Research article Special Issues

Fractionalizing, coupling and methods for the coupled system of two-dimensional heat diffusion models

  • Received: 24 December 2022 Revised: 16 February 2023 Accepted: 22 February 2023 Published: 09 March 2023
  • MSC : 26A33, 34A08, 34K37, 35R11

  • The present manuscript gives an overview of how two-dimensional heat diffusion models underwent a fractional transformation, system coupling as well as solution treatment. The governing diffusion models, which are endowed with Caputo's fractional-order derivatives in time $ t $, are suitably coupled using the (1) convection phenomenon, (2) interfacial coupling by considering the mechanism of a double-layered bar, and the (3) nonlinear coupling due to temperature-dependent thermal diffusivities. Semi-analytical and analytical methods are considered for the solution treatment. Moreover, we seek a computational environment to graphically illustrate the systems' response to different fractional orders in each case through the determined diffusional fields. Besides, we supply certain concluding notes at the end.

    Citation: Rahmatullah Ibrahim Nuruddeen, J. F. Gómez-Aguilar, José R. Razo-Hernández. Fractionalizing, coupling and methods for the coupled system of two-dimensional heat diffusion models[J]. AIMS Mathematics, 2023, 8(5): 11180-11201. doi: 10.3934/math.2023566

    Related Papers:

  • The present manuscript gives an overview of how two-dimensional heat diffusion models underwent a fractional transformation, system coupling as well as solution treatment. The governing diffusion models, which are endowed with Caputo's fractional-order derivatives in time $ t $, are suitably coupled using the (1) convection phenomenon, (2) interfacial coupling by considering the mechanism of a double-layered bar, and the (3) nonlinear coupling due to temperature-dependent thermal diffusivities. Semi-analytical and analytical methods are considered for the solution treatment. Moreover, we seek a computational environment to graphically illustrate the systems' response to different fractional orders in each case through the determined diffusional fields. Besides, we supply certain concluding notes at the end.



    加载中


    [1] D. R. Poirier, G. H. Geiger, Conduction of heat in solids, In: Transport Phenomena in Materials Processing, Springer, 2016,281–327. https://doi.org/10.1007/978-3-319-48090-9_9
    [2] R. I. Nuruddeen, Approximate analytical solution to the Cattaneo heat conduction model with various laser sources, J. Appl. Math. Comput. Mech., 22 (2022), 67–78. http://doi.org/10.17512/jamcm.2022.1.06 doi: 10.17512/jamcm.2022.1.06
    [3] R. I. Nuruddeen, F. D. Zaman, Temperature distribution in a circular cylinder with general mixed boundary conditions, J. Multidiscip. Eng. Sci. Technol., 3 (2016), 3653–3658.
    [4] H. R. Al-Duhaim, F. D. Zaman, R. I. Nuruddeen, Thermal stress in a half-space with mixed boundary conditions due to time dependent heat source, J. Math., 11 (2015), 19–25. http://doi.org/10.9790/5728-11651925 doi: 10.9790/5728-11651925
    [5] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
    [6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
    [7] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–701. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [8] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [9] K. R. Raslan, K. A. Khalid, M. A. Shallal, The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations, Chaos Solitons Fractals, 103 (2017), 404–409. https://doi.org/10.1016/j.chaos.2017.06.029 doi: 10.1016/j.chaos.2017.06.029
    [10] R. I. Nuruddeen, Y. Akbar, H. J. Kim, On the application of $G_\alpha$ integral transform to nonlinear dynamical models with non-integer order derivatives, AIMS Mathematics, 7 (2022), 17859–17878. https://doi.org/10.3934/math.2022984 doi: 10.3934/math.2022984
    [11] S. P. Yan, W. P. Zhong, X. J. Yang, A novel series method for fractional diffusion equation within Caputo fractional derivative, Therm. Sci., 20 (2016), S695–S699. https://doi.org/10.2298/TSCI16S3695Y doi: 10.2298/TSCI16S3695Y
    [12] K. Al-Khaled, S. Momani, An approximate solution for a fractional diffusion-wave equation using the decomposition method, Appl. Math. Comput., 165 (2005), 473–483. https://doi.org/10.1016/j.amc.2004.06.026 doi: 10.1016/j.amc.2004.06.026
    [13] S. S. Ray, R. K. Bera, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl. Math. Comput., 174 (2006), 329–336. https://doi.org/10.1016/j.amc.2005.04.082 doi: 10.1016/j.amc.2005.04.082
    [14] A. H. Bokhari, G. Mohammad, M. T. Mustafa, F. D. Zaman, Adomian decomposition method for a nonlinear heat equation with temperature dependent thermal properties, Math. Probl. Eng., 2009 (2009), 926086. https://doi.org/10.1155/2009/926086 doi: 10.1155/2009/926086
    [15] A. H. Bokhari, G. Mohammad, M. T. Mustafa, F. D. Zaman, Solution of heat equation with nonlocal boundary conditions, Int. J. Math. Comput., 3 (2009), 100–113.
    [16] R. I. Nuruddeen, F. D. Zaman, Y. F. Zakariya, Analysing the fractional heat diffusion equation solution in comparison with the new fractional derivative by decomposition method, Malaya J. Matematik, 7 (2019), 213–222. https://doi.org/10.26637/MJM0702/0012 doi: 10.26637/MJM0702/0012
    [17] A. M. Wazwaz, Exact solutions to nonlinear diffusion equations obtained by the decomposition method, Appl. Math. Comput., 123 (2001), 109–122. https://doi.org/10.1016/S0096-3003(00)00064-3 doi: 10.1016/S0096-3003(00)00064-3
    [18] R. I. Nuruddeen, B. D. Garba, Analytical technique for (2+1) fractional diffusion equation with nonlocal boundary conditions, Open J. Math. Sci., 2 (2018), 287–300. http://doi.org/10.30538/oms2018.0035 doi: 10.30538/oms2018.0035
    [19] A. Ahmad, A. H. Bokhari, A. H. Kara, F. D. Zaman, Symmetry classifications and reductions of some classes of (2+1)-nonlinear heat equation, J. Math. Anal. Appl., 339 (2008), 175–181. https://doi.org/10.1016/j.jmaa.2007.07.002 doi: 10.1016/j.jmaa.2007.07.002
    [20] M. Caputo, Diffusion of fluids in porous media with memory, Geothermics, 28 (1999), 113–130. https://doi.org/10.1016/S0375-6505(98)00047-9 doi: 10.1016/S0375-6505(98)00047-9
    [21] P. S. Laplace, Theorie Analytique des Probabilities, 1820.
    [22] D. Bhatta, Integral Transforms and their Applications, New York: Springer New York, 2002. https://doi.org/10.1007/978-1-4684-9283-5
    [23] H. Eltayeb, K. Adem, M. Said, Modified Laplace decomposition method for solving systems of equations Emden-Fowler type, J. Comput. Theor. Nanos., 12 (2015), 5297–5301. http://doi.org/10.1166/jctn.2015.4518 doi: 10.1166/jctn.2015.4518
    [24] S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear defferential equations, J. Appl. Math., 4 (2001), 141–155. https://doi.org/10.1155/S1110757X01000183 doi: 10.1155/S1110757X01000183
    [25] S. Islam, Y. Khan, N. Faraz, F. Austin, Numerical solution of logistic differential equations by using the Laplace decomposition method, World Appl. Sci. J., 8 (2010), 1100–1105.
    [26] R. I. Nuruddeen, L. Muhammad, A. M. Nass, T. A. Sulaiman, A review of the integral transforms-based decomposition methods and their applications in solving nonlinear PDEs, Palestine J. Math., 7 (2018), 262–280.
    [27] K. Masood, F. D. Zaman, Initial inverse problem in a two-layer heat conduction model, Arab. J. Sci. Eng., 29 (2004), 3–12.
    [28] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 doi: 10.1016/0022-247X(88)90170-9
    [29] A. Al Qarni, M. A. Banaja, H. O. Bakodah, A. A. Alshaery, Q. Zhou, A. Biswas, et al., Bright optical solitons for Lakshmanan-Porsezian-Daniel model with spatio-temporal dispersion by improved Adomian decomposition method, Optik, 181 (2019), 891–897. https://doi.org/10.1016/j.ijleo.2018.12.172 doi: 10.1016/j.ijleo.2018.12.172
    [30] H. O. Bakodah, M. A. Banaja, A. A. Alshaery, A. A. Al Qarni, Numerical solution of dispersive optical solitons with Schrödinger-Hirota equation by improved Adomian decomposition method, Math. Probl. Eng., 2019 (2019), 2960912. https://doi.org/10.1155/2019/2960912 doi: 10.1155/2019/2960912
    [31] J. Abate, P. P. Valk$\acute{o}$, Multi-precision Laplace transform inversion, Internat. J. Numer. Methods Engrg., 60 (2004), 979–993. https://doi.org/10.1002/nme.995 doi: 10.1002/nme.995
    [32] R. I. Nuruddeen, Laplace-based method for the linearized dynamical models in the presence of Hilfer fractional operator, Partial Differ. Eq. Appl. Math., 5 (2022), 100248. https://doi.org/10.1016/j.padiff.2021.100248 doi: 10.1016/j.padiff.2021.100248
    [33] N. Ahmed, N. A. Shah, S. Teherifar, F. D. Zaman, Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional cancer model, Chaos Solitons Fractal, 144 (2021), 110750. https://doi.org/10.1016/j.chaos.2021.110750 doi: 10.1016/j.chaos.2021.110750
    [34] A. S. M. Alzaidi, A. M. Mubaraki, R. I. Nuruddeen, Effect of fractional temporal variation on the vibration of waves on elastic substrates with spatial non-homogeneity, AIMS Mathematics, 7 (2022), 13746–13762. https://doi.org/10.3934/math.2022757 doi: 10.3934/math.2022757
    [35] S. Althobaiti, A. Mubaraki, R. I. Nuruddeen, J. F. Gómez-Aguilar, Wave propagation in an elastic coaxial hollow cylinder when exposed to thermal heating and external load, Results Phys., 38 (2022), 105582. https://doi.org/10.1016/j.rinp.2022.105582 doi: 10.1016/j.rinp.2022.105582
    [36] H. Stehfest, Remarks on algorithm 368: Numerical inversion of Laplace transform, Commun. ACM, 13 (1970). https://doi.org/10.1145/355598.362787
    [37] V. Masol, J. L. Teugels, Numerical accuracy of real inversion formulas for the Laplace transform, J. Comput. Appl. Math., 233 (2010), 2521–2533. https://doi.org/10.1016/j.cam.2009.10.033 doi: 10.1016/j.cam.2009.10.033
    [38] Y. Cherruault, Convergence of Adomian's method, Math. Comput. Model., 14 (1990), 83–86. https://doi.org/10.1016/0895-7177(90)90152-D doi: 10.1016/0895-7177(90)90152-D
    [39] K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to nonlinear equations, Math. Comput. Model., 20 (1994), 69–73. https://doi.org/10.1016/0895-7177(94)00163-4 doi: 10.1016/0895-7177(94)00163-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1108) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog