Research article Special Issues

Numerical analysis of Darcy resistant Sutterby nanofluid flow with effect of radiation and chemical reaction over stretching cylinder: induced magnetic field

  • Received: 07 December 2022 Revised: 13 February 2023 Accepted: 22 February 2023 Published: 09 March 2023
  • MSC : 76A05, 76W99, 80M25, 93A30

  • In this analysis, Sutterby nanofluid flow with an induced magnetic field at a nonlinear stretching cylinder is deliberated. The effects of variable thermal conductivity, Darcy resistance, and viscous dissipation are discussed. Thermal radiation and chemical reaction are considered to analyze the impact on the nonlinear stretching cylinder. The governing model of the flow problem is developed under the boundary layer approximation in terms of partial differential equations. Partial differential equations are transformed into ordinary differential equations by performing the suitable transformations. A numerical structure is applied to explain ordinary differential equations. The impact of each governing physical parameters on the temperature, concentration, skin friction, Sherwood, and Nusselt number is presented in graphs and tabular form. Increment in Prandtl number, which declined the curves of the temperature function. Temperature declined because the Prandtl number declined the thermal thickness as well as reduce the temperature of the fluid. Temperature curves showed improvement as Eckert number values increased because the Eckert number is a ratio of kinetic energy to the specific enthalpy difference between the wall and the fluid. As a result, increasing the Eckert number causes the transformation of kinetic energy into internal energy via work done against viscous fluid stresses.

    Citation: Nadeem Abbas, Wasfi Shatanawi, Fady Hasan, Taqi A. M. Shatnawi. Numerical analysis of Darcy resistant Sutterby nanofluid flow with effect of radiation and chemical reaction over stretching cylinder: induced magnetic field[J]. AIMS Mathematics, 2023, 8(5): 11202-11220. doi: 10.3934/math.2023567

    Related Papers:

  • In this analysis, Sutterby nanofluid flow with an induced magnetic field at a nonlinear stretching cylinder is deliberated. The effects of variable thermal conductivity, Darcy resistance, and viscous dissipation are discussed. Thermal radiation and chemical reaction are considered to analyze the impact on the nonlinear stretching cylinder. The governing model of the flow problem is developed under the boundary layer approximation in terms of partial differential equations. Partial differential equations are transformed into ordinary differential equations by performing the suitable transformations. A numerical structure is applied to explain ordinary differential equations. The impact of each governing physical parameters on the temperature, concentration, skin friction, Sherwood, and Nusselt number is presented in graphs and tabular form. Increment in Prandtl number, which declined the curves of the temperature function. Temperature declined because the Prandtl number declined the thermal thickness as well as reduce the temperature of the fluid. Temperature curves showed improvement as Eckert number values increased because the Eckert number is a ratio of kinetic energy to the specific enthalpy difference between the wall and the fluid. As a result, increasing the Eckert number causes the transformation of kinetic energy into internal energy via work done against viscous fluid stresses.



    加载中


    [1] J. L. Sutterby, Laminar converging flow of dilute polymer solutions in conical sections. II, Trans. Soc. Rheol., 9 (1965), 227–241. https://doi.org/10.1122/1.549024 doi: 10.1122/1.549024
    [2] T. Fujii, O. Miyatake, M. Fujii, H. Tanaka, K. Murakami, Natural convective heat-transfer from a vertical surface of uniform heat flux to a non-newtonian sutterby fluid, Int. J. Heat Mass Transfer, 17 (1974), 149–154. https://doi.org/10.1016/0017-9310(74)90048-9 doi: 10.1016/0017-9310(74)90048-9
    [3] A. Shima, T. Tsujino, K. Yokoyama, The behavior of bubbles in Sutterby model fluids, Rep. Inst. High Speed Mech. Tohoku Univ., 49 (1984), 39–52.
    [4] R. L. Batra, M. Eissa, Laminar forced convection heat transfer of a Sutterby model fluid in an eccentric annulus, Mech. Res. Commun., 21 (1994), 147–152. https://doi.org/10.1016/0093-6413(94)90087-6 doi: 10.1016/0093-6413(94)90087-6
    [5] S. Ur Rehman, N. A. Mir, M. S. Alqarni, M. Farooq, M. Y. Malik, Analysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory, Microsyst. Technol., 25 (2019), 3365–3373. https://doi.org/10.1007/s00542-019-04522-z doi: 10.1007/s00542-019-04522-z
    [6] T. Sajid, S. Tanveer, Z. Sabir, J. L. G. Guirao, Impact of activation energy and temperature-dependent heat source/sink on maxwell-Sutterby fluid, Math. Probl. Eng., 2020 (2020), 1–15. https://doi.org/10.1155/2020/5251804 doi: 10.1155/2020/5251804
    [7] H. Waqas, U. Farooq, M. M. Bhatti, S. Hussain, Magnetized bioconvection flow of Sutterby fluid characterized by the suspension of nanoparticles across a wedge with activation energy, J. Appl. Math. Mech., 101 (2021), e202000349. https://doi.org/10.1002/zamm.202000349 doi: 10.1002/zamm.202000349
    [8] M. V. S. Rao, K. Gangadhar, P. R. S. Babu, Sutterby fluid flow past a stretching sheet embedded in a porous media with viscous dissipation, Int. J. Ambient Energy, 43 (2022), 5247–5257. https://doi.org/10.1080/01430750.2021.1945491 doi: 10.1080/01430750.2021.1945491
    [9] J. Akram, N. S. Akbar, D. Tripathi, Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a Sutterby fluid model, Microvasc. Res., 145 (2022), 104435. https://doi.org/10.1016/j.mvr.2022.104435 doi: 10.1016/j.mvr.2022.104435
    [10] A. U. Awan, S. A. A. Shah, H. Waqas, Thermally radioactive bioconvection of magnetized Sutterby nanofluid over a stretching cylinder, Res. Square, 2022. https://doi.org/10.21203/rs.3.rs-1361392/v1
    [11] T. Salahuddin, Z. Ali, M. Awais, M. Khan, M. Altanji, A flow behavior of Sutterby nanofluid near the catalytic parabolic surface, Int. Commun. Heat Mass Transfer, 131 (2022), 105821. https://doi.org/10.1016/j.icheatmasstransfer.2021.105821 doi: 10.1016/j.icheatmasstransfer.2021.105821
    [12] J. Bouslimi, A. A. Alkathiri, T. M. Althagafi, W. Jamshed, M. R. Eid, Thermal properties, flow and comparison between Cu and Ag nanoparticles suspended in sodium alginate as Sutterby nanofluids in solar collector, Case Stud. Therm. Eng., 39 (2022), 102358. https://doi.org/10.1016/j.csite.2022.102358 doi: 10.1016/j.csite.2022.102358
    [13] W. Jamshed, M. R. Eid, R. Safdar, A. A. Pasha, S. S. P. Mohamed Isa, M. Adil, et al., Solar energy optimization in solar-HVAC using Sutterby hybrid nanofluid with Smoluchowski temperature conditions: a solar thermal application, Sci. Rep., 12 (2022), 11484. https://doi.org/10.1038/s41598-022-15685-7 doi: 10.1038/s41598-022-15685-7
    [14] T. Sajid, W. Jamshed, F. Shahzad, E. K. Akgül, K. S. Nisar, M. R. Eid, Impact of gold nanoparticles along with Maxwell velocity and Smoluchowski temperature slip boundary conditions on fluid flow: Sutterby model, Chin. J. Phys., 77 (2022), 1387–1404. https://doi.org/10.1016/j.cjph.2021.11.011 doi: 10.1016/j.cjph.2021.11.011
    [15] F. Shahzad, J. Bouslimi, S. Gouadria, W. Jamshed, M. R. Eid, R. Safdar, et al., Hydrogen energy storage optimization in solar-HVAC using Sutterby nanofluid via Koo-Kleinstreuer and Li (KKL) correlations model: a solar thermal application, Int. J. Hydrogen Energy, 47 (2022), 18877–18891. https://doi.org/10.1016/j.ijhydene.2022.04.039 doi: 10.1016/j.ijhydene.2022.04.039
    [16] J. Bouslimi, A. A. Alkathiri, A. N. Alharbi, W. Jamshed, M. R. Eid, M. L. Bouazizi, Dynamics of convective slippery constraints on hybrid radiative Sutterby nanofluid flow by Galerkin finite element simulation, Nanotechnol. Rev., 11 (2022), 1219–1236. https://doi.org/10.1515/ntrev-2022-0070 doi: 10.1515/ntrev-2022-0070
    [17] K. B. Pavlov, Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface, Magnetohydrodynamics, 4 (1974), 146–147.
    [18] H. I. Andersson, MHD flow of a viscoelastic fluid past a stretching surface, Acta Mech., 95 (1992), 227–230. https://doi.org/10.1007/BF01170814 doi: 10.1007/BF01170814
    [19] H. S. Takhar, A. J. Chamkha, G. Nath, Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species, Int. J. Eng. Sci., 38 (2000), 1303–1314. https://doi.org/10.1016/S0020-7225(99)00079-8 doi: 10.1016/S0020-7225(99)00079-8
    [20] A. Gailitis, O. Lielausis, S. Dement'ev, E. Platacis, A. Cifersons, G. Gerbeth, et al., Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility, Phys. Rev. Lett., 84 (2000), 4365. https://doi.org/10.1103/PhysRevLett.84.4365 doi: 10.1103/PhysRevLett.84.4365
    [21] F. M. Ali, R. Nazar, N. M. Arifin, I. Pop, MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field, Appl. Math. Mech., 32 (2011), 409–418. https://doi.org/10.1007/s10483-011-1426-6 doi: 10.1007/s10483-011-1426-6
    [22] N. Sandeep, C. Sulochana, I. L. Animasaun, Stagnation-point flow of a Jeffrey nanofluid over a stretching surface with induced magnetic field and chemical reaction, Int. J. Eng. Res. Afr., 20 (2016), 93–111. https://doi.org/10.4028/www.scientific.net/JERA.20.93 doi: 10.4028/www.scientific.net/JERA.20.93
    [23] A. M. Al-Hanaya, F. Sajid, N. Abbas, S. Nadeem, Effect of SWCNT and MWCNT on the flow of micropolar hybrid nanofluid over a curved stretching surface with induced magnetic field, Sci. Rep., 10 (2020), 1–18. https://doi.org/10.1038/s41598-020-65278-5 doi: 10.1038/s41598-020-65278-5
    [24] M. N. Khan, S. Nadeem, N. Abbas, A. M. Zidan, Heat and mass transfer investigation of a chemically reactive Burgers nanofluid with an induced magnetic field over an exponentially stretching surface, Proc. Inst. Mech. Eng. Part E, 235 (2021), 2189–2200. https://doi.org/10.1177/09544089211034941 doi: 10.1177/09544089211034941
    [25] M. Amjad, I. Zehra, S. Nadeem, N. Abbas, A. Saleem, A. Issakhov, Influence of Lorentz force and induced magnetic field effects on Casson micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region, Surf. Int., 21 (2020), 100766. https://doi.org/10.1016/j.surfin.2020.100766 doi: 10.1016/j.surfin.2020.100766
    [26] M. I. Anwar, H. Firdous, A. Al Zubaidi, N. Abbas, S. Nadeem, Computational analysis of induced magnetohydrodynamic non-Newtonian nanofluid flow over nonlinear stretching sheet, Prog. React. Kinet. Mech., 47 (2022). https://doi.org/10.1177/14686783211072712
    [27] T. A. Shatnawi, N. Abbas, W. Shatanawi, Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet, AIMS Math., 7 (2022), 20545–20564. https://doi.org/10.3934/math.20221126 doi: 10.3934/math.20221126
    [28] N. Abbas, S. Nadeem, M. N. Khan, Numerical analysis of unsteady magnetized micropolar fluid flow over a curved surface, J. Therm. Anal. Calorim., 147 (2022), 6449–6459. https://doi.org/10.1007/s10973-021-10913-0 doi: 10.1007/s10973-021-10913-0
    [29] Y. Nawaz, M. S. Arif, K. Abodayeh, M. Bibi, Finite element method for non-Newtonian radiative Maxwell nanofluid flow under the influence of heat and mass transfer, Energies, 15(2022), 4713. https://doi.org/10.3390/en15134713 doi: 10.3390/en15134713
    [30] Y. Nawaz, M. S. Arif, K. Abodayeh, A third-order two-stage numerical scheme for fractional Stokes problems: A comparative computational study, J. Comput. Nonlinear Dyna., 17 (2022), 101004. https://doi.org/10.1115/1.4054800 doi: 10.1115/1.4054800
    [31] Y. Nawaz, M. S. Arif, K. Abodayeh, Predictor-corrector scheme for electrical magnetohydrodynamic (MHD) Casson nanofluid flow: a computational study, Appl. Sci., 13 (2023), 1209. https://doi.org/10.3390/app13021209 doi: 10.3390/app13021209
    [32] N. Shukla, P. Rana, O. A. Beg, B. Singha, Effect of chemical reaction and viscous dissipation on MHD nanofluid, AIP Conf. Proc., 1802 (2017), 020015. https://doi.org/10.1063/1.4973265 doi: 10.1063/1.4973265
    [33] J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer, 128 (2005), 240–250. https://doi.org/10.1115/1.2150834 doi: 10.1115/1.2150834
    [34] K. Zaimi, A. Ishak, I. Pop, Unsteady flow due to a contracting cylinder in a nanofluid using Buongiorno's model, Int. J. Heat Mass Transfer, 68 (2014), 509–513. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.047 doi: 10.1016/j.ijheatmasstransfer.2013.09.047
    [35] A. Hussain, M. Y. Malik, T. Salahuddin, S. Bilal, M. Awais, Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder, J. Mol. Liq., 231 (2017), 341–352. https://doi.org/10.1016/j.molliq.2017.02.030 doi: 10.1016/j.molliq.2017.02.030
    [36] L. Ali, X. Liu, B. Ali, S. Mujeed, S. Abdal, Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions, Coatings, 9 (2019), 842. https://doi.org/10.3390/coatings9120842 doi: 10.3390/coatings9120842
    [37] N. Abbas, S. Nadeem, A. Saleem, M. Y. Malik, A. Issakhov, F. M. Alharbi, Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder, Chin. J. Phys., 69 (2021), 109–117. https://doi.org/10.1016/j.cjph.2020.11.019 doi: 10.1016/j.cjph.2020.11.019
    [38] A. E. Shafey, F. M. Alharbi, A. Javed, N. Abbas, H. A. ALrafai, S. Nadeem, et al., Theoretical analysis of Brownian and thermophoresis motion effects for Newtonian fluid flow over nonlinear stretching cylinder, Case Stud. Therm. Eng., 28 (2021), 101369. https://doi.org/10.1016/j.csite.2021.101369 doi: 10.1016/j.csite.2021.101369
    [39] N. Abbas, K. Ur Rehman, W. Shatanawi, A. A. Al-Eid, Theoretical study of non-Newtonian micropolar nanofluid flow over an exponentially stretching surface with free stream velocity, Adv. Mech. Eng., 14 (2022). https://doi.org/10.1177/16878132221107790
    [40] N. Abbas, K. Ur Rehman, W. Shatanawi, K. Abodayeh, Mathematical model of temperature-dependent flow of power-law nanofluid over a variable stretching Riga sheet, Waves Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2111029
    [41] L. Ali, B. Ali, M. B. Ghori, Melting effect on Cattaneo-Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach, Comput. Math. Appl., 109 (2022), 260–269. https://doi.org/10.1016/j.camwa.2022.01.009 doi: 10.1016/j.camwa.2022.01.009
    [42] L. Ali, Y. J. Wu, B. Ali, S. Abdal, S. Hussain, The crucial features of aggregation in TiO2-water nanofluid aligned of chemically comprising microorganisms: a FEM approach, Comput. Math. Appl., 123 (2022), 241–251. https://doi.org/10.1016/j.camwa.2022.08.028 doi: 10.1016/j.camwa.2022.08.028
    [43] P. Kumar, H. Poonia, L. Ali, S. Areekara, The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow, Case Stud. Therm. Eng., 37 (2022), 102247. https://doi.org/10.1016/j.csite.2022.102247 doi: 10.1016/j.csite.2022.102247
    [44] M. Qasim, Z. H. Khan, W. A. Khan, I. Ali Shah, MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux, Plos One, 9 (2014), e83930. https://doi.org/10.1371/journal.pone.0083930 doi: 10.1371/journal.pone.0083930
    [45] M. Suleman, M. Ramzan, S. Ahmad, D. Lu, Numerical simulation for homogeneous-heterogeneous reactions and Newtonian heating in the silver-water nanofluid flow past a nonlinear stretched cylinder, Phys. Scr., 94 (2019), 085702. https://doi.org/10.1088/1402-4896/ab03a8 doi: 10.1088/1402-4896/ab03a8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1412) PDF downloads(98) Cited by(20)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog