξ∥α

)
and y = (t − s)b.ξ, and that

∣∣∣e−x+iy − 1
∣∣∣2 = ∣∣∣∣e −x+iy

2

∣∣∣∣2 ∣∣∣∣e −x+iy
2 − e

x−iy
2

∣∣∣∣2 = 2 e−x(cosh x − cos y)

for all real numbers x and y. Therefore,

|Aa,b
3 (t, s, x)| ≤ Cte

∫
Rd

∫ s

0

∫ s

0
dv du |u − v|2H−2e−(2s−u−v)(∥ξ∥2+aα ∥ξ∥α)e−(t−s)(∥ξ∥2+aα ∥ξ∥α)

×
[
cosh

(
(t − s)

(
∥ξ∥2 + aα ∥ξ∥α

))
− cos ((t − s)b.ξ)

]
dξ

= Cte
{
Aa,b

3,1(t, s, x) + Aa,b
3,2(t, s, x)

}
,

with Aa,b
3,1(t, s, x) =

∫
Rd

∫ s

0

∫ s

0
dv du |u − v|2H−2e−(2s−u−v)(∥ξ∥2+aα ∥ξ∥α)e−(t−s)(∥ξ∥2+aα ∥ξ∥α)

×
[
1 − cos ((t − s)b.ξ)

]
dξ

and Aa,b
3,2(t, s, x) =

∫
Rd

∫ s

0

∫ s

0
dv du |u − v|2H−2e−(2s−u−v)(∥ξ∥2+aα ∥ξ∥α)e−(t−s)(∥ξ∥2+aα ∥ξ∥α)

×
[
cosh

(
(t − s)

(
∥ξ∥2 + aα ∥ξ∥α

))
− 1

]
dξ.

Concerning the term Aa,b
3,1, we first bound it in the case where d = 1. From the expression of Aa,b

3,1, we
easily get that

Aa,b
3,1(t, s, x) ≤

∫
R

|1 − cos ((t − s)bξ)|
∫ s

0

∫ s

0
dv du |u − v|2H−2e−(2s−u−v)|ξ|2dξ.

We note that, for any ξ ∈ R, we have

|1 − cos ((t − s)bξ)| ≤ |1 − cos ((t − s)bξ)|H × 21−H.

Moreover, |1 − cos((t − s)bξ)|H =

∣∣∣∣∣∣2 sin2
(
(t − s)bξ

2

)∣∣∣∣∣∣H ≤ 2H−2H |t − s|2H |b|2H |ξ|2H. It follows that

|1 − cos ((t − s)bξ)| ≤ |ξ|2H
× |t − s|2H |b|2H 21−2H,

and, consequently,

Aa,b
3,1(t, s, x) ≤ Cte |t − s|2H

∫
R

|ξ|2H
∫ s

0

∫ s

0
dv du |u − v|2H−2e−(2s−u−v)|ξ|2dξ

≤ Cte T
d
α |t − s|2H− d

α

∫
R

|ξ|2H
∫ s

0

∫ s

0
dv du |u − v|2H−2e−(2s−u−v)|ξ|2dξ

= Cte |t − s|2H− d
α [J1 + J2] ,
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with
J1 =

∫
|ξ|≤1
|ξ|2H

∫ s

0

∫ s

0
dv du |u − v|2H−2 e−(2s−u−v)|ξ|2dξ

J2 =

∫
1≤|ξ|
|ξ|2H

∫ s

0

∫ s

0
dv du |u − v|2H−2 e−(2s−u−v)|ξ|2dξ.

On the one hand, by the fact that |au,v|
2H−2 e−(2s−u−v)|ξ|2 ≤ s2H−2 for every u, v ∈ (0, s) and ξ ∈ R, we can

write that, for every s ∈ [0,T ] and ξ ∈ R,

J1 ≤ T 2H
∫
|ξ|≤1
|ξ|2Hdξ < ∞.

On the other hand, by Lemma 4.2 and the Assumption 2H > 1, we get

J2 ≤ Cte
∫

1≤|ξ|

|ξ|2H

(1 + |ξ|2)2H dξ ≤ Cte
∫

1≤|ξ|

1
|ξ|2H dξ < ∞.

All this implies that
Aa,b

3,1(t, s, x) ≤ Cte |t − s|2H− d
α .

Now, let us bound Aa,b
3,1 in the case where d ∈ {2, 3}. By the change of variables ũ = 2as,u and ṽ = 2as,v,

we get

Aa,b
3,1(t, s, x)

≤

∫
Rd

e−(t−s)Aa
α(ξ) |1 − cos ((t − s)b.ξ)|

∫ s

0

∫ s

0
|u − v|2H−2e−(2s−u−v)Aa

α(ξ)dv du dξ

= 2−2H
∫
Rd

e−(t−s)Aa
α(ξ) |1 − cos ((t − s)b.ξ)|

∫ 2s

0

∫ 2s

0
|ũ − ṽ|2H−2e−

(ũ+ṽ)
2 Aa

α(ξ)dũ dṽ dξ.

(4.12)

Using again Lemma 4.2, we get∫ 2s

0

∫ 2s

0
|u − v|2H−2 exp

(
−

(u + v)Aa
α(ξ)

2

)
dv du ≤ Cte

(
(2s)2H + 1

) ( 1
1 + Aa

α(ξ)

)2H

(4.13)

for any s ∈ [0,T ] and ξ ∈ Rd.

Moreover, for every fixed a, x ∈ R∗+, x 7→
e−ax

(1 + x)2H is decreasing. All this with the change of

variables z = (t − s)ξ, allows us to get

Aa,b
3,1(t, s, x) ≤ Cte

(
22HT 2H + 1

) ∫
Rd

e−(t−s)Aa
α(ξ)[

1 + Aa
α(ξ)

]2H

[
1 − cos ((t − s)b.ξ)

]
dξ

≤ Cte
∫
Rd

e−aα(t−s)∥ξ∥α[
1 + aα ∥ξ∥α

]2H

[
1 − cos ((t − s)b.ξ)

]
dξ

≤ Cte
∫
Rd

1 − cos ((t − s)b.ξ)[
1 + aα ∥ξ∥α

]2H dξ,

= Cte |t − s|2αH−d
∫
Rd

(
1

|t − s|α + aα ∥z∥α

)2H

[1 − cos (b.z)] dz.

(4.14)
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Let us discuss two cases: |t − s| ≥ 1 and |t − s| < 1.
First case: When |t − s| ≥ 1,

Aa,b
3,1(t, s, x) ≤ Cte |t − s|2αH−d

∫
Rd

(
1

1 + aα ∥z∥α

)2H

|1 − cos (b.z)| dz

≤ Cte T 2αH−2H+ d
α−d |t − s|2H− d

α

∫
Rd

(
1

1 + aα ∥z∥α

)2H

dz,

where in the last line we used that 2αH − 2H + d
α
− d > 0, due to the assumptions α > 1 and 2H > d

α
.

We note that the integral
∫
Rd

(
1

1 + aα ∥z∥α

)2H

dz is finite, because 2Hα > d. All this implies the

existence of a nonnegative constant Cte such that

Aa,b
3,1(t, s, x) ≤ Cte |t − s|2H− d

α . (4.15)

Second case: Suppose that |t − s| < 1 : We first note that, since α ∈ (1, 2], H ∈ ( 1
2 , 1), 2αH > d, and

since we are in the case where d ∈ {2, 3}, we necessarily have αH ∈ (1, 2).
Denoting D1 =

{
z ∈ Rd; ∥z∥ ≥ 1

}
, and D2 =

{
z ∈ Rd; ∥z∥ ≤ 1

}
from (4.14), we get

Aa,b
3,1(t, s, x) ≤ Cte|t − s|2αH−d

∫
Rd

1 − cos (b.z)
a2αH ∥z∥2αH dz

≤ Cte |t − s|2αH−d

[∫
D1

2
∥z∥α2H dz +

∫
D2

|1 − cos (b.z)|
∥z∥α2H dz

]
≤ Cte |t − s|2H− d

α

[
2IH

1 + IH
2

]
,

with IH
1 =

∫
D1

1
∥z∥α2H dz and IH

2 =

∫
D2

|1 − cos (b.z)|
∥z∥α2H dz.

Since 2αH > d, the integral IH
1 is clearly finite. As regards IH

2 , for any z ∈ Rd, we have

|1 − cos (b.z)| = |1 − cos (b.z)|
αH
2 × |1 − cos (b.z)|1−

αH
2

and, as consequence, |1 − cos (b.z)| ≤ |1 − cos (b.z)|
αH
2 × 21− αH

2 . Moreover,

|1 − cos(b.z)|
αH
2 =

∣∣∣∣∣∣2 sin2
(
b.z
2

)∣∣∣∣∣∣
αH
2

≤ 2−
αH
2 ∥b∥αH∥z∥αH.

It follows that
|1 − cos (b.z)| ≤ 21−αH∥b∥αH∥z∥αH

and, consequently, since αH < 2, we have

IH
2 ≤ Cte

∫
D2

1
∥z∥αH dz < ∞.

Therefore, Inequality (4.15) is satisfied for every (t, s) ∈ [0,T ]2.
Let us consider the term Aa,b

3,2. We discuss two cases:
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First case: if |t − s| ≥ 1 : ∀ξ ∈ Rd, we have e−(t−s)Aa
α(ξ) [cosh

(
(t − s)Aa

α(ξ)
)
− 1

]
≤ 2. Then, by using

again Lemma 4.2 and by applying the change of variables z = (t − s)1/αξ, we get:

Aa,b
3,2(t, s, x) ≤ Cte

∫
Rd

1[
1 + aα∥ξ∥α

]2H dξ = Cte(t − s)2H− d
α

∫
Rd

1[
(t − s) + aα∥z∥α

]2H dz

≤ Cte(t − s)2H− d
α

∫
Rd

dz[
1 + aα∥z∥α

]2H .

Since the last integral is finite because 2αH > d, we deduce that

Aa,b
3,2(t, s, x) ≤ Cte (t − s)2H− d

α .

Second case: if |t − s| ≤ 1 : Denoting E1 =
{
ξ ∈ Rd; ∥ξ∥ ≥ (at,s)−1/2

}
and E2 =

{
ξ ∈ Rd; ∥ξ∥ ≤ (at,s)−1/2

}
, we can write

Aa,b
3,2(t, s, x) = Ca,b

1 (t, s, x) +Ca,b
2 (t, s, x), with (4.16)

Ca,b
1 (t, s, x) =

∫
E1

∫ s

0

∫ s

0
dv du |u − v|2H−2e−(2s−u−v)(∥ξ∥2+aα ∥ξ∥α)e−(t−s)(∥ξ∥2+aα ∥ξ∥α)

×
[
cosh

(
(t − s)

(
∥ξ∥2 + aα ∥ξ∥α

))
− 1

]
dξ

Ca,b
2 (t, s, x) =

∫
E2

∫ s

0

∫ s

0
dv du |u − v|2H−2e−(2s−u−v)(∥ξ∥2+aα ∥ξ∥α)e−(t−s)(∥ξ∥2+aα ∥ξ∥α)

×
[
cosh

(
(t − s)

(
∥ξ∥2 + aα ∥ξ∥α

))
− 1

]
dξ.

We note that if ξ ∈ E1, then, ξ ∈ D1. Moreover, the function x 7→ e−x [cosh(x) − 1] is increasing on R+,
and Aa

α(ξ) ≤ (1 + aα)∥ξ∥2 for every ξ ∈ D1. Therefore,

e−(t−s)Aa
α(ξ) [cosh

(
(t − s)Aa

α(ξ)
)
− 1

]
≤ e−(t−s)(1+aα)∥ξ∥2

[
cosh

(
(t − s)∥ξ∥2(1 + aα)

)
− 1

]
,

for any ξ ∈ D1, and, consequently, using Lemma 4.2, then by the change variable z = (t − s)1/2ξ, we
get:

Ca,b
1 (t, s, x) ≤

∫
E1

e−(t−s)(1+aα)∥ξ∥2
[
cosh

(
(t − s)(1 + aα)∥ξ∥2

)
− 1

]
×

∫ s

0

∫ s

0
|u − v|2H−2e−(2s−u−v)Aa

α(ξ)dv du dξ

≤ Cte
∫

E1

e−(t−s)(1+aα)∥ξ∥2

[
cosh

(
(t − s)∥ξ∥2(1 + aα)

)
− 1

]
[
1 + Aa

α(ξ)
]2H dξ

≤ Cte
∫
∥ξ∥≥(t−s)−1/2

e−(1+aα)(t−s)∥ξ∥2

[
cosh

(
(t − s)∥ξ∥2(1 + aα)

)
− 1

]
∥ξ∥4H dξ

= Cte |t − s|2H− d
2

∫
∥z∥≥1

e−(1+aα)∥z∥2

[
cosh

(
∥z∥2(1 + aα)

)
− 1

]
∥z∥4H dz

≤ Cte |t − s|2H− d
α

∫
∥z∥≥1

1
∥z∥4H dz

= Cte |t − s|2H− d
α ,
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where in the last line we used that the integral
∫
∥z∥≥1

dz
∥z∥4H is finite since 4H > 2αH > d.

Now, concerning Ca,b
2 , it can be written as: Ca,b

2 (t, s, x) = Ca,b
2,1(t, s, x) +Ca,b

2,2(t, s, x), with

Ca,b
2,1(t, s, x) =

∫
∥ξ∥≤1

[
cosh

(
(t − s)Aa

α(ξ)
)
− 1

] ∫ s

0

∫ s

0
|u − v|2H−2e−(2s−u−v)Aa

α(ξ)e−(t−s)Aa
α(ξ)dv du dξ,

Ca,b
2,2(t, s, x) =

∫
1≤∥ξ∥≤(t−s)−1/2

[
cosh

(
(t − s)Aa

α(ξ)
)
− 1

]
×

∫ s

0

∫ s

0
|u − v|2H−2e−(2s−u−v)Aa

α(ξ)e−(t−s)Aa
α(ξ)dv du dξ.

Using again the fact that the function x 7→ e−x [cosh(x) − 1] is increasing on R+; and that Aa
α(ξ) ≤

(1 + aα)∥ξ∥α for any ξ ∈ D2, we obtain

Ca,b
2,1(t, s, x) ≤

∫
D2

∫ s

0

∫ s

0
|u − v|2H−2e−(2s−u−v)Aa

α(ξ)e−(1+aα)(t−s)∥ξ∥α

×
[
cosh ((t − s)(1 + aα)∥ξ∥α) − 1

]
dv du dξ

≤

∫
D2

∫ s

0

∫ s

0
|u − v|2H−2e−aα(2s−u−v)∥ξ∥αe−(1+aα)(t−s)∥ξ∥α

×
[
cosh ((t − s)(1 + aα)∥ξ∥α) − 1

]
dv du dξ

We note that for any ξ ∈ D2 and u, v ∈ (0, s) ⊂ [0,T ], we have

e−(2s−u−v)aα∥ξ∥α = e−(2s−u−v)(1+aα)∥ξ∥αe(2s−u−v)∥ξ∥α ≤ e−(2s−u−v)(1+aα)∥ξ∥αe2T .

Moreover, for any a > 0, u, v ∈ (0, s) and (t, s) ∈ [0,T ]2, we have:

e−a(t−s) e−a(2s−u−v) [cosh(a(t − s)) − 1] =
1
2
[
e−a(2t−u−v) − 2e−a(t+s−u−v) + e−a(2s−u−v)]. (4.17)

Therefore, making the change of variables U =
as,u

at,s
, V =

as,v

at,s
, and z = (t − s)1/αξ, we get

Ca,b
2,1(t, s, x)

≤ Cte
∫

D2

∫ s

0

∫ s

0
|u − v|2H−2

[
e−(2t−u−v)(1+aα)∥ξ∥α − 2e−(t+s−u−v)(1+aα)∥ξ∥α + e−(2s−u−v)(1+aα)∥ξ∥α

]
dξ dv du

≤ Cte
∫
Rd

∫ s

0

∫ s

0
|u − v|2H−2

[
e−(2t−u−v)(1+aα)∥ξ∥α − 2e−(t+s−u−v)(1+aα)∥ξ∥α + e−(2s−u−v)(1+aα)∥ξ∥α

]
dξ dv du

≤ Cte
∫
Rd

∫ s

0

∫ s

0
dv du |u − v|2H−2

[
e−(t−s)(2+ s−u

t−s +
s−v
t−s )(1+aα)∥ξ∥α

−2e−(t−s)(1+ s−u
t−s +

s−v
t−s )(1+aα)∥ξ∥α + e−(t−s)( s−u

t−s +
s−v
t−s )(1+aα)∥ξ∥α

]
dξ

= Cte |t − s|2H

∫
Rd

∫ s
at,s

0

∫ s
at,s

0
dV dU |U − V |2H−2

×
[
e−at,s(2+U+V)(1+aα)∥ξ∥α − 2e−at,s(1+U+V)(1+aα)∥ξ∥α + e−at,s(U+V)(1+aα)∥ξ∥α

]
dξ

≤ Cte|t − s|2H− d
α

∫
Rd

∫ +∞

0

∫ +∞

0
|u − v|2H−2

×
[
e−(2+u+v)(1+aα)∥z∥α − 2e−(1+u+v)(1+aα)∥z∥α + e−(u+v)(1+aα)∥z∥α

]
dz dv du.

AIMS Mathematics Volume 9, Issue 10, 28970–29000.



28993

Now, making the changes of variables ξ =
(
2 + u + v

)1/αz, ξ =
(
1 + u + v

)1/αz, and ξ =
(
u + v

)1/αz, we
obtain

Ca,b
2,1(t, s, x) ≤ Cte I(α, d)

∫
Rd

e−(1+aα)∥ξ∥αdξ |t − s|2H− d
α ,

with

I(α, d) =
∫ +∞

0

∫ +∞

0
|u − v|2H−2

[
(2 + u + v)−

d
α − 2(1 + u + v)−

d
α + (u + v)−

d
α

]
dv du.

The above Gaussian integral
∫
Rd

e−(1+aα)∥ξ∥αdξ is clearly finite. Applying Lemma 4.1 with λ = 0 and

β = α, we get that I(α, d) is also finite. As a consequence,

Ca,b
2,1(t, s, x) ≤ Cte |t − s|2H− d

α . (4.18)

Now, let us investigate Ca,b
2,2. The function x 7→ e−x [cosh(x) − 1] is increasing on R+ and for any ξ, such

that ∥ξ∥ ≥ 1, we have Aa
α(ξ) ≤ (1 + aα)∥ξ∥2. Proceeding as above, we get:

Ca,b
2,2(t, s, x)

≤

∫
1≤∥ξ∥≤(t−s)−1/2

e−(1+aα)(t−s)∥ξ∥2
[
cosh

(
(t − s)(1 + aα)∥ξ∥2

)
− 1

]
×

∫ s

0

∫ s

0
|u − v|2H−2e−(2s−u−v)Aa

α(ξ)dv du dξ

≤

∫
1≤∥ξ∥≤(t−s)−1/2

e−(1+aα)(t−s)∥ξ∥2
[
cosh

(
(t − s)(1 + aα)∥ξ∥2

)
− 1

]
×

∫ s

0

∫ s

0
e−(2s−u−v)(1+aα)∥ξ∥2 eaα(2s−u−v)∥ξ∥2 |u − v|2H−2dv du dξ.

Now, using (4.17) and denoting E = {ξ ∈ Rd; 1 ≤ ∥ξ∥ ≤ (t − s)−1/2}, we get;

Ca,b
2,2(t, s, x)

≤

∫
E

dξ
∫ s

0

∫ s

0
dv du eaα(2s−u−v)∥ξ∥2 |u − v|2H−2

×
[
e−(2t−u−v)(1+aα)∥ξ∥2 − 2e−(t+s−u−v)(1+aα)∥ξ∥2 + e−(2s−u−v)(1+aα)∥ξ∥2

]
=

∫
E

dξ
∫ s

0

∫ s

0
dv du |u − v|2H−2 ×

[
eaα(2s−u−v)∥ξ∥2 e−(2t−u−v)(1+aα)∥ξ∥2

− 2eaα(2s−u−v)∥ξ∥2e−(t+s−u−v)(1+aα)∥ξ∥2 + eaα(2s−u−v)∥ξ∥2e−(2s−u−v)(1+aα)∥ξ∥2
]

=

∫
E

∫ s

0

∫ s

0
|u − v|2H−2 ×

[
e−2aα(t−s)∥ξ∥2 e−(2t−u−v)∥ξ∥2

− 2e−aα(t−s)∥ξ∥2 e−(t+s−u−v)∥ξ∥2 + e−(2s−u−v)∥ξ∥2
]
dξ dv du.
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By the change variable U =
s − u
at,s

, V =
s − v
at,s

, and z = (t − s)1/2ξ, we obtain

Ca,b
2,2(t, s, x) ≤ |t − s|2H

∫
E

∫ s
t−s

0

∫ s
t−s

0
dξ dv du |u − v|2H−2

×
[
e−(t−s)(2+u+v)∥ξ∥2 e−2aα(t−s)∥ξ∥2 − 2e−(t−s)(1+u+v)∥ξ∥2 e−aα(t−s)∥ξ∥2 + e−(t−s)(u+v)∥ξ∥2

]
≤ |t − s|2H

∫
E

∫ +∞

0

∫ +∞

0
dξ dv du |u − v|2H−2

×
[
e−(t−s)(2(1+aα)+u+v)∥ξ∥2 − 2e−(t−s)(1+aα+u+v)∥ξ∥2 + e−(t−s)(u+v)∥ξ∥2

]
≤ |t − s|2H− d

2

∫ +∞

0

∫ +∞

0
|u − v|2H−2

×

∫
Rd

[
e−(2(1+aα)+u+v)∥z∥2 − 2e−(1+aα+u+v)∥z∥2 + e−(u+v)∥z∥2

]
dξ dv du.

Therefore, by the changes of variables ξ = (2(1 + aα) + u + v)1/2z, ξ = (1 + aα + u + v)1/2z, and
ξ = (u + v)1/2z, we obtain

Ca,b
2,2(t, s, x) ≤ Cte |t − s|2H− d

α

∫
Rd

e−∥ξ∥
2
dξ

×

∫ +∞

0

∫ +∞

0
|u − v|2H−2

[
(2(1 + aα) + u + v)−

d
2 − 2(1 + aα + u + v)−

d
2 + (u + v)−

d
2
]

dv du.

The Gaussian integral
∫
Rd

e−∥ξ∥
2
dξ is finite. Applying Lemma 4.1 with λ = aα and β = 2, we also get

that the improper double integral above is finite. It follows that

Ca,b
2,2(t, s, x) ≤ Cte |t − s|2H− d

α . (4.19)

Gathering (4.16), (4.18), and (4.19) we get

Aa,b
3,2(t, s, x) ≤ Cte |t − s|2H− d

α . (4.20)

This, with (4.15) allows us to achieve the proof of Theorem 3.
As an immediate consequence of Theorem 3, applying Kolmogorov’s criterion of continuity, we

get:

Corollary 4.2. Let ua,b be the mild solution to Equation (1.4) and assume that λH,α
d > 0. Then, for every

x ∈ Rd, the process t → ua,b(t, x) is Hölder continuous of order δ ∈

0, λH,α
d

2

.
The following interesting theorem will allow us to show the non-differentiability of the trajectories

of the process ua,b(., x).

Theorem 4. Let ua,b be the mild solution to Equation (1.4) and assume that λH,α
d > 0. There exists a

positive constant Cte such that

Cte |t − s|λ
H,2
d ≤ E[|ua,b(t, x) − ua,b(s, x)|2] (4.21)

for any (t, s) ∈ [0,T ]2 and x ∈ Rd.

AIMS Mathematics Volume 9, Issue 10, 28970–29000.



28995

Proof. Denoting: c1(θ, ν) = (θ+ν)2

2 1{θν≤0} +
(θ−ν)2

2 1{θν≥0}, c2(θ, ν) = −θν1{θν≤0}, and c3(θ, ν) = θν1{θν≥0},

using (4.7) and (3.4), we get

E
[ ∣∣∣ua,b(t, x) − ua,b(s, x)

∣∣∣2 ]
=

3∑
i=1

T a,b
i (t, s, x),

with

T a,b
i (t, s, x) = ci(θ, ν)

∫ T

0

∫ T

0

∂2RH,i
Z

∂u∂v
(u, v)

∫
Rd

[
Ga,b(at,u, x, z) 1(0,t)(u) −Ga,b(as,u, x, z) 1(0,s)(u)

]
×

[
Ga,b(at,v, x, z) 1(0,t)(v) −Ga,b(as,v, x, z) 1(0,s)(v)

]
dz du dv,

for every i ∈ {1, 2, 3}, with RH,1
Z = RH,1,0

Z , RH,2
Z = RH,1,−1

Z , and RH,3
Z = RH,1,1

Z as the covariance functions of
ZH(1, 0), ZH(1,−1), and ZH(1, 1), respectively (see Example 3.1).

The three terms T a,b
i ,∀i ∈ {1, 2, 3}, are nonnegative. Indeed, for every i ∈ {1, 2, 3}, we have

T a,b
i (t, s, x) = ci(θ, ν) E

[ (
Va,b

i (t, x) − Va,b
i (s, x)

)2 ]
;

Va,b
i (t, x) − Va,b

i (s, x) =
∫ T

0

∫
Rd

[
Ga,b(at,u, x, z) 1(0,t)(u) −Ga,b(as,u, x, z) 1(0,s)(u)

]
WH

i (dz, du)

where WH
i = {W

H
i (t, A); (t, A) ∈ [0,T ] × Bb(Rd)} is a centered Gaussian field with covariance:

E(WH
i (t, A)WH

i (s, B)) = RH,i
Z (t, s)λd(A ∩ B). (4.22)

Therefore, E
[ (

ua,b(t, x) − ua,b(s, x)
)2 ]
≥ T a,b

1 (t, s, x). Since ZH(1, 0) is none other than the fBm, by the
known transfer formula (see, e.g., Proposition 2.4 in [22] ), we obtain:

Va,b
1 (t, x) − Va,b

1 (s, x)

=

∫
Rd

∫
R

(∫ T

0

[
Ga,b(at,u, x, y)1(0,t)(u) −Ga,b(as,u, x, y)1(0,s)(u)

]
(u − z)H− 3

2
+ du

)
W(dy, dz),

where the process W = {W(t, A); t ∈ [0,T ], A ∈ Bb(Rd)} is a space time white Noise with covariance

E(W(t, A)W(s, B)) = (t ∧ s) λd(A ∩ B). (4.23)

Therefore, by Wiener isometry, we get

E
[ (

Va,b
1 (t, x) − Va,b

1 (s, x)
)2 ]

=

∫
R

∫
Rd

(∫
R

1(0,T )(u)
[
Ga,b(at,u, x, y)1(0,t)(u) −Ga,b(as,u, x, y)1(0,s)(u)

]
(au,z)

H− 3
2

+ du
)2

dydz

≥

∫ t

s

∫
Rd

(∫
R

1(0,T )(u)
[
Ga,b(at,u, x, y)1(0,t)(u) −Ga,b(as,u, x, y)1(0,s)(u)

]
(au,z)

H− 3
2

+ du
)2

dydz

=

∫ t

s

∫
Rd

(∫ t

z
Ga,b(at,u, x, y) aH− 3

2
u,z du

)2

dy dz

=

∫ t

s

∫
Rd

(∫ t

z
Ga,b(at,u, x, y) aH− 3

2
u,z du

) (∫ t

z
Ga,b(at,v, x, y) aH− 3

2
v,z dv

)
dy dz

=

∫ t

s
du

∫ t

s
dv

∫
Rd

dy Ga,b(at,u, x, y) Ga,b(at,v, x, y)
∫ u∧v

s
aH− 3

2
v,z aH− 3

2
u,z dz.
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By the change of variables Z =
av,z

au,z
1v<u +

au,z

av,z
1v>u, we see that

∫ u∧v

s
aH− 3

2
v,z aH− 3

2
u,z dz = |u − v|2H−2

∫ av,s∧au,s
av,s∨au,s

0
(1 − Z)1−2H ZH− 3

2 dZ.

This, with (3.10), allows us to obtain:

E
[ ∣∣∣ua,b(t, x) − ua,b(s, x)

∣∣∣2 ]
≥ Cte

∫ t

s

∫ t

s
du dv |u − v|2H−2

∫ av,s∧au,s
av,s∨au,s

0
(1 − z)1−2H zH− 3

2 dz

×

∫
Rd

dy a−d/2
t,u a−d/2

t,v exp
(
−

c2∥x − y∥2

at,u

)
exp

(
−

c2∥x − y∥2

at,v

)
dy

= Cte
∫ t

s

∫ t

s
du dv |u − v|2H−2

∫ (v−s)∧(u−s)
(v−s)∨(u−s)

0
(1 − z)1−2H zH− 3

2 dz

×

(
(t − u)−1/2 (t − v)−1/2

∫
R

exp
(
−

c2|x1 − y1|
2

(t − u)

)
exp

(
−

c2|x1 − y1|
2

(t − v)

)
dy1

)d

.

By the change variable Y = (x1 − y1)

√
c2(2t − u − v)
(t − u)(t − v)

, we get
∫
R

exp
(
−

c2(x1 − y1)2(2t − u − v)
(t − u)(t − v)

)
dy1 =√

π(t − u)(t − v)
c2(2t − u − v)

. This, with the changes of variables U = au,s and V = av,s, then ũ = U
at,s

and ṽ = V
at,s
,

we get:

E
[ ∣∣∣ua,b(t, x) − ua,b(s, x)

∣∣∣2 ]
≥ Cte

∫ t

s

∫ t

s
du dv |u − v|2H−2 (2t − u − v)−d/2

∫ (v−s)∧(u−s)
(v−s)∨(u−s)

0
(1 − z)1−2H zH− 3

2 dz

≥ Cte |t − s|2H− d
2

∫ 1

0

∫ 1

0
du dv |u − v|2H−2(2 − u − v)−d/2

∫ v∧u
v∨u

0
(1 − z)1−2H zH− 3

2 dz

≥ Cte |t − s|2H− d
2 ,

where in the last line we used that the last double integral is finite because 4H > 2αH > d. □

Corollary 4.3. Let ua,b be the mild solution to Equation (1.4) and assume that λH,α
d > 0. For every fixed

x ∈ Rd, we have

lim
ϵ→0

sup
t∈[t0−ϵ,t0+ϵ]

∣∣∣∣ua,b(t, x) − ua,b(t0, x)
t − t0

∣∣∣∣ = +∞
with probability one for every t0. Consequently, the trajectories of the process ua,b(., x) are not
differentiable.

Proof. The corollary can be obtained by applying Theorem 4 and by proceeding as in the proof of
Theorem 3.3, page 88, in [16]. □

Remark 4.2. (1) The particular case where a = 1 and b = 0, La,b reduced to L1,0 = ∆α/2, which has
been examined by various authors, such as in [10, 11].

(2) The case where the noise is fBm or sfBM can be directly derived from this paper, as it presents a
specific instance of gfBm.
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5. Discussion and future works

In this paper, we have introduced and analyzed a novel stochastic FPDE that integrates a mixed
operator, combining the standard Laplacian, fractional Laplacian, and gradient operator. This
approach provides an effective framework for modeling complex phenomena where standard and
fractional diffusion processes interact with spatially dependent randomness.

Our investigation allows us to analyze the complex behaviors of the solution under different random
noise structures. The explicit form of the covariance function derived from our analysis reveals how
the stochastic component affects the solution’s properties. This result is crucial for understanding the
interplay between the deterministic and stochastic elements in such FPDEs.

The specific case of noise which behaves as a Wiener process with respect to the space variable,
and as a gfBm with respect to the time variable offers additional insights into the regularity of sample
paths. By focusing on this case, we explore how the fractional nature of the noise influences the
solution’s smoothness and continuity. This examination is particularly relevant for applications where
the underlying random processes exhibit long-range dependencies or memory effects.

Our results provide a foundation for further exploration into more complex scenarios and
applications. For instance, the mixed operator FPDEs could be applied to areas such as turbulence
modeling, financial mathematics, and environmental sciences where both local and nonlocal effects
are significant. Future work could extend our results by considering more general forms of noise or
by developing numerical methods to simulate such FPDEs effectively.

6. Conclusions

In summary, we have developed and analyzed a novel stochastic FPDE incorporating a mixed
operator with standard, fractional, and gradient components. Our study successfully derived an
explicit covariance function for solutions influenced by spatially-dependent random noise.
Additionally, by considering noise which behaves as a Wiener process with respect to the space
variable, and as a gfBm with respect to the time variable, we provided insights into how fractional
noise affects the regularity of solutions. These contributions advance the field of stochastic FPDEs
and offer a robust framework for future research in complex systems with both local and nonlocal
dynamics.

A visual summary of our research contributions is presented below.

Feature Existing research Contribution of this research
Operator Often restricted to General mixed fractional operator

∆ + ∆α/2, ∆ + aα ∆α/2 + b .∇
∆ or ∆α/2

Random Noise White-space Gaussian field with White-space Gaussian field with
temporal-covariance measure structure temporal covariance measure structure
restricted to some with focus on the more
particular gaussian processes general gaussian process: gfBm,
as e.g. fBm, sfBm, etc. extending both fBm and sfBm

Results Characterization of the solution Groundbreaking investigation of the
especially in fBm and sfBm cases generalized gfBm case

AIMS Mathematics Volume 9, Issue 10, 28970–29000.



28998

Author contributions

M. Zili: Conceptualization, formal analysis, investigation, resources, writing-original draft and
editing. E. Zougar: Conceptualization, formal analysis and methodology, investigation, resources,
writing-original draft, review and editing. M. Rhaima: Methodology, funding acquisition, project
administration, writing-review and editing. All authors have read and agreed to the published version
of the manuscript.

Acknowledgments

The authors extend their appreciation to King Saud University in Riyadh, Saudi Arabia for funding
this research work through researchers Supporting Project Number (RSPD2024R683).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. P. S. Addison, The illustrated wavelet transform handbook: Introductory theory
and applications in science, engineering, medicine and finance, CRC Press, 2016.
https://doi.org/10.1201/9781315372556

2. R. Balan, D. Conus, A note on intermittency for the fractional heat equation, Stat. Probab. Lett.,
95 (2014), 6–14. https://doi.org/10.1016/j.spl.2014.08.001

3. R. M. Balan, C. A. Tudor, The stochastic wave equation with fractional noise: A random field
approach, Stoch. Proc. Appl., 120 (2010), 2468–2494. https://doi.org/10.1016/j.spa.2010.08.006

4. G. Boffetta, R. E. Ecke, Two-dimensional turbulence, Annu. Rev. Fluid Mech., 44 (2012), 427–451.
https://doi.org/10.1146/annurev-fluid-120710-101240

5. Z. Q. Chen, E. Hu, Heat kernel estimates for ∆ + ∆α/2 under gradient perturbation, Stoch. Proc.
Appl., 125 (2015), 2603–2642. https://doi.org/10.1016/j.spa.2015.02.016

6. C. Elnouty, M. Zili, On the sub-mixed fractional Brownian motion, Appl. Math. J. Chin. Univ., 30
(2015), 27–43. https://doi.org/10.1007/s11766-015-3198-6

7. A. W. Jayawardena, Environmental and hydrological systems modelling, CRC Press, 2013.
https://doi.org/10.1201/9781315272443

8. Z. Jie, M. Ijaz Khan, K. Al-Khaled, E. El-Zahar, N. Acharya, A. Raza, et al., Thermal
transport model for Brinkman type nanofluid containing carbon nanotubes with sinusoidal
oscillations conditions: a fractional derivative concept, Wave. Random Complex, 2022 (2022), 1–
20. https://doi.org/10.1080/17455030.2022.2049926

9. B. Guo, X. Pu, F. Huang, Fractional partial differential equations and their numerical solutions,
World Scientific, 2015.

AIMS Mathematics Volume 9, Issue 10, 28970–29000.

https://dx.doi.org/https://doi.org/10.1201/9781315372556
https://dx.doi.org/https://doi.org/10.1016/j.spl.2014.08.001
https://dx.doi.org/https://doi.org/10.1016/j.spa.2010.08.006
https://dx.doi.org/https://doi.org/10.1146/annurev-fluid-120710-101240
https://dx.doi.org/https://doi.org/10.1016/j.spa.2015.02.016
https://dx.doi.org/https://doi.org/10.1007/s11766-015-3198-6
https://dx.doi.org/https://doi.org/10.1201/9781315272443
https://dx.doi.org/https://doi.org/10.1080/17455030.2022.2049926


28999

10. C. Tudor, Z. Khalil-Mahdi, On the distribution and q-variation of the solution to the heat equation
with fractional Laplacian, Probab. Math. Stat. 39 (2019), 315–335. https://doi.org/10.19195/0208-
4147.39.2.5

11. Z. Khalil-Mahdi, C. Tudor, Estimation of the drift parameter for the fractional stochastic
heat equation via power variation, Mod. Stoch. Theory App., 6 (2019), 397–417.
https://doi.org/10.15559/19-VMSTA141

12. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Elsevier, 2006.

13. I. Kruk, F. Russo, C. A. Tudor, Wiener integrals, Malliavin calculus and covariance measure
structure, J. Funct. Anal., 249 (2007), 92–142. https://doi.org/10.1016/j.jfa.2007.03.031

14. A. Lejay, Monte Carlo methods for fissured porous media: a gridless approach, Monte Carlo
Methods, 10 (2004), 385–392. https://doi.org/10.1515/mcma.2004.10.3-4.385

15. J. C. Long, R. C. Ewing, Yucca mountain: Earth-science issues at a geologic
repository for high-level nuclear waste, Annu. Rev. Earth Pl. Sc., 32 (2004), 363–401.
https://doi.org/10.1146/annurev.earth.32.092203.122444

16. Y. Mishura, M. Zili, Stochastic analysis of mixed fractional Gaussian processes, Elsevier, 2018.

17. Y. Mishura, K. Ralchenko, M. Zili, E. Zougar, Fractional stochastic heat
equation with piecewise constant coefficients, Stoch. Dynam., 21 (2021), 2150002.
https://doi.org/10.1142/S0219493721500027

18. S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse
transmission, In: Polynomes orthogonaux et applications, Berlin: Springer, 1985.
https://doi.org/10.1007/BFb0076584

19. A. M. Selvam, Self-organized criticality and predictability in atmospheric flows, Cham: Springer,
2017. https://doi.org/10.1007/978-3-319-54546-2

20. K. Sobczyk, Stochastic differential equations with applications to physics and engineering,
Springer Science & Business Media, 1991. https://doi.org/10.1007/978-94-011-3712-6

21. P. Tankov, Financial modelling with jump processes, Chapman and Hall/CRC, 2003.
https://doi.org/10.1201/9780203485217

22. C. Tudor, Analysis of variations for self-similar processes, Cham: Springer, 2013.
https://doi.org/10.1007/978-3-319-00936-0

23. C. Tudor, M. Zili, Covariance measure and stochastic heat equation with fractional noise, Fract.
Calc. App. Anal., 17 (2014), 807–826. https://doi.org/10.2478/s13540-014-0199-8

24. C. Tudor, M. Zili, SPDE with generalized drift and fractional-type noise, Nonlinear Differ. Equ.
Appl., 23 (2016), 53. https://doi.org/10.1007/s00030-016-0407-9

25. D. Xia, L. Yan, W. Fei, Mixed fractional heat equation driven by fractional Brownian sheet and
Levy process, Math. Probl. Eng., 2017 (2017), 8059796. https://doi.org/10.1155/2017/8059796

26. B. J. West, Nature’s patterns and the fractional calculus, Boston: De Gruyter, 2017.
https://doi.org/10.1515/9783110535136

AIMS Mathematics Volume 9, Issue 10, 28970–29000.

https://dx.doi.org/https://doi.org/10.19195/0208-4147.39.2.5
https://dx.doi.org/https://doi.org/10.19195/0208-4147.39.2.5
https://dx.doi.org/https://doi.org/10.15559/19-VMSTA141
https://dx.doi.org/https://doi.org/10.1016/j.jfa.2007.03.031
https://dx.doi.org/https://doi.org/10.1515/mcma.2004.10.3-4.385
https://dx.doi.org/https://doi.org/10.1146/annurev.earth.32.092203.122444
https://dx.doi.org/https://doi.org/10.1142/S0219493721500027
https://dx.doi.org/https://doi.org/10.1007/BFb0076584
https://dx.doi.org/https://doi.org/10.1007/978-3-319-54546-2
https://dx.doi.org/https://doi.org/10.1007/978-94-011-3712-6
https://dx.doi.org/https://doi.org/10.1201/9780203485217
https://dx.doi.org/https://doi.org/10.1007/978-3-319-00936-0
https://dx.doi.org/https://doi.org/10.2478/s13540-014-0199-8
https://dx.doi.org/https://doi.org/10.1007/s00030-016-0407-9
https://dx.doi.org/https://doi.org/10.1155/2017/8059796
https://dx.doi.org/https://doi.org/10.1515/9783110535136


29000

27. D. Xia, L. Yan, On a semi-linear mixed fractional heat equation driven by fractional Brownian
sheet, Bound. Value Probl., 2017 (2017), 7. https://doi.org/10.1186/s13661-016-0736-y

28. M. Zili, On the mixed fractional Brownian motion, J. Math. Anal. Appl., 2006 (2006), 032435.
https://doi.org/10.1155/JAMSA/2006/32435

29. M. Zili, Mixed sub-fractional Brownian motion, Random Operators Sto., 22 (2014), 163–178.
https://doi.org/10.1515/rose-2014-0017

30. M. Zili, Mixed sub-fractional-white heat equation, J. Numer. Math. Stoch., 8 (2016), 17–35.

31. M. Zili, Generalized fractional Brownian motion, Mod. Stoch. Theory App., 4 (2017), 15–24.
https://doi.org/10.15559/16-VMSTA71

32. M. Zili, Stochastic calculus with a special generalized fractional Brownian motion, Int. J. Appl.
Math. Simul., 1 (2024), 1.

33. M. Zili, E. Zougar, Stochastic heat equation with piecewise constant coefficients and
generalized fractional type-noise, Theor. Probab. Math. St., 104 (2021), 123–144.
https://doi.org/10.1090/tpms/1150

34. M. Zili, E. Zougar, Mixed stochastic heat equation with fractional Laplacian and gradient
perturbation, Fract. Calc. Appl. Anal., 25 (2022), 783–802. https://doi.org/10.1007/s13540-022-
00037-z

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 28970–29000.

https://dx.doi.org/https://doi.org/10.1186/s13661-016-0736-y
https://dx.doi.org/https://doi.org/10.1155/JAMSA/2006/32435
https://dx.doi.org/https://doi.org/10.1515/rose-2014-0017
https://dx.doi.org/https://doi.org/10.15559/16-VMSTA71
https://dx.doi.org/https://doi.org/10.1090/tpms/1150
https://dx.doi.org/https://doi.org/10.1007/s13540-022-00037-z
https://dx.doi.org/https://doi.org/10.1007/s13540-022-00037-z
https://creativecommons.org/licenses/by/4.0

	Introduction
	Some application of the deterministic FPDE
	Application 1: Fluid dynamics 
	Application 2: Finance mathematics

	Stochastic FPDE driven by a noise with covariance measure structure
	Description of the random noise W
	Processes with a covariance measure structure:
	The random noise with covariance measure structure:

	The stochastic FPDE driven by a noise with covariance measure structure 
	Main properties of the fundamental solution Ga,b:
	Existence of the solution for the stochastic FPDE defined in (??):
	Covariance function of the solution:


	Case of the generalized-fBm ZH
	Existence of the solution and some elementary properties
	Temporal regularity of the sample paths
	Technical lemmas
	Proof of Theorem ??:


	Discussion and future works
	Conclusions

