The evaluation of compact heat density gadgets requires effective measures for heat transportation. Enhancement in thermal transportation of hybrid nanofluids comprising of water plus ethyl glycol with the dispersion of three different nano-entities is considered. The fluids are transported through a porous medium over a permeable elongating sheet. Water and ethyl glycol are $ (50 \% -50 \%) $. The three cases for hybrid species consist of (a) Graphene oxide (Go) + AA7072, (b) Go + Molybdenum sulfide, (c) Go + silver. The volume fraction of nano-entities is greater than 0.3%. It is presumed that the fluid flow is non-Newtonian. Two on-Newtonian fluids models namely Maxwell fluid and Casson fluid are taken into consideration to present comparative behavior in the existence of the nano-particle mixture. The leading equations are altered into ordinary differential form. A robust numerical procedure embraced with Runge-Kutta methodology and shooting strategy is employed to attain results for the dependent physical quantities. It is noticed that the velocity is diminished against the magnetic field parameter and porosity parameter. The temperature for case (a) Go + AA7072 is the highest and it is lowest for case (c) Go + silver. The temperature and velocity functions of both the fluids (Casson and Maxwell fluids) are incremented with larger inputs of hybrid nano-species. The results can find applications for the better performance of electronic equipment, and heat exchangers.
Citation: Yasir Khan, Sohaib Abdal, Sajjad Hussain, Imran Siddique. Numerical simulation for thermal enhancement of $ H_2O $ + Ethyl Glycol base hybrid nanofluid comprising $ GO + (Ag, AA7072, MoS_2) $ nano entities due to a stretched sheet[J]. AIMS Mathematics, 2023, 8(5): 11221-11237. doi: 10.3934/math.2023568
The evaluation of compact heat density gadgets requires effective measures for heat transportation. Enhancement in thermal transportation of hybrid nanofluids comprising of water plus ethyl glycol with the dispersion of three different nano-entities is considered. The fluids are transported through a porous medium over a permeable elongating sheet. Water and ethyl glycol are $ (50 \% -50 \%) $. The three cases for hybrid species consist of (a) Graphene oxide (Go) + AA7072, (b) Go + Molybdenum sulfide, (c) Go + silver. The volume fraction of nano-entities is greater than 0.3%. It is presumed that the fluid flow is non-Newtonian. Two on-Newtonian fluids models namely Maxwell fluid and Casson fluid are taken into consideration to present comparative behavior in the existence of the nano-particle mixture. The leading equations are altered into ordinary differential form. A robust numerical procedure embraced with Runge-Kutta methodology and shooting strategy is employed to attain results for the dependent physical quantities. It is noticed that the velocity is diminished against the magnetic field parameter and porosity parameter. The temperature for case (a) Go + AA7072 is the highest and it is lowest for case (c) Go + silver. The temperature and velocity functions of both the fluids (Casson and Maxwell fluids) are incremented with larger inputs of hybrid nano-species. The results can find applications for the better performance of electronic equipment, and heat exchangers.
[1] | N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, Rheol. Disperse Syst., 1959. |
[2] | T. Salahuddin, M. Arshad, N. Siddique, A. Alqahtani, M. Malik, Thermophyical properties and internal energy change in Casson fluid flow along with activation energy, Ain Shams Eng. J., 11 (2020), 1355–1365. https://doi.org/10.1016/j.asej.2020.02.011 doi: 10.1016/j.asej.2020.02.011 |
[3] | A. S. Mittal, H. R. Patel, Influence of thermophoresis and brownian motion on mixed convection two dimensional MHD Casson fluid flow with non-linear radiation and heat generation, Physica A, 537 (2020), 122710. https://doi.org/10.1016/j.physa.2019.122710 doi: 10.1016/j.physa.2019.122710 |
[4] | T. Salahuddin, N. Siddique, M. Arshad, I. Tlili, Internal energy change and activation energy effects on Casson fluid, AIP Adv., 10 (2020), 025009. https://doi.org/10.1016/10.1063/1.5140349 doi: 10.1016/10.1063/1.5140349 |
[5] | M. Aneja, A. Chandra, S. Sharma, Natural convection in a partially heated porous cavity to Casson fluid, Int. Commun. Heat Mass, 114 (2020), 104555. https://doi.org/10.1016/j.icheatmasstransfer.2020.104555 doi: 10.1016/j.icheatmasstransfer.2020.104555 |
[6] | S. Abdal, S. Hussain, I. Siddique, A. Ahmadian, M. Ferrara, On solution existence of MHD Casson nanofluid transportation across an extending cylinder through porous media and evaluation of priori bounds, Sci. Rep., 11 (2021), 1–16. https://doi.org/10.20944/preprints202012.0168.v1 doi: 10.20944/preprints202012.0168.v1 |
[7] | R. Delhibabu, V. Yuvaraj, J. A. Nisha, K. K. Vendhan, Analytical study of steady magneto hydrodynamic two-dimensional flow between parallel porous plates with an angular velocity to an inclined magnetic field, In: AIP Conf. Proc., 2464 (2022), AIP Publishing LLC, 050001. |
[8] | K. Ramesh, A. Riaz, Z. A. Dar, Simultaneous effects of mhd and joule heating on the fundamental flows of a Casson liquid with slip boundaries, Propuls. Power Res., 10 (2021), 118–129. https://doi.org/10.1016/j.jppr.2021.05.002 doi: 10.1016/j.jppr.2021.05.002 |
[9] | K. Muhammad, T. Hayat, A. Alsaedi, B. Ahmad, S. Momani, Mixed convective slip flow of hybrid nanofluid (MWCNTs+ Cu+ Water), nanofluid (MWCNTs+ Water) and base fluid (Water): A comparative investigation, J. Therma. Anal. Calorim., 143 (2021), 1523–1536. https://doi.org/10.1007/s10973-020-09577-z doi: 10.1007/s10973-020-09577-z |
[10] | B. Souayeh, K. Ramesh, N. Hdhiri, E. Yasin, M. W. Alam, K. Alfares, A. Yasin, Heat transfer attributes of gold-silver-blood hybrid nanomaterial flow in an emhd peristaltic channel with activation energy, Nanomaterials, 12 (2022), 1615. |
[11] | D. K. Mandal, N. Biswas, N. K. Manna, R. S. R. Gorla, A. J. Chamkha, Magneto-hydrothermal performance of hybrid nanofluid flow through a non-darcian porous complex wavy enclosure, Eur. Phys. J. Spec. Top., 2022, 1–18. |
[12] | M. K. Mondal, N. Biswas, A. Datta, B. K. Sarkar, N. K. Manna, Positional impacts of partial wall translations on hybrid nanofluid flow in porous media: Real Coded Genetic Algorithm (RCGA), Int. J. Mech. Sci., 217 (2022), 107030. https://doi.org/10.1016/j.ijmecsci.2021.107030 doi: 10.1016/j.ijmecsci.2021.107030 |
[13] | N. Biswas, M. K. Mondal, N. K. Manna, D. K. Mandal, A. J. Chamkha, Implementation of partial magnetic fields to magneto-thermal convective systems operated using hybrid-nanoliquid and porous media, P. I. Mech. Eng. C-J. Mech., 236 (2022), 5687–5704. https://doi.org/10.1177/09544062211060168 doi: 10.1177/09544062211060168 |
[14] | D. K. Mandal, M. K. Mondal, N. Biswas, N. K. Manna, R. S. R. Gorla, A. J. Chamkha, Nanofluidic thermal-fluid transport in a split-driven porous system working under a magnetic environment, Int. J. Numer. Method. H., 32 (2021), 1–14. https://doi.org/10.1108/HFF-08-2021-0555 doi: 10.1108/HFF-08-2021-0555 |
[15] | D. K. Mandal, N. Biswas, N. K. Manna, R. S. R. Gorla, A. J. Chamkha, Role of surface undulation during mixed bioconvective nanofluid flow in porous media in presence of oxytactic bacteria and magnetic fields, Int. J. Mech. Sci., 211 (2021), 106778. |
[16] | D. Chatterjee, N. Biswas, N. K. Manna, S. Sarkar, Effect of discrete heating-cooling on magneto-thermal-hybrid nanofluidic convection in cylindrical system, Int. J. Mech. Sci., 238 (2023), 107852. |
[17] | N. K. Manna, N. Biswas, D. K. Mandal, U. Sarkar, H. F. Öztop, N. Abu-Hamdeh, Impacts of heater-cooler position and lorentz force on heat transfer and entropy generation of hybrid nanofluid convection in quarter-circular cavity, Int. J. Numer. Method. H., 2022. |
[18] | D. K. Mandal, N. Biswas, N. K. Manna, D. K. Gayen, R. S. R. Gorla, A. J. Chamkha, Thermo-fluidic transport process in a novel M-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: Application of artificial neural network (ANN), Phys. Fluids, 34 (2022), 033608. https://doi.org/10.1063/5.0082942 doi: 10.1063/5.0082942 |
[19] | S. Aman, Q. Al-Mdallal, I. Khan, Heat transfer and second order slip effect on MHD flow of fractional maxwell fluid in a porous medium, J. King Saud Unive. Sci., 32 (2020), 450–458. https://doi.org/10.1016/j.jksus.2018.07.007 doi: 10.1016/j.jksus.2018.07.007 |
[20] | M. Riaz, N. Iftikhar, A comparative study of heat transfer analysis of MHD maxwell fluid in view of local and nonlocal differential operators, Chaos Soliton. Fract., 132 (2020), 109556. https://doi.org/10.1016/j.chaos.2019.109556 doi: 10.1016/j.chaos.2019.109556 |
[21] | W. Na, N. A. Shah, I. Tlili, I. Siddique, Maxwell fluid flow between vertical plates with damped shear and thermal flux: Free convection, Chinese J. Phys., 65 (2020), 367–376. https://doi.org/10.1016/j.cjph.2020.03.005 doi: 10.1016/j.cjph.2020.03.005 |
[22] | S. Shehzad, F. Mabood, A. Rauf, I. Tlili, Forced convective maxwell fluid flow through rotating disk under the thermophoretic particles motion, Int. Commun. Heat Mass, 116 (2020), 104693. https://doi.org/10.1016/j.icheatmasstransfer.2020.104693 doi: 10.1016/j.icheatmasstransfer.2020.104693 |
[23] | D. Habib, N. Salamat, M. Ahsan, S. Abdal, I. Siddique, B. Ali, Significance of bioconvection and mass transpiration for mhd micropolar maxwell nanofluid flow over an extending sheet, Wave. Random Complex, 2022, 1–15. |
[24] | W. Wang, M. M. Jaradat, I. Siddique, A. A. A. Mousa, S. Abdal, Z. Mustafa, et al., On thermal distribution for darcy-forchheimer flow of maxwell sutterby nanofluids over a radiated extending surface, Nanomaterials, 12 (2022), 1834. https://doi.org/10.3390/nano12111834 doi: 10.3390/nano12111834 |
[25] | S. Abdal, I. Siddique, A. Ahmadian, S. Salahshour, M. Salimi, Enhanced heat transportation for bioconvective motion of maxwell nanofluids over a stretching sheet with Cattaneo-Christov flux, Mechanics Time-Depend. Mat., 2022, 1–16. |
[26] | S. Abdal, I. Siddique, D. Alrowaili, Q. Al-Mdallal, S. Hussain, Exploring the magnetohydrodynamic stretched flow of williamson maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy, Sci. Rep., 12 (2022), 1–12. |
[27] | U. Habib, S. Abdal, I. Siddique, R. Ali, A comparative study on micropolar, williamson, maxwell nanofluids flow due to a stretching surface in the presence of bioconvection, double diffusion and activation energy, Int. Commun. Heat Mass, 127 (2021), 105551. https://doi.org/10.1016/j.icheatmasstransfer.2021.105551 doi: 10.1016/j.icheatmasstransfer.2021.105551 |
[28] | B. Mahanthesh, N. S. Shashikumar, G. Lorenzini, Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk, J. Therm. Anal. Calorim., 2020, 1–9. |
[29] | T. Javed, M. Faisal, I. Ahmad, Dynamisms of solar radiation and prescribed heat sources on bidirectional flow of magnetized eyring-powell nanofluid, Case Stud. Therm. Eng., 21 (2020), 100689. https://doi.org/10.1016/j.csite.2020.100689 doi: 10.1016/j.csite.2020.100689 |
[30] | M. Seyednezhad, M. Sheikholeslami, J. A. Ali, A. Shafee, T. K. Nguyen, Nanoparticles for water desalination in solar heat exchanger, J. Therm. Anal. Calorim., 139 (2020), 1619–1636. https://doi.org/10.1007/s10973-019-08634-6 doi: 10.1007/s10973-019-08634-6 |
[31] | S. Nielsen, K. Hansen, R. Lund, D. Moreno, Unconventional excess heat sources for district heating in a national energy system context, Energies, 13 (2020), 5068. https://doi.org/10.3390/en13195068 doi: 10.3390/en13195068 |
[32] | B. Xiao, W. Deng, Z. Ma, S. He, L. He, X. Li, et al., Experimental investigation of loop heat pipe with a large squared evaporator for multi-heat sources cooling, Renew. Energ., 147 (2020), 239–248. https://doi.org/10.1016/j.renene.2019.08.142 doi: 10.1016/j.renene.2019.08.142 |
[33] | A. Saha, A. Chakravarty, K. Ghosh, N. Biswas, N. K. Manna, Role of obstructing block on enhanced heat transfer in a concentric annulus, Wave. Random Complex, 2022, 1–25. |
[34] | A. Saha, N. K. Manna, K. Ghosh, N. Biswas, Analysis of geometrical shape impact on thermal management of practical fluids using square and circular cavities, Eur. Phys. J. Spec. Top., 2022, 1–29. |
[35] | M. Ferdows, M. Shamshuddin, S. Salawu, K. Zaimi, Numerical simulation for the steady nanofluid boundary layer flow over a moving plate with suction and heat generation, SN Appl. Sci., 3 (2021), 1–11. https://doi.org/10.1007/s42452-021-04224-0 doi: 10.1007/s42452-021-04224-0 |
[36] | K. Gangadhar, T. Kannan, G. Sakthivel, K. DasaradhaRamaiah, Unsteady free convective boundary layer flow of a nanofluid past a stretching surface using a spectral relaxation method, Int. J. Ambient Energy, 41 (2020), 609–616. https://doi.org/10.1080/01430750.2018.1472648 doi: 10.1080/01430750.2018.1472648 |
[37] | T. Kebede, E. Haile, G. Awgichew, T. Walelign, Heat and mass transfer in unsteady boundary layer flow of williamson nanofluids, J. Appl. Math., 2020 (2020). https://doi.org/10.1155/2020/1890972 |
[38] | H. Berrehal, F. Mabood, O. Makinde, Entropy-optimized radiating water/FCNTs nanofluid boundary-layer flow with convective condition, Eur. Phys. J. Plus, 135 (2020), 1–21. |
[39] | A. Shafee, M. Sheikholeslami, M. Jafaryar, H. Babazadeh, Hybrid nanoparticle swirl flow due to presence of turbulator within a tube, J. Therm. Anal. Calorim., 144 (2021), 983–991. |
[40] | U. Khan, A. Zaib, Z. Shah, D. Baleanu, E. S. M. Sherif, Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux, J. Mater. Res. Technol., 9 (2020), 3699–3709. |
[41] | B. Gireesha, M. Umeshaiah, B. Prasannakumara, N. Shashikumar, M. Archana, Impact of nonlinear thermal radiation on magnetohydrodynamic three dimensional boundary layer flow of jeffrey nanofluid over a nonlinearly permeable stretching sheet, Physica A, 549 (2020), 124051. https://doi.org/10.1016/j.physa.2019.124051 doi: 10.1016/j.physa.2019.124051 |
[42] | S. Reza-E-Rabbi, S. F. Ahmmed, S. Arifuzzaman, T. Sarkar, M. S. Khan, Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles, Eng. Sci. Technol., 23 (2020), 605–617. https://doi.org/10.1016/J.JESTCH.2019.07.006 doi: 10.1016/J.JESTCH.2019.07.006 |
[43] | Z. Ullah, G. Zaman, A. Ishak, Magnetohydrodynamic tangent hyperbolic fluid flow past a stretching sheet, Chinese J. Phys., 66 (2020), 258–268. |
[44] | L. Ali, X. Liu, B. Ali, S. Mujeed, S. Abdal, S. A. Khan, Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet, Coatings, 10 (2020), 170. https://doi.org/10.3390/coatings10020170 doi: 10.3390/coatings10020170 |
[45] | F. Ahmad, S. Abdal, H. Ayed, S. Hussain, S. Salim, A. O. Almatroud, The improved thermal efficiency of maxwell hybrid nanofluid comprising of graphene oxide plus silver/kerosene oil over stretching sheet, Case Stud. Therm. Eng., 27 (2021), 101257. |
[46] | B. K. Siddiqui, S. Batool, Q. M. ul Hassan, M. Malik, Irreversibility analysis in the boundary layer mhd two dimensional flow of maxwell nanofluid over a melting surface, Ain Shams Engi. J., 2021. https://doi.org/10.1016/j.asej.2021.01.017 |
[47] | M. K. A. Mohamed, S. H. M. Yasin, M. Z. Salleh, H. T. Alkasasbeh, MHD stagnation point flow and heat transfer over a stretching sheet in a blood-based Casson ferrofluid with newtonian heating, J. Adv. Res. Fluid Mech. Therm. Sci., 82 (2021), 1–11. https://doi.org/10.37934/arfmts.82.1.111 doi: 10.37934/arfmts.82.1.111 |
[48] | S. Abdal, B. Ali, S. Younas, L. Ali, A. Mariam, Thermo-diffusion and multislip effects on mhd mixed convection unsteady flow of micropolar nanofluid over a shrinking/stretching sheet with radiation in the presence of heat source, Symmetry, 12 (2020), 49. https://doi.org/10.3390/sym12010049 doi: 10.3390/sym12010049 |
[49] | S. Abdal, I. Siddique, S. M. Eldin, M. Bilal, S. Hussain, Significance of thermal radiation and bioconvection for williamson nanofluid transportation owing to cone rotation, Sci. Rep., 12 (2022), 22646. |
[50] | I. S. U. Din, I. Siddique, R. Ali, F. Jarad, S. Abdal, S. Hussain, On heat and flow characteristics of carreau nanofluid and tangent hyperbolic nanofluid across a wedge with slip effects and bioconvection, Case Stud. Therm. Eng., 39 (2022), 102390. |
[51] | I. Siddique, U. Habib, R. Ali, S. Abdal, N. Salamat, Bioconvection attribution for effective thermal transportation of upper convicted maxwell nanofluid flow due to an extending cylindrical surface, Int. Commun. Heat Mass, 137 (2022), 106239. https://doi.org/10.1016/j.icheatmasstransfer.2022.106239 doi: 10.1016/j.icheatmasstransfer.2022.106239 |
[52] | B. Ali, S. Hussain, M. Shafique, D. Habib, G. Rasool, Analyzing the interaction of hybrid base liquid $C_2H_6O_2$-$H_2O$ with hybrid nano-material $Ag$-$MoS_2$ for unsteady rotational flow referred to an elongated surface using modified buongiorno's model: FEM simulation, Math. Comput. Simul., 190 (2021), 57–74. https://doi.org/10.1016/j.matcom.2021.05.012 doi: 10.1016/j.matcom.2021.05.012 |
[53] | A. U. Yahya, N. Salamat, W. H. Huang, I. Siddique, S. Abdal, S. Hussain, Thermal charactristics for the flow of williamson hybrid nanofluid ($MoS_2$+ $ZnO$) based with engine oil over a streched sheet, Case Stud. Therm. Eng., 26 (2021), 101196. https://doi.org/10.1016/j.csite.2021.101196 doi: 10.1016/j.csite.2021.101196 |
[54] | B. Ali, R. A. Naqvi, D. Hussain, O. M. Aldossary, S. Hussain, Magnetic rotating flow of a hybrid nano-materials $Ag$-$MoS_2$ and $Go$-$MoS_2$ in $C_2H_6O_2$-$H_2O$ hybrid base fluid over an extending surface involving activation energy: FE simulation, Mathematics, 8 (2020), 1730. https://doi.org/10.3390/math8101730 doi: 10.3390/math8101730 |
[55] | A. U. Yahya, I. Siddique, F. Jarad, N. Salamat, S. Abdal, Y. Hamed, et al., On the enhancement of thermal transport of kerosene oil mixed $TiO_2$ and $SiO_2$ across riga wedge, Case Stud. Therm. Eng., 34 (2022), 102025. |
[56] | L. Ali, Y. J. Wu, B. Ali, S. Abdal, S. Hussain, The crucial features of aggregation in $TiO_2$-water nanofluid aligned of chemically comprising microorganisms: A FEM approach, Comput. Math. Appl., 123 (2022), 241–251. https://doi.org/10.1016/j.camwa.2022.08.028 doi: 10.1016/j.camwa.2022.08.028 |
[57] | R. S. R. Gorla, I. Sidawi, Free convection on a vertical stretching surface with suction and blowing, Appl. Sci. Res., 52 (1994), 247–257. https://doi.org/10.1007/BF00853952 doi: 10.1007/BF00853952 |
[58] | W. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass, 53 (2010), 2477–2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 doi: 10.1016/j.ijheatmasstransfer.2010.01.032 |
[59] | C. Wang, Free convection on a vertical stretching surface, ZAMM-J. Appl. Math. Mech., 69 (1989), 418–420. https://doi.org/10.1002/zamm.19890691115 doi: 10.1002/zamm.19890691115 |
[60] | S. U. Devi, S. A. Devi, Heat transfer enhancement of $Cu$-$Al_2O_3$ water hybrid nanofluid flow over a stretching sheet, J. Nigerian Math. Soc., 36 (2017), 419–433. |