Research article Special Issues

Sensitivity analysis on optimizing heat transfer rate in hybrid nanofluid flow over a permeable surface for the power law heat flux model: Response surface methodology with ANOVA test

  • Received: 19 January 2024 Revised: 28 February 2024 Accepted: 11 March 2024 Published: 02 April 2024
  • MSC : 76-10, 76R10

  • Joule dissipation has an important role in the conversion of mechanical energy to heat within a fluid due to the internal friction and viscosity. Moreover, Darcy friction is a measure of the resistance to flow in a porous medium. In response to the efficient heat transfer performance, a robust statistical approach was established to optimize the heat transfer rate in a two-dimensional flow of a nanofluid over a permeable surface embedded with a porous matrix. The electrically conducive fluid affected the flow phenomena to include a carbon nanotube nanoparticle in the conventional liquid water for the enhanced heat transfer properties; additionally, the power-law heat flux model was considered. Appropriate transformation rules were adopted to obtain a non-dimensional system that brought a developed model equipped with several factors. The traditional numerical technique (i.e., shooting based Runge-Kutta) was proposed to handle the coupled nonlinear system. Furthermore, the statistical response surface methodology (RSM) was adopted to obtain an efficient optimized model for the heat transportation rate of the considered factors. An analysis of variance (ANOVA) was utilized to validate the result of the regression analysis. However, it was evident that the nanoparticle concentrations were useful to augment the fluid velocity and the temperature distributions; the statistical approach adopted for the heat transfer rate displayed an optimized effect as compared to a conventional effect.

    Citation: S. R. Mishra, Subhajit Panda, Mansoor Alshehri, Nehad Ali Shah, Jae Dong Chung. Sensitivity analysis on optimizing heat transfer rate in hybrid nanofluid flow over a permeable surface for the power law heat flux model: Response surface methodology with ANOVA test[J]. AIMS Mathematics, 2024, 9(5): 12700-12725. doi: 10.3934/math.2024621

    Related Papers:

  • Joule dissipation has an important role in the conversion of mechanical energy to heat within a fluid due to the internal friction and viscosity. Moreover, Darcy friction is a measure of the resistance to flow in a porous medium. In response to the efficient heat transfer performance, a robust statistical approach was established to optimize the heat transfer rate in a two-dimensional flow of a nanofluid over a permeable surface embedded with a porous matrix. The electrically conducive fluid affected the flow phenomena to include a carbon nanotube nanoparticle in the conventional liquid water for the enhanced heat transfer properties; additionally, the power-law heat flux model was considered. Appropriate transformation rules were adopted to obtain a non-dimensional system that brought a developed model equipped with several factors. The traditional numerical technique (i.e., shooting based Runge-Kutta) was proposed to handle the coupled nonlinear system. Furthermore, the statistical response surface methodology (RSM) was adopted to obtain an efficient optimized model for the heat transportation rate of the considered factors. An analysis of variance (ANOVA) was utilized to validate the result of the regression analysis. However, it was evident that the nanoparticle concentrations were useful to augment the fluid velocity and the temperature distributions; the statistical approach adopted for the heat transfer rate displayed an optimized effect as compared to a conventional effect.



    加载中


    [1] R. Hossain, A. K. Azad, M. J. Hasan, M. M. Rahman, Radiation effect on unsteady MHD mixed convection of kerosene oil-based CNT nanofluid using finite element analysis, Alex. Eng. J., 61 (2022), 8525−8543. DOI:10.1016/j.aej.2022.02.005 doi: 10.1016/j.aej.2022.02.005
    [2] U. S. Mahabaleshwar, K. N. Sneha, H. N. Huang, An effect of MHD and radiation on CNTS-Water based nanofluids due to a stretching sheet in a Newtonian fluid, Case Stud. Therm. Eng., 28 (2021), 101462. DOI:10.1016/J.CSITE.2021.101462 doi: 10.1016/J.CSITE.2021.101462
    [3] L. L. Lund, M. A. Fadhel, S. Dero, Z. Shah, M. Alshehri, A. Alshehri, Slip and radiative effect on magnetized CNTs/C2H6O2+H2O hybrid base nanofluid over exponentially shrinking surface, J. Magn. Magn. Mater., 580 (2023), 170958. DOI:10.1016/J.JMMM.2023.170958 doi: 10.1016/J.JMMM.2023.170958
    [4] W. N. N. Noranuar, A. Q. Mohamad, S. Shafie, I. Khan, L. Y. Jiann, M. R. Ilias, Non-coaxial rotation flow of MHD Casson nanofluid carbon nanotubes past a moving disk with porosity effect, Ain Shams Eng. J., 12 (2021), 4099–4110. DOI:10.1016/J.ASEJ.2021.03.011 doi: 10.1016/J.ASEJ.2021.03.011
    [5] M. Ramzan, S. Riasat, Z. Shah, P. Kumam, P. Thounthong, Unsteady MHD carbon nanotubes suspended nanofluid flow with thermal stratification and nonlinear thermal radiation, Alex. Eng. J., 59 (2020), 1557–1566. DOI:10.1016/J.AEJ.2020.04.004 doi: 10.1016/J.AEJ.2020.04.004
    [6] S. R. Mishra, P. K. Pattnaik, S. Ontela, S. Panda, Characterization of shape factor with multi slip and inclined magnetized radiative Casson hybrid nanofluid transport in an expanding/contracting convective sheet, Part. Differ. Equ. Appl. Math., 8 (2023), 100570. DOI:10.1016/J.PADIFF.2023.100570 doi: 10.1016/J.PADIFF.2023.100570
    [7] T. Elnaqeeb, N. A. Shah, I. A. Mirza, Natural convection flows of carbon nanotubesnanofluids with Prabhakar-like thermal transport, Math. Meth. Appl. Sci., 2020, 1–14. DOI:10.1002/mma.6584 doi: 10.1002/mma.6584
    [8] A. Abderrahmane, W. Jamshed, A. M. Abed, G. F. Smaisim, K. Guedri, S. U. Devi, et al., Heat and mass transfer analysis of non-Newtonian power-law nanofluid confined within annulus enclosure using Darcy-Brinkman-Forchheimer model, Case Stud. Therm. Eng., 40 (2022), 102569. DOI:10.1016/J.CSITE.2022.102569 doi: 10.1016/J.CSITE.2022.102569
    [9] Y. X. Li, S. R. Mishra, P. K. Pattnaik, S. Baag, Y. M. Li, M. I. Khan, et al., Numerical treatment of time dependent magnetohydrodynamic nanofluid flow of mass and heat transport subject to chemical reaction and heat source, Alex. Eng. J., 61 (2021), 2484–2491. DOI:10.1016/J.AEJ.2021.07.030 doi: 10.1016/J.AEJ.2021.07.030
    [10] A. M. Amer, N. I. Ghoneim, A. M. Megahed, Investigation of dissipation phenomenon of non-Newtonian nanofluid due to a horizontal stretching rough sheet through a Darcy porous medium, Appl. Eng. Sci., 17 (2024), 100171. DOI:10.1016/J.APPLES.2023.100171 doi: 10.1016/J.APPLES.2023.100171
    [11] Z. Ullah, A. Abbas, E. R. El-Zahar, L. F. Seddek, A. Akgul, A. M. Hassan, Significance of thermal density and viscous dissipation on heat and mass transfer of chemically reactive nanofluid flow along stretching sheet under magnetic field, Results Eng., 20 (2023), 101413. DOI:10.1016/J.RINENG.2023.101413 doi: 10.1016/J.RINENG.2023.101413
    [12] R. Mahesh, U. S. Mahabaleshwar, P. N. V. Kumar, H. F. Ö ztop, N. Abu-Hamdeh, Impact of radiation on the MHD couple stress hybrid nanofluid flow over a porous sheet with viscous dissipation, Results Eng., 17 (2023), 100905. DOI:10.1016/j.rineng.2023.100905 doi: 10.1016/j.rineng.2023.100905
    [13] P. C. Pattanaik, S. R. Mishra, S. Jena, P. K. Pattnaik, Impact of radiative and dissipative heat on the Williamson nanofluid flow within a parallel channel due to thermal buoyancy, Proc. I. Mech. Eng. Part, 236 (2022), 3–18. DOI:10.1177/23977914221080046 doi: 10.1177/23977914221080046
    [14] P. K. Pattnaik, J. Pattnaik, S. R. Mishra, B. Ali, A comparative note on the free convection of micropolar nanofluid due to the interaction of buoyancy and the dissipative heat energy, Heat Transf., 50 (2021), 7020–7041. DOI:10.1002/HTJ.22215 doi: 10.1002/HTJ.22215
    [15] R. Baithalu, S. R. Mishra, P. K. Pattnaik, S. Panda, Optimizing shear and couple stress analysis for the magneto-micropolar dissipative nanofluid flow toward an elongating surface: A comprehensive RSM-ANOVA investigation, J. Therm. Anal. Calorim., 149 (2024), 1697–1713. DOI:10.1007/S10973-023-12741-W doi: 10.1007/S10973-023-12741-W
    [16] S. Panda, S. Ontela, S. R. Mishra, P. K. Pattnaik, Response surface methodology and sensitive analysis for optimizing heat transfer rate on the 3D hybrid nanofluid flow through permeable stretching surface, J. Therm. Anal. Calorim., 148 (2023), 7369–7382. DOI:10.1007/S10973-023-12183-4 doi: 10.1007/S10973-023-12183-4
    [17] S. Panda, S. Ontela, S. R. Mishra, T. Thumma, Effect of Arrhenius activation energy on two-phase nanofluid flow and heat transport inside a circular segment with convective boundary conditions: Optimization and sensitivity analysis, Int. J. Mod. Phys. B, 2023. DOI:10.1142/S0217979224503429 doi: 10.1142/S0217979224503429
    [18] T. Thumma, S. Panda, S. R. Mishra, S. Ontela, Mathematical modelling of heat and solutal rate with cross-diffusion effect on the flow of nanofluid past a curved surface under the impact of thermal radiation and heat source: Sensitivity analysis, ZAMM J. Appl. Math. Mech. Z. Für Angew. Math. Und. Mech., 103 (2023), e202300077. DOI:10.1002/ZAMM.202300077 doi: 10.1002/ZAMM.202300077
    [19] S. Panda, S. Ontela, S. R. Mishra, T. Thumma, Hybridization of artificial neural network and response surface methodology for the optimized heat transfer rate on three-dimensional micropolar nanofluid using Hamilton-Crosser conductivity model through a circular cylinder, J. Therm. Anal. Calorim., 148 (2023), 9027–9046. DOI:10.1007/S10973-023-12283-1 doi: 10.1007/S10973-023-12283-1
    [20] T. Mehmood, M. Ramzan, F. Howari, S. Kadry, Y. M. Chu, Application of response surface methodology on the nanofluid flow over a rotating disk with autocatalytic chemical reaction and entropy generation optimization, Sci. Rep., 11 (2021), 1–18. DOI:10.1038/s41598-021-81755-x doi: 10.1038/s41598-021-81755-x
    [21] B. K. Swain, B. C. Parida, S. Kar, N. Senapati, Viscous dissipation and joule heating effect on MHD flow and heat transfer past a stretching sheet embedded in a porous medium, Heliyon, 6 (2020), e05338. DOI:10.1016/J.HELIYON.2020.E05338 doi: 10.1016/J.HELIYON.2020.E05338
    [22] P. Rana, Heat transfer optimization and rheological features of Buongiorno nanofluid in a convectively heated inclined annulus with nonlinear thermal radiation, Propuls Power Res., 12 (2023), 539–555. DOI:10.1016/J.JPPR.2023.10.002 doi: 10.1016/J.JPPR.2023.10.002
    [23] S. Hussain, A. Ali, K. Rasheed, A. A. Pasha, S. Algarni, T. Alqahtani, et al., Application of response surface methodology to optimize MHD nanofluid flow over a rotating disk with thermal radiation and joule heating, Case Stud. Therm. Eng., 103 (2023), 103715. DOI:10.1016/J.CSITE.2023.103715 doi: 10.1016/J.CSITE.2023.103715
    [24] P. Rana, G. Gupta, FEM solution to quadratic convective and radiative flow of Ag-MgO/H2O hybrid nanofluid over a rotating cone with Hall current: Optimization using response surface methodology, Math. Comput. Simul., 201 (2022), 121–140. DOI:10.1016/J.MATCOM.2022.05.012 doi: 10.1016/J.MATCOM.2022.05.012
    [25] P. Rana, P. K. Sharma, S. Kumar, V. Makkar, B. Mahanthesh, Multiple solutions and stability analysis in MHD non-Newtonian nanofluid slip flow with convective and passive boundary condition: Heat transfer optimization using RSM-CCD, ZAMM J. Appl. Math. Mech. Z. Für Angew. Math. Und. Mech., 104 (2024), e202200145. DOI:10.1002/ZAMM.202200145 doi: 10.1002/ZAMM.202200145
    [26] J. Wang, S. A. Khan, S. Yasmin, M. M. Alam, H. Liu, U. Farooq, et al., Central composite design (CCD)-Response surface methodology (RSM) for modeling and simulation of MWCNT-water nanofluid inside hexagonal cavity: Application to electronic cooling, Case Stud. Therm. Eng., 50 (2023), 103488. DOI:10.1016/J.CSITE.2023.103488 doi: 10.1016/J.CSITE.2023.103488
    [27] A. Raza, S. U. Khan, K. Al-Khaled, M. I. Khan, A. Ul Haq, F. Alotaibi, et al., A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force, Chem. Phys. Lett., 787 (2022), 139277. DOI:10.1016/J.CPLETT.2021.139277 doi: 10.1016/J.CPLETT.2021.139277
    [28] Y. M. Chu, K. Al-Khaled, N. Khan, M. I. Khan, S. U. Khan, M. S. Hashmi, et al., Study of Buongiorno's nanofluid model for flow due to stretching disks in presence of gyrotactic microorganisms, Ain Shams Eng. J., 12 (2021), 3975–3985. DOI:10.1016/J.ASEJ.2021.01.033 doi: 10.1016/J.ASEJ.2021.01.033
    [29] S. Farooq, M. I. Khan, A. Riahi, W. Chammam, W. A. Khan, Modeling and interpretation of peristaltic transport in single wall carbon nanotube flow with entropy optimization and Newtonian heating, Comput. Meth. Prog. Biomed., 192 (2020), 105435. DOI:10.1016/J.CMPB.2020.105435 doi: 10.1016/J.CMPB.2020.105435
    [30] M. I. Khan, H. Waqas, U. Farooq, S. U. Khan, Y. M. Chu, S. Kadry, Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk: A numerical approach, Int. J. Mod. Phys. B, 35 (2021). DOI:10.1142/S021798492150202X doi: 10.1142/S021798492150202X
    [31] A. Hamid, R. N. Kumar, R. J. P. Gowda, R. S. V. Kumar, S. U. Khan, M. I. Khan, et al., Impact of Hall current and homogenous-heterogenous reactions on MHD flow of GO-MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface, Wave. Random Complex, 2021. DOI:10.1080/17455030.2021.1985746 doi: 10.1080/17455030.2021.1985746
    [32] M. A. Z. Raja, M. Shoaib, R. Tabassum, M. I. Khan, R. J. P. Gowda, B. C. Prasannakumara, et al., Intelligent computing for the dynamics of entropy optimized nanofluidic system under impacts of MHD along thick surface, Int. J. Mod. Phys. B, 35 (2021), 2150269. DOI:10.1142/S0217979221502696 doi: 10.1142/S0217979221502696
    [33] H. Ge-JiLe, N. A. Shah, Y. M. Mahrous, P. Sharma, C. S. K. Raju, S. M. Upddhya, Radiated magnetic flow in a suspension of ferrous nanoparticles over a cone with Brownian motion and thermophoresis, Case Stud. Therm. Eng., 25 (2021), 100915.
    [34] S. Kavya, V. Nagendramma, N. A. Ahammad, S. Ahmad, C. S. K. Raju, Magnetic-hybrid nanoparticles with stretching/shrinking cylinder in a suspension of MoS4 and copper nanoparticles, Int. Commun. Heat Mass, 136 (2022), 106150. DOI:10.1016/j.icheatmasstransfer.2022.106150 doi: 10.1016/j.icheatmasstransfer.2022.106150
    [35] G. Rasool, W. Xinhua, L. A. Lund, U. Yashkun, A. Wakif, A. Asghar, Dual solutions of unsteady flow of copper-alumina/water based hybrid nanofluid with acute magnetic force and slip condition, Heliyon, 12 (2023), e22737. DOI:10.1016/j.heliyon.2023.e22737 doi: 10.1016/j.heliyon.2023.e22737
    [36] G. Rasool, A. Shafiq, X. Wang, A. J. Chamkha, A. Wakif, Numerical treatment of MHD Al2O3-Cu/engine oil-based nanofluid flow in a Darcy-Forchheimer medium: Application of radiative heat and mass transfer laws, Int. J. Mod. Phys. B, 38 (2024). DOI:10.1142/S0217979224501297 doi: 10.1142/S0217979224501297
    [37] G. Rasool, A. Wakif, X. Wang, A. Alshehri, A. M. Saeed, Falkner-Skan aspects of a radiating (50% ethylene glycol+ 50% water)-based hybrid nanofluid when Joule heating as well as Darcy-Forchheimer and Lorentz forces affect significantly, Propuls. Power Res., 12 (2023), 428–442. DOI:10.1016/j.jppr.2023.07.001 doi: 10.1016/j.jppr.2023.07.001
    [38] G. Rasool, A. Wakif, X. Wang, A. Shafiq, A. J. Chamkha, Numerical passive control of alumina nanoparticles in purely aquatic medium featuring EMHD driven non-Darcian nanofluid flow over convective Riga surface, Alex. Eng. J., 68 (2023), 747–762. DOI:10.1016/j.aej.2022.12.032 doi: 10.1016/j.aej.2022.12.032
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(843) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog