Research article Special Issues

Extraction of PEM fuel cell parameters using Walrus Optimizer

  • Received: 20 January 2024 Revised: 23 February 2024 Accepted: 28 February 2024 Published: 02 April 2024
  • MSC : 68TXX

  • The process of identifying the optimal unknown variables for the creation of a precision fuel-cell performance forecasting model using optimization techniques is known as parameter identification of the proton exchange membrane fuel cell (PEMFC). Recognizing these factors is crucial for accurately forecasting and assessing the fuel cell's performance, as they may not always be included in the manufacturer's datasheet. Six optimization algorithms—the Walrus Optimizer (WO), the Tunicate Swarm Algorithm (TSA), the Harris Hawks Optimizer (HHO), the Heap Based Optimizer (HBO), the Chimp Optimization Algorithm (ChOA), and the Osprey Optimization Algorithm (OOA) were used to compute six unknown variables of a PEMFC. Also, the proposed WO method was compared with other published works' methods such as the Equilibrium Optimizer (EO), Manta Rays Foraging Optimizer (MRFO), Neural Network Algorithm (NNA), Artificial Ecosystem Optimizer (AEO), Slap Swarm Optimizer (SSO), and Vortex Search Approach with Differential Evolution (VSDE). Minimizing the sum squares error (SSE) between the estimated and measured cell voltages requires treating these six parameters as choice variables during optimization. The WO algorithm yielded an SSE of 1.945415603, followed by HBO, HHO, TSA, ChOA, and OOA. Given that WO accurately forecasted the fuel cell's performance, it is appropriate for the development of digital twins for fuel cell applications and control systems for the automobile industry. Furthermore, it was shown that the WO convergence speed was faster than the other approaches studied.

    Citation: Essam H. Houssein, Nagwan Abdel Samee, Maali Alabdulhafith, Mokhtar Said. Extraction of PEM fuel cell parameters using Walrus Optimizer[J]. AIMS Mathematics, 2024, 9(5): 12726-12750. doi: 10.3934/math.2024622

    Related Papers:

  • The process of identifying the optimal unknown variables for the creation of a precision fuel-cell performance forecasting model using optimization techniques is known as parameter identification of the proton exchange membrane fuel cell (PEMFC). Recognizing these factors is crucial for accurately forecasting and assessing the fuel cell's performance, as they may not always be included in the manufacturer's datasheet. Six optimization algorithms—the Walrus Optimizer (WO), the Tunicate Swarm Algorithm (TSA), the Harris Hawks Optimizer (HHO), the Heap Based Optimizer (HBO), the Chimp Optimization Algorithm (ChOA), and the Osprey Optimization Algorithm (OOA) were used to compute six unknown variables of a PEMFC. Also, the proposed WO method was compared with other published works' methods such as the Equilibrium Optimizer (EO), Manta Rays Foraging Optimizer (MRFO), Neural Network Algorithm (NNA), Artificial Ecosystem Optimizer (AEO), Slap Swarm Optimizer (SSO), and Vortex Search Approach with Differential Evolution (VSDE). Minimizing the sum squares error (SSE) between the estimated and measured cell voltages requires treating these six parameters as choice variables during optimization. The WO algorithm yielded an SSE of 1.945415603, followed by HBO, HHO, TSA, ChOA, and OOA. Given that WO accurately forecasted the fuel cell's performance, it is appropriate for the development of digital twins for fuel cell applications and control systems for the automobile industry. Furthermore, it was shown that the WO convergence speed was faster than the other approaches studied.



    加载中


    [1] M. N. Ali, K. Mahmoud, M. Lehtonen, M. M. F. Darwish, Promising MPPT methods combining metaheuristic, fuzzy-logic and ANN techniques for grid-connected photovoltaic, Sensors, 21 (2021), 1244. https://doi.org/10.3390/s21041244 doi: 10.3390/s21041244
    [2] D. S. AbdElminaam, E. H. Houssein, M. Said, D. Oliva, A. Nabil, An efficient heap-based optimizer for parameters identification of modified photovoltaic models, Ain Shams Eng. J., 13 (2022), 101728. https://doi.org/10.1016/j.asej.2022.101728 doi: 10.1016/j.asej.2022.101728
    [3] A. A. K. Ismaeel, E. H. Houssein, D. Oliva, M. Said, Gradient-based optimizer for parameter extraction in photovoltaic models, IEEE Access, 9 (2021), 13403–13416. https://doi.org/10.1109/ACCESS.2021.3052153 doi: 10.1109/ACCESS.2021.3052153
    [4] E. H. Houssein, S. Deb, D. Oliva, H. Rezk, H. Alhumade, M. Said, Performance of gradient-based optimizer on charging station placement problem, Mathematics, 9 (2021), 2821. https://doi.org/10.3390/math9212821 doi: 10.3390/math9212821
    [5] D. S. Abdelminaam, M. Said, E. H. Houssein, Turbulent flow of water-based optimization using new objective function for parameter extraction of six photovoltaic models., IEEE Access, 9 (2021), 35382–35398. https://doi.org/10.1109/ACCESS.2021.3061529 doi: 10.1109/ACCESS.2021.3061529
    [6] M. Said, E. H. Houssein, S. Deb, A. A. Alhussan, R. M. Ghoniem, A novel gradient-based optimizer for solving unit commitment problem, IEEE Access, 10 (2022), 18081–18092. https://doi.org/10.1109/ACCESS.2022.3150857 doi: 10.1109/ACCESS.2022.3150857
    [7] E. H. Houssein, D. Oliva, N. A. Samee, N. F. Mahmoud, M. M. Emam, Liver cancer algorithm: A novel bio-inspired optimizer, Comput. Biol. Med., 165 (2023), 107389. https://doi.org/10.1016/j.compbiomed.2023.107389 doi: 10.1016/j.compbiomed.2023.107389
    [8] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comp. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [9] Y. Yang, H. Chena, A. A. Heidari, A. H. Gandomi, Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 doi: 10.1016/j.eswa.2021.114864
    [10] I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl., 181 (2021), 115079. https://doi.org/10.1016/j.eswa.2021.115079 doi: 10.1016/j.eswa.2021.115079
    [11] I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, A. H. Gandomi, INFO: An efficient optimization algorithm based on weighted mean of vectors, Expert Syst. Appl., 195 (2022), 116516. https://doi.org/10.1016/j.eswa.2022.116516 doi: 10.1016/j.eswa.2022.116516
    [12] X. Yuan, Y. Liu, R. Bucknall, A novel design of a solid oxide fuel cell-based combined cooling, heat and power residential system in the U. K., IEEE T. Ind. Appl., 57 (2021), 805–813. https://doi.org/10.1109/TIA.2020.3034073 doi: 10.1109/TIA.2020.3034073
    [13] J. Ihonen, P. Koski, V. Pulkkinen, T. Keränen, H. Karimäki, S. Auvinen, et al., Operational experiences of PEMFC pilot plant using low grade hydrogen from sodium chlorate production process. Int. J. Hydrogen Energ., 42 (2017), 27269–27283. https://doi.org/10.1016/j.ijhydene.2017.09.056 doi: 10.1016/j.ijhydene.2017.09.056
    [14] Y. Qiu, P. Wu, T. Miao, J. Liang, K. Jiao, T. Li, et al., An intelligent approach for contact pressure optimization of PEM fuel cell gas diffusion layers, Appl. Sci., 10 (2020), 4194. https://doi.org/10.3390/app10124194 doi: 10.3390/app10124194
    [15] K. Ahmed, O. Farrok, M. M. Rahman, M. S. Ali, M. M. Haque, A. K. Azad, Proton exchange membrane hydrogen fuel cell as the grid connected power generator, Energies, 13 (2020), 6679. https://doi.org/10.3390/en13246679 doi: 10.3390/en13246679
    [16] K. Nikiforow, J. Pennanen, J. Ihonen, S. Uski, P. Koski, Power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell system with discrete ejector control. J. Power Sources, 381 (2018), 30–37. https://doi.org/10.1016/j.jpowsour.2018.01.090 doi: 10.1016/j.jpowsour.2018.01.090
    [17] A. S. Menesy, H. M. Sultan, A. Korashy, F. A. Banakhr, M. G. Ashmawy, S. Kamel, Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm, IEEE Access, 8 (2020), 31892–31909. https://doi.org/10.1109/ACCESS.2020.2973351 doi: 10.1109/ACCESS.2020.2973351
    [18] B. Sundén, Fuel cell types—Overview. In: Hydrogen, batteries and fuel cells, Cambridge, MA, USA: Academic Press, 2019,123–144. https://doi.org/10.1016/B978-0-12-816950-6.00008-7
    [19] A. Fathy, H. Rezk, Multi-verse optimizer for identifying the optimal parameters of PEMFC model, Energy, 143 (2018), 634–644. https://doi.org/10.1016/j.energy.2017.11.014 doi: 10.1016/j.energy.2017.11.014
    [20] H. Ashraf, S. O. Abdellatif, M. M. Elkholy, A. A. El-Fergany, Computational techniques based on artificial intelligence for extracting optimal parameters of PEMFCs: Survey and insights, Arch. Comput. Methods Eng., 29 (2022), 3943–3972. https://doi.org/10.1007/s11831-022-09721-y doi: 10.1007/s11831-022-09721-y
    [21] H. Rezk, A. G. Olabi, E. Sayed, T. Wilberforce, Role of metaheuristics in optimizing microgrids operating and management issues: A comprehensive review, Sustainability, 15 (2023), 4982. https://doi.org/10.3390/su15064982 doi: 10.3390/su15064982
    [22] Y. Zhu, N. Yousefi, Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm, Int. J. Hydrogen Energ., 46 (2021), 9541–9552. https://doi.org/10.1016/j.ijhydene.2020.12.107 doi: 10.1016/j.ijhydene.2020.12.107
    [23] D. Yousri, S. Mirjalili, J. A. T. Machado, S. B. Thanikanti, O. Elbaksawi, A. Fathy, Efficient fractional-order modified Harris hawks optimizer for proton exchange membrane fuel cell modeling, Eng. Appl. Artif. Intel., 100 (2021), 104193. https://doi.org/10.1016/j.engappai.2021.104193 doi: 10.1016/j.engappai.2021.104193
    [24] Z. Yuan, W. Wang, H. Wang, A. Yildizbasi, Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model, Energy Rep., 6 (2020), 1106–1117. https://doi.org/10.1016/j.egyr.2020.04.032 doi: 10.1016/j.egyr.2020.04.032
    [25] S. Bao, A. Ebadi, M. Toughani, J. Dalle, A. Maseleno, Baharuddin, et al., A new method for optimal parameters identification of a PEMFC using an improved version of monarch butterfly optimization algorithm, Int. J. Hydrogen Energ., 45 (2020), 17882–17892. https://doi.org/10.1016/j.ijhydene.2020.04.256 doi: 10.1016/j.ijhydene.2020.04.256
    [26] T. Wilberforce, H. Rezk, A. G. Olabi, E. I. Epelle, M. A. Abdelkareem, Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms, Energy, 262 (2023), 125530. https://doi.org/10.1016/j.energy.2022.125530 doi: 10.1016/j.energy.2022.125530
    [27] A. Fathy, M. A. Elaziz, A. G. Alharbi, A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell, Renew. Energ., 146 (2020), 1833–1845. https://doi.org/10.1016/j.renene.2019.08.046 doi: 10.1016/j.renene.2019.08.046
    [28] Z. Yuan, W. Wang, H. Wang, Optimal parameter estimation for PEMFC using modified monarch butterfly optimization, Int. J. Energ. Res., 44 (2020), 8427–8441. https://doi.org/10.1002/er.5527 doi: 10.1002/er.5527
    [29] Z. Yuan, W. Wang, H. Wang, N. Razmjooy, A new technique for optimal estimation of the circuit-based PEMFCs using developed Sunflower Optimization Algorithm, Energy Rep., 6 (2020), 662–671. https://doi.org/10.1016/j.egyr.2020.03.010 doi: 10.1016/j.egyr.2020.03.010
    [30] S. Sun, Y. Su, C. Yin, K. Jermsittiparsert, Optimal parameters estimation of PEMFCs model using converged moth search algorithm, Energy Rep., 6 (2020), 1501–1509. https://doi.org/10.1016/j.egyr.2020.06.002 doi: 10.1016/j.egyr.2020.06.002
    [31] R. Syah, L. A. Isola, J. W. G. Guerrero, W. Suksatan, D. Sunarsi, M. Elveny, et al., Optimal parameters estimation of the PEMFC using a balanced version of Water Strider Algorithm, Energy Rep., 7 (2021), 6876–6886. https://doi.org/10.1016/j.egyr.2021.10.057 doi: 10.1016/j.egyr.2021.10.057
    [32] H. Guo, H. Tao, S. Q. Salih, Z. M. Yaseen, Optimized parameter estimation of a PEMFC model based on improved Grass Fibrous Root Optimization Algorithm, Energy Rep., 6 (2020), 1510–1519. https://doi.org/10.1016/j.egyr.2020.06.001 doi: 10.1016/j.egyr.2020.06.001
    [33] M. A. Mossa, O. M. Kamel, H. M. Sultan, A. A. Z. Diab, Parameter estimation of PEMFC model based on Harris Hawks' optimization and atom search optimization algorithms, Neural Comput. Appl., 33 (2021), 5555–5570. https://doi.org/10.1007/s00521-020-05333-4 doi: 10.1007/s00521-020-05333-4
    [34] H. Rezk, S. Ferahtia, A. Djeroui, A. Chouder, A. Houari, M. Machmoum, et al., Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer, Energy, 239 (2022), 122096. https://doi.org/10.1016/j.energy.2021.122096 doi: 10.1016/j.energy.2021.122096
    [35] G. Zhang, C. Xiao, N. Razmjooy, Optimal parameter extraction of PEM fuel cells by meta-heuristics, Int. J. Ambient Energy, 43 (2020), 2510–2519. https://doi.org/10.1080/01430750.2020.1745276 doi: 10.1080/01430750.2020.1745276
    [36] W. Han, D. Li, D. Yu, H. Ebrahimian, Optimal parameters of PEM fuel cells using chaotic binary shark smell optimizer, Energy Sources Part A, 45 (2019), 7770–7784. https://doi.org/10.1080/15567036.2019.1676845 doi: 10.1080/15567036.2019.1676845
    [37] A. Fathy, T. S. Babu, M. A. Abdelkareem, H. Rezk, D. Yousri, Recent approach based heterogeneous comprehensive learning archimedes optimization algorithm for identifying the optimal parameters of different fuel cells, Energy, 248 (2022), 123587. https://doi.org/10.1016/j.energy.2022.123587 doi: 10.1016/j.energy.2022.123587
    [38] L. Blanco-Cocom, S. Botello-Rionda, L. Ordoñez, S. I. Valdez, Robust parameter estimation of a PEMFC via optimization based on probabilistic model building, Math. Comput. Simulat., 185 (2021), 218–237. https://doi.org/10.1016/j.matcom.2020.12.021 doi: 10.1016/j.matcom.2020.12.021
    [39] X. Lu, D. Kanghong, L. Guo, P. Wang, A. Yildizbasi, Optimal estimation of the proton exchange membrane fuel cell model parameters based on extended version of crow search algorithm, J. Clean. Prod., 272 (2020), 122640. https://doi.org/10.1016/j.jclepro.2020.122640 doi: 10.1016/j.jclepro.2020.122640
    [40] A. S. Menesy, H. M. Sultan, S. Kamel, Extracting model parameters of proton exchange membrane fuel cell using equilibrium optimizer algorithm, In: 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2020. https://doi.org/10.1109/REEPE49198.2020.9059219
    [41] B. Duan, Q. Cao, N. Afshar, Optimal parameter identification for the proton exchange membrane fuel cell using satin bowerbird optimizer, Int. J. Energ. Res., 43 (2019), 8623–8632. https://doi.org/10.1002/er.4859 doi: 10.1002/er.4859
    [42] A. Fathy, S. H. E. A. Aleem, H. Rezk, A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm, Int. J. Energ. Res., 45 (2021), 6922–6942. https://doi.org/10.1002/er.6282 doi: 10.1002/er.6282
    [43] Z. M. Isa, N. M. Nayan, M. H. Arshad, N. A. M. Kajaan, Optimizing PEMFC model parameters using ant lion optimizer and dragonfly algorithm: A comparative study, Int. J. Electr. Comput. Eng., 9 (2019), 5312–5320. http://dx.doi.org/10.11591/ijece.v9i6.pp5295-5303
    [44] Y. Song, X. Tan, S. Mizzi, Optimal parameter extraction of the proton exchange membrane fuel cells based on a new Harris Hawks optimization algorithm, Energy Sources Part A, 2020, 1–18. https://doi.org/10.1080/15567036.2020.1769230 doi: 10.1080/15567036.2020.1769230
    [45] Z. Yang, Q. Liu, L. Zhang, J. Dai, N. Razmjooy, Model parameter estimation of the PEMFCs using improved Barnacles Mating Optimization Algorithm, Energy, 212 (2020), 118738. https://doi.org/10.1016/j.energy.2020.118738 doi: 10.1016/j.energy.2020.118738
    [46] X. Sun, G. Wang, L. Xu, H. Yuan, N. Yousefi, Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved Archimedes optimization algorithm, Energy, 237 (2021), 121532. https://doi.org/10.1016/j.energy.2021.121532 doi: 10.1016/j.energy.2021.121532
    [47] H. M. Hasanien, M. A. M. Shaheen, R. A. Turky, M. H. Qais, S. Alghuwainem, S. Kamel, et al., Precise modeling of PEM fuel cell using a novel enhanced transient search optimization algorithm, Energy, 247 (2022), 123530. https://doi.org/10.1016/j.energy.2022.123530 doi: 10.1016/j.energy.2022.123530
    [48] M. Calasan, S. H. E. A. Aleem, H. M. Hasanien, Z. M. Alaas, Z. M. Ali, An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function, Energy, 264 (2023), 126165. https://doi.org/10.1016/j.energy.2022.126165 doi: 10.1016/j.energy.2022.126165
    [49] T. Wilberforce, A. G. Olabi, H. Rezk, A. Y. Abdelaziz, M. A. Abdelkareem, E. T. Sayed, Boosting the output power of PEM fuel cells by identifying best-operating conditions, Energ. Convers. Manage., 270 (2022), 116205. https://doi.org/10.1016/j.enconman.2022.116205 doi: 10.1016/j.enconman.2022.116205
    [50] H. Rezk, T. Wilberforce, E. T. Sayed, A. N. M. Alahmadi, A. G. Olabi, Finding best operational conditions of PEM fuel cell using adaptive neuro-fuzzy inference system and metaheuristics, Energy Rep., 8 (2022), 6181–6190. https://doi.org/10.1016/j.egyr.2022.04.061 doi: 10.1016/j.egyr.2022.04.061
    [51] T. Wilberforce, A. G. Olabi, D. Monopoli, M. Dassisti, E. T. Sayed, M. A. Abdelkareem, Design optimization of proton exchange membrane fuel cell bipolar plate, Energ. Convers. Manage., 277 (2023), 116586. https://doi.org/10.1016/j.enconman.2022.116586 doi: 10.1016/j.enconman.2022.116586
    [52] H. Ashraf, S. O. Abdellatif, M. M. Elkholy, A. A. El-Fergany, Honey badger optimizer for extracting the ungiven parameters of PEMFC model: Steady-state assessment, Energ. Convers. Manage., 258 (2022), 115521. https://doi.org/10.1016/j.enconman.2022.115521 doi: 10.1016/j.enconman.2022.115521
    [53] S. K. Eelsayed, A. Agwa, E. E. Elattar, A. El-Fergany, Steady-state modelling of pem fuel cells using gradientbased optimizer, Dyna, 96 (2021), 520–527. http://doi.org/10.6036/10099 doi: 10.6036/10099
    [54] M. Han, Z. Du, K. F. Yuen, H. Zhu, Y. Li, Q. Yuan, Walrus optimizer: A novel nature-inspired metaheuristic algorithm, Expert Syst. Appl., 239 (2024), 122413. https://doi.org/10.1016/j.eswa.2023.122413 doi: 10.1016/j.eswa.2023.122413
    [55] S. Kaur, L. K. Awasthi, A. L. Sangal, G. Dhiman, Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization, Eng. Appl. Artif. Intel., 90 (2020), 103541. https://doi.org/10.1016/j.engappai.2020.103541 doi: 10.1016/j.engappai.2020.103541
    [56] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [57] Q. Askari, M. Saeed, I. Younas, Heap-based optimizer inspired by corporate rank hierarchy for global optimization, Expert Syst. Appl., 161 (2020), 113702. https://doi.org/10.1016/j.eswa.2020.113702 doi: 10.1016/j.eswa.2020.113702
    [58] M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338. https://doi.org/10.1016/j.eswa.2020.113338 doi: 10.1016/j.eswa.2020.113338
    [59] M. Dehghani, P. Trojovský, Osprey optimization algorithm: A new bioinspired metaheuristic algorithm for solving engineering optimization problems, Front. Mech. Eng., 8 (2023), 1126450. https://doi.org/10.3389/fmech.2022.1126450 doi: 10.3389/fmech.2022.1126450
    [60] S. I. Seleem, H. M. Hasanie, A. A. El-Fergany, Equilibrium optimizer for parameter extraction of a fuel cell dynamic model, Renew. Energ., 169 (2021), 117–128. https://doi.org/10.1016/j.renene.2020.12.131 doi: 10.1016/j.renene.2020.12.131
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(957) PDF downloads(68) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog