This paper aims to explore the inverse variation-inequality problems of a specific type of degenerate parabolic operators in a non-divergence form. These problems have significant implications in financial derivative pricing. The study focuses on analyzing the Hölder continuity of weak solutions by employing cut-off factors.
Citation: Jia Li, Zhipeng Tong. Local Hölder continuity of inverse variation-inequality problem constructed by non-Newtonian polytropic operators in finance[J]. AIMS Mathematics, 2023, 8(12): 28753-28765. doi: 10.3934/math.20231472
This paper aims to explore the inverse variation-inequality problems of a specific type of degenerate parabolic operators in a non-divergence form. These problems have significant implications in financial derivative pricing. The study focuses on analyzing the Hölder continuity of weak solutions by employing cut-off factors.
[1] | C. O. Alves, L. M. Barros, C. E. T. Ledesma, Existence of solution for a class of variational inequality in whole $\mathbb{R}^N$ with critical growth, J. Math. Anal. Appl., 494 (2021), 124672. https://doi.org/10.1016/j.jmaa.2020.124672 doi: 10.1016/j.jmaa.2020.124672 |
[2] | J. Li, C. Bi, Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems, AIMS Math., 7 (2022), 19758–19769. https://doi.org/10.3934/math.20221083 doi: 10.3934/math.20221083 |
[3] | T. Ye, W. Liu, T. Shen, Existence of nontrivial rotating periodic solutions for second-order Hamiltonian systems, Appl. Math. Lett., 142 (2023), 108630. https://doi.org/10.1016/j.aml.2023.108630 doi: 10.1016/j.aml.2023.108630 |
[4] | K. K. Saha, N. Sukavanam, S. Pan, Existence and uniqueness of solutions to fractional differential equations with fractional boundary conditions, Alexandria Eng. J., 72 (2023), 147–155. https://doi.org/10.1016/j.aej.2023.03.076 doi: 10.1016/j.aej.2023.03.076 |
[5] | G. C. G. dos Santos, N. de A. Lima, R. N. de Lima, Existence and multiple of solutions for a class integro-differential equations with singular term via variational and Galerkin methods, Nonlinear Anal., 69 (2023), 103752. https://doi.org/10.1016/j.nonrwa.2022.103752 doi: 10.1016/j.nonrwa.2022.103752 |
[6] | F. O. Gallego, H. Ouyahya, M. Rhoudaf, Existence of a capacity solution to a nonlinear parabolic Celliptic coupled system in anisotropic Orlicz-Sobolev spaces, Results Appl. Math., 18 (2023), 100376. https://doi.org/10.1016/j.rinam.2023.100376 doi: 10.1016/j.rinam.2023.100376 |
[7] | L. Lussardi, E. Mascolo, A uniqueness result for a class of non-strictly convex variational problems, J. Math. Anal. Appl., 446 (2017), 1687–1694. https://doi.org/10.1016/j.jmaa.2016.09.060 doi: 10.1016/j.jmaa.2016.09.060 |
[8] | M. Boukrouche, D. A. Tarzia, Existence, uniqueness, and convergence of optimal control problems associated with parabolic variational inequalities of the second kind, Nonlinear Anal., 12 (2011), 2211–2224. https://doi.org/10.1016/j.nonrwa.2011.01.003 doi: 10.1016/j.nonrwa.2011.01.003 |
[9] | A. Dieb, I. Ianni, A. Salda$\mathop {\rm{n}}\limits^{''} $a, Uniqueness and nondegeneracy for Dirichlet fractional problems in bounded domains via asymptotic methods, Nonlinear Anal., 236 (2023), 113354. https://doi.org/10.1016/j.na.2023.113354 doi: 10.1016/j.na.2023.113354 |
[10] | M. G. Ghimenti, A. M. Micheletti, Compactness and blow up results for doubly perturbed Yamabe problems on manifolds with umbilic boundary, Nonlinear Anal., 229 (2023), 113206. https://doi.org/10.1016/j.na.2022.113206 doi: 10.1016/j.na.2022.113206 |
[11] | L. Li, M. Wang, Global existence and blow-up of solutions of nonlocal diffusion problems with free boundaries, Nonlinear Anal., 58 (2021), 103231. https://doi.org/10.1016/j.nonrwa.2020.103231 doi: 10.1016/j.nonrwa.2020.103231 |
[12] | Q. M. Tran, T. T. Vu, H. D. T. Huynh, H. D. Pham, Global existence, blow-up in finite time and vacuum isolating phenomena for a system of semilinear wave equations associated with the helical flows of Maxwell fluid, Nonlinear Anal., 69 (2023), 103734. https://doi.org/10.1016/j.nonrwa.2022.103734 doi: 10.1016/j.nonrwa.2022.103734 |
[13] | L. Marino, Schauder estimates for degenerate Lévy Ornstein-Uhlenbeck operators, J. Math. Anal. Appl., 500 (2021), 125168. https://doi.org/10.1016/j.jmaa.2021.125168 doi: 10.1016/j.jmaa.2021.125168 |
[14] | Y. Sun, T. Wu, Hölder and Schauder estimates for weak solutions of a certain class of non-divergent variation inequality problems in finance, AIMS Math., 8 (2023), 18995–19003. https://doi.org/10.3934/math.2023968 doi: 10.3934/math.2023968 |
[15] | D. Wang, K. Serkh, C. Christara, A high-order deferred correction method for the solution of free boundary problems using penalty iteration, with an application to American option pricing, J. Comput. Appl. Math., 432 (2023), 115272. https://doi.org/10.1016/j.cam.2023.115272 doi: 10.1016/j.cam.2023.115272 |
[16] | S. Hussain, H. Arif, M. Noorullah, A. A. Pantelous, Pricing American options under Azzalini Ito-McKean skew Brownian motions, Appl. Math. Comput., 451 (2023), 128040. https://doi.org/10.1016/j.amc.2023.128040 doi: 10.1016/j.amc.2023.128040 |
[17] | Y. Wang, Local Hölder continuity of nonnegative weak solutions of degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3289–3302. https://doi.org/10.1016/j.na.2009.12.007 doi: 10.1016/j.na.2009.12.007 |