Research article

Non-Lipschitz heterogeneous reaction with a p-Laplacian operator

  • Received: 19 August 2021 Accepted: 26 November 2021 Published: 30 November 2021
  • MSC : 35K55, 35K57, 35K92

  • The intention along this work is to provide analytical approaches for a degenerate parabolic equation formulated with a p-Laplacian operator and heterogeneous non-Lipschitz reaction. Firstly, some results are discussed and presented in relation with uniqueness, existence and regularity of solutions. Due to the degenerate diffusivity induced by the p-Laplacian operator (specially when $ \nabla u = 0 $, or close zero), solutions are studied in a weak sense upon definition of an appropriate test function. The p-Laplacian operator is positive for positive solutions. This positivity condition is employed to show the regularity results along propagation. Afterwards, profiles of solutions are explored specially to characterize the propagating front that exhibits the property known as finite propagation speed. Finally, conditions are shown to the loss of compact support and, hence, to the existence of blow up phenomena in finite time.

    Citation: José L. Díaz. Non-Lipschitz heterogeneous reaction with a p-Laplacian operator[J]. AIMS Mathematics, 2022, 7(3): 3395-3417. doi: 10.3934/math.2022189

    Related Papers:

  • The intention along this work is to provide analytical approaches for a degenerate parabolic equation formulated with a p-Laplacian operator and heterogeneous non-Lipschitz reaction. Firstly, some results are discussed and presented in relation with uniqueness, existence and regularity of solutions. Due to the degenerate diffusivity induced by the p-Laplacian operator (specially when $ \nabla u = 0 $, or close zero), solutions are studied in a weak sense upon definition of an appropriate test function. The p-Laplacian operator is positive for positive solutions. This positivity condition is employed to show the regularity results along propagation. Afterwards, profiles of solutions are explored specially to characterize the propagating front that exhibits the property known as finite propagation speed. Finally, conditions are shown to the loss of compact support and, hence, to the existence of blow up phenomena in finite time.



    加载中


    [1] J. Ahn, C. Yoon, Global well-posedness and stability of constant equilibria in parabolic–elliptic chemotaxis system without gradient sensing, Nonlinearity, 32 (2019), 1327–1351. doi: 10.1088/1361-6544/aaf513. doi: 10.1088/1361-6544/aaf513
    [2] P. H. Bénilan, Operateurs accrétifs et semi-groupes dans les espaces $L_p (1 \leq p \leq \infty)$, France-Japan Seminar, Tokyo, 1976.
    [3] M. Bardi, Asympotitical spherical symmetry of the free boundary in degenerate diffusion equations, Annali di Matematica Pura ed Applicata, 148 (1987), 117–130. doi: 10.1007/BF01774286. doi: 10.1007/BF01774286
    [4] M. Bhatti, A. Zeeshan, R. Ellahi, O. Anwar Bég, A. Kadir, Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium, J. Phys., 58 (2019), 222–234. doi: 10.1016/j.cjph.2019.02.004. doi: 10.1016/j.cjph.2019.02.004
    [5] O. A. Ladyzhenskaja, New equation for the description of incompressible fluids and solvability in the large boundary value for them, Proc. Steklov Inst. Math., (1967), 95–118.
    [6] P. Lindqvist, Note on a nonlinear eigenvalue problem, Rocky Mt. J. Math., 23 (1993), 281–288. doi: 10.1216/rmjm/1181072623.
    [7] L. K. Martinson, K. B. Pavlov, The effect of magnetic plasticity in non-Newtonian fluids, Magnit. Gidrodinamika, 2 (1970), 50–58.
    [8] E. Cho, Y. J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol., 75 (2013), 845–870. doi: 10.1007/s11538-013-9838-1. doi: 10.1007/s11538-013-9838-1
    [9] A. De Pablo, Doctoral Thesis. Estudio de una ecuación de reacción - difusión, Universidad Autónoma de Madrid, 1989.
    [10] P. Arturo, J. L. Vázquez, The balance between strong reaction and slow diffusion, Commun. Part. Diff. Eq., 15 (1990), 159–183. doi: 10.1080/03605309908820682. doi: 10.1080/03605309908820682
    [11] A. De Pablo, J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion Equation, J. Differ. Equ., 93 (1991), 19–61. doi: 10.1016/0022-0396(91)90021-Z. doi: 10.1016/0022-0396(91)90021-Z
    [12] E. Di Benedetto, M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 290 (1990), 787–814.
    [13] M. Otani, A remark on certain nonlinear elliptic equations, Proc. Fac. Sci., Tokai Univ. 19 (1984), 23–28.
    [14] M. Schoenauer, A monodimensional model for fracturing, Research Notes in Mathematics, 79 (1983), 701–711.
    [15] M. C. Pelissier, L. Reynaud, Étude d'un modèle mathématique d'ecoulement deglacier, C. R. Acad. Sci., Paris, Sér. A, 279 (1974), 531–534.
    [16] R. Bartnik, J. McKinnon, Particle-like solutions of the Einstein-Yang-Mills equations, Phys. Rev. Lett., 61 (1998), 141–144. doi: 10.1103/PhysRevLett.61.141. doi: 10.1103/PhysRevLett.61.141
    [17] V. A. Galaktionov, Three types of self-similar blow up for the fourth order p-Laplacian equation with source, J. Comput. Appl. Math., 223 (2009), 326–355.
    [18] T. Carelman, Problemes mathematiques dans la theorie cinetique de gas, AlmquistWiksells, Uppsala, 1957.
    [19] L. Haiyin, Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model, Acta Math. Sci., Series A, 39 (2019), 358–371.
    [20] B. F. Jones, Singular integrals and parabolic equations, American Mathematical Society, United States of America, 1963.
    [21] E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theoret. Biol., 30 (1971), 235–248. doi: 10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8
    [22] Z. Dong, An Introductory View of the Weak Solution of the p-Laplacian Equation, Australian National University, 2017.
    [23] G. Bognar, Numerical and Analytic Investigation of Some Nonlinear Problems in Fluid Mechanics, Comp. and sim. in modern sci., 2 (2008), 172–179.
    [24] C. Pao, Nonlinear Parabolic and Elliptic Equations, Springer Science+Bussiness Media, North Carolina, United States of America, 2012.
    [25] J. Simsen, J. Valero, Global attractors for $p$-Laplacian differential inclusions in unbounded domains, Discrete and Continuous Dynamical Systems-series B, 21 (2016), 3239–3267. doi: 10.3934/dcdsb.2016096. doi: 10.3934/dcdsb.2016096
    [26] M. Caliari, S. Zuccher, The inverse power method for the p(x)-Laplacian problem, Journal of Scientific Computing, 65 (2015), 698–714. doi: 10.1007/s10915-015-9982-x. doi: 10.1007/s10915-015-9982-x
    [27] S. Kamin, J. L. Vázquez, Fundamental Solutions and Asymptotic Behaviour for the p-Laplacian Equation, Revista Matemática Iberoamericana, 4 (1988), 339–354.
    [28] A. Shahid, H. Huang, M. M. Bhatti, L. Zhang, R Ellahi, Numerical Investigation on the Swimming of Gyrotactic Microorganisms in Nanofluids through Porous Medium over a Stretched Surface, Mathematics, 8 (2020), 380. doi: 10.3390/math803038. doi: 10.3390/math803038
    [29] Y. Tao, M. Winkler, Effects of signal-dependent motilities in a keller–segel-type reactiondiffusion system, Math. Models Methods Appl. Sci., 27 (2017), 1645–1683. doi: 10.1142/S0218202517500282. doi: 10.1142/S0218202517500282
    [30] M. Tsutsumi, Existence and non-existence of global solutions for nonlinear parabolic equations, Pub. Res. Inst. Math. Sci., 8 (1973), 211–229. doi: 10.2977/prims/1195193108. doi: 10.2977/prims/1195193108
    [31] J. L. Vázquez, The Porous Medium Equation, mathematical theory, Oxford Mathematical Monographs, Oxford, 2006.
    [32] C. Yoon, Y. J. Kim, Global existence and aggregation in a keller–segel model with fokker- Planck diffusion, Acta Appl. Math., 149 (2016), 101–123. doi: 10.1007/s10440-016-0089-7. doi: 10.1007/s10440-016-0089-7
    [33] J. Fernández, J. Rossi, Existence Results for the p-Laplacian with Nonlinear Boundary Conditions, J. Math. Anal. Appl., 263 (2001), 195–223. doi: 10.1006/jmaa.2001.7609. doi: 10.1006/jmaa.2001.7609
    [34] J. W. Barrett, W. B. Liu, Finite Element Approximation of the p-Laplacian, Math. Comp., 61 (1993), 523–537. doi: 10.1090/S0025-5718-1993-1192966-4. doi: 10.1090/S0025-5718-1993-1192966-4
    [35] P. Drábek, S. Robinson, Resonance Problems for the p-Laplacian, J. Funct. Anal., 169 (1999), 189–200. doi: 10.1006/jfan.1999.3501. doi: 10.1006/jfan.1999.3501
    [36] G. Zou, X. Wang, T. Sheu, Finite element analysis of a new phase field model with p-Laplacian operator, Math. Comp. Simul., 185 (2021), 134–152. doi: 10.1016/j.matcom.2020.12.027. doi: 10.1016/j.matcom.2020.12.027
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1705) PDF downloads(91) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog