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1. Introduction

In recent years, the study of the following variational inequality has attracted the interest of scholars:
min{Lu, u − u0} ≥ 0, (x, t) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ∂u
∂ν
= 0, (x, t) ∈ ∂Ω × (0,T ),

(1)

where Lu is a linear parabolic operator or a degenerate parabolic operator. Due to the satisfaction of the
condition Lu ≥ 0 in ΩT , researchers have found it convenient to use the comparison principle to obtain
upper bounds for the solutions. This approach has been combined with limit methods [1,2], the Leray-
Schauder fixed point theorem [3,4], or semi-discrete methods [5,6] to prove the existence of solutions.
Additionally, some scholars have started from weak solutions and obtained integral inequalities for the
difference between two weak solutions, analyzing the stability and uniqueness of weak solutions with
respect to initial values [7–9]. The authors from [10–12] have demonstrated the explosive nature of
weak solutions under certain special conditions through energy estimates. The authors have obtained
Caccioppoli inequalities that match the variational inequality by analyzing integral inequalities of weak
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solutions in locally cylindrical regions, and subsequently studied the Schauder estimates for weak
solutions [13, 14].

In recent years, research on the pricing of financial derivative products with embedded early exercise
provisions has found that inverse variation-inequalities, such as the one shown below, are more suitable
for 

min{−Lu, u − u0} ≥ 0, (x, t) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ∂u
∂ν
= 0, (x, t) ∈ ∂Ω × (0,T ).

(2)

For example, researches from [15, 16] analyzed the pricing problem of American options under the
Black-Scholes model, and the value was reduced to the free boundary problem of the variation
inequality (2). Therefore, the parabolic operator Lu (denoted as LBS u) satisfies

LBS = ∂tu −
1
2
σ2∂xxu + r∂xu − ru, (3)

where σ represents the volatility of the underlying stock of the option, and r is the risk-free interest
rate in the financial market. Based on the aforementioned financial background considerations, the
author of this study investigates the inverse variation-inequality problems with the degenerate parabolic
operator in non-divergence form

Lu = ∂tu − uσ∆pu − γuσ−1|∇u|p, p > 2, σ > γ > 0. (4)

Additionally, we impose the condition that the initial value u0 satisfies u0 ∈ W1,p
0 (Ω). For a recent study

on inverse variational inequalities in a different context, please refer to [17]. In that study, an inverse
quasi-variational inequality is solved using a dynamical system.

In this paper, we provide the weak solution to the variational inequality (1) and prove the existence
of weak solutions. We also prove that the weak solution satisfies an energy inequality in a local
cylindrical region, and based on this, we establish the Holder continuity and Harnack inequality of the
weak solution. The study of such conclusions is usually focused on degenerate parabolic equation
initial-boundary value problems, and research on variational inequalities is still rare.

Due to the fact that the inverse variational inequality (2) implies Lu ≤ 0 in ΩT , it no longer allows us
to determine the upper bound of the solution u and establish the existence of weak solutions through the
comparison principle, as in the traditional variational inequality (1). First, this difficulty is overcome
by analyzing the energy upper bound of (u − M0)+. We can select a suitable M0 as an upper bound
for u, which is also an innovative aspect of this paper. Second, this paper also explores the Harnack
inequality and Hölder continuity of weak solutions by analyzing the weak solutions of the reverse
variational inequality (2) and combining it with the integral inequality of (u − k)±. This analysis is
further enhanced by the use of the cut-off factor and the selection of an appropriate k, which adds
another innovative aspect to this study.

2. Existence of weak solution

This section is dedicated to addressing our specific problem: We begin by providing a clear
definition of a nonnegative weak solution to Eq (1). To begin, it can be inferred from Eq (1) that

u ≥ u0 ≥ 0 in ΩT . (5)
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In fact, by utilizing inequality (1) once again, we have Lu ≤ 0 in ΩT . Furthermore, since u(t, x) = u0 =

0 in ∂Ω × (0,T ), when, using the comparison principle, we can conclude that (5) still holds.
Next, we analyze the upper bound of u. Let us choose a constant M0 > 0 as a parameter. Multiplying

both sides of Lu ≤ 0 by (u − M0)+ and integrating over Ω yields (note that (u − M0)+ ≥ 0),∫
Ω

∂tu(u − M0)+ − uσ∆pu(u − M0)+ − γu
σ−1|∇u|p(u − M0)+dx ≤ 0. (6)

On one hand, when u ≥ M0 occurs, ∂t(u − M0)+ = ∂tu, thereby resulting in∫
Ω

∂tu(u − M0)+dx =
∫
Ω

∂t(u − M0)(u − M0)+dx =
1
2
∂t

∫
Ω

(u − M0)2
+dx. (7)

On the other hand, when u < M0 occurs, (u − M0)+ = 0 and ∂t(u − M0)+ = 0, leading to∫
Ω

∂tu(u − M0)+dx = 0. (8)

Combining (6)–(8), we obtain

1
2
∂t

∫
Ω

(u − M0)2
+dx −

∫
Ω

uσ∆pu(u − M0)+ + γu
σ−1|∇u|p(u − M0)+dx ≤ 0. (9)

Note that ∫
Ω

uσ∆pu(u − M0)+ + γu
σ−1|∇u|p(u − M0)+dx = 0,

when u < M0, while

−
∫
Ω

uσ∆pu(u − M0)+ + γuσ−1|∇u|p(u − M0)+dx
=

∫
Ω

uσ|∇(u − M0)+|p + (σ − γ)uσ−1|∇u|p(u − M0)+dx,

when u is greater than or equal to M0. Therefore, (9) implies the significance of

1
2
∂t

∫
Ω

(u − M0)2
+dx +

∫
Ω

uσ|∇(u − M0)+|
p + (σ − γ)uσ−1|∇u|p(u − M0)+dx ≤ 0. (10)

Due to u ≥ u0 ≥ 0 and σ − γ ≥ 0,∫
Ω

uσ|∇(u − M0)+|
p + (σ − γ)uσ−1|∇u|p(u − M0)+dx

is nonnegative. Combining (10), we have∫
Ω

(u − M0)2
+dx ≤

∫
Ω

(u0 − M0)2
+dx. (11)

Furthermore, due to u0 ∈ W1,p
0 , when M0 is sufficiently large,∫

Ω

(u0 − M0)2
+dx = 0.
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In this case,
u ≤ M0 in ΩT . (12)

By combining (5) and (12), we can demonstrate that the inverse variational inequality (2) satisfies

0 ≤ u ≤ M0 in ΩT . (13)

Therefore, in [12], before providing a weak solution to the inverse variational inequality (2), we first
present a set of maximal monotone maps

G(λ) = {ξ|ξ = 0, λ > 0; ξ ≥ 0, λ = 0}. (14)

If ξ ∈ G(u − u0), it is easy to see that when u > u0, ξ = 0; and in this case Lu = 0. When u = u0, ξ ≥ 0,
and in this case we also have Lu ≥ 0. This inspires us to use Lu = ξ to construct a weak solution for
the variational inequality (2).

Definition 2.1. A pair (u, ξ) is considered a generalized solution of the inverse variation-inequality (2)
if it satisfies the following conditions:
(a) u ∈ L∞(0,T,H1(Ω)), ∂tu ∈ L∞(0,T, L2(Ω)).
(b) ξ ∈ G for any (x, t) ∈ ΩT .
(c) For fixed ν = σ−1

p + 1 and for every test-function φ ∈ C1(Ω̄T ), there exists an equality∫ ∫
ΩT

∂tuφ +
1
νp−1 uν|∇uν|p−2∇uν∇φ +

σ − γ

νp |∇uν|pφdxdt =
∫ ∫

ΩT

ξφdxdt.

By utilizing (13) and (14), combined with a standard energy method from [2, 12], we can establish
the existence of a weak solution for the inverse variational inequality (2).

Theorem 2.1. Assuming that u0 ∈ W1,p
0 (Ω) in ΩT , the inverse variational inequality (2) has a solution

(u, ξ) within the class defined in Definition 2.1.
The final part of this section is dedicated to introducing some notation and presenting several

previously established results, which will be used in the subsequent proof of the Hölder continuity.
The detailed proof can be found in [17].

Lemma 2.1. Assume that {Yn}, n = 1, 2, 3, · · · is a nonnegative sequence satisfying

Yn+1 ≤ CbnY1+α
n , C, b > 1, α > 0.

If Y0 ≤ C−1/αb−1/α2
, then Yn → 0, n→ ∞.

Lemma 2.2. Assuming that p ≥ 2, there exists a positive constant C such that∫ ∫
ΩT

|u|pdxdt ≤ C|{u > 0}|p/(N+p)||u||pLp(ΩT ),

where C depends only on N and p.
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3. Integral inequality

Along this section, we assume that u is a nonnegative weak solution to Eq (1) with p ≥ 2. Our
objective is to establish an integral inequality, which will be used to determine the Hölder continuity
of the weak solution on the domain

Q = Q(ρ, θ) = Bρ(x0) × (t0 − θ, t0),

where ρ and θ are positive undetermined constants. Of course, ρ and θ should be sufficiently small to
ensure Q ⊂ ΩT . Let us define

µ+ = ess sup
Q(2R,Rp)

u, µ− = ess inf
Q(2R,Rp)

u, ω = osc
Q(2R,Rp)

u = µ+ − µ−,

Rn =
1
2

R +
1

2n+1 R, Qn = Q(Rn, dRp
n), d ∈ (0, 1],

and introduce the symbol

k−n = µ
− +

1
2s∗+1ω +

1
2s∗+n+1ω, k+n = µ

+ −
1

2s∗+1ω −
1

2s∗+n+1ω,

where s∗ is a nonnegative undetermined constant. We obtain the Hölder estimate for the weak solution
of inequality (2) by using the upper bound estimate of ess sup

Q( 1
2 R,d( 1

2 R)p
)

u that includes ω. In order to estimate

ess inf
Q( 1

2 R,d( 1
2 R)p

)
u, we construct kn)− and simultaneously construct kn)+ to estimate ess sup

Q( 1
2 R,d( 1

2 R)p
)

u. In order to

prove the Hölder continuity, s∗ must satisfy the condition s∗ > 1.

Lemma 3.1. Assuming p ≥ 2 and ν = σ−1
p + 1, one can infer

(u − k−n )ν+1
− ≥

(
2s∗

ω

)pν−ν−1

(u − k−n )pν
− . (15)

Proof. According to the definition of k−n , it is easy to obtain

(u − k−n )− ≤ µ+ − k−n =
1

2s∗+1ω +
1

2s∗+n+1ω ≤
1

2s∗
ω.

Since (u − k−n )pν
− reaches its maximum, when u takes the value µ+,(

2s∗

ω

)pν−ν−1

(u − k−n )pν
− ≤

(
2s∗

ω

)pν−ν−1(
ω

2s∗

)pν
=

(
ω

2s∗

)ν+1
(16)

holds. At this point, (u − k−n )ν+1
− satisfies

(u − k−n )ν+1
− =

(
1

2s∗+1ω +
1

2s∗+n+1ω

)ν+1

=

(
ω

2s∗

)ν+1
. (17)

By combining Eqs (16) and (17), the result is proven to hold.
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In order to achieve the desired outcome, a test function w = ϕp × (u − k)ν± is selected, resulting in∫ ∫
ΩT

1
νp−1 uν|∇uν|p−2∇uν∇[ϕp × (u − k)µ±] +

σ−γ

νp |∇uν|p × ϕp × (u − k)ν±dxdt
=

∫ ∫
ΩT
ξφdxdt −

∫ ∫
ΩT
∂tu × ϕp × (u − k)ν±dxdt.

(18)

Considering that
∫ ∫
ΩT
∂tu × ϕp × (u − k)ν±dxdt is not suitable for integration calculations, the following

transformation is performed:∫
Ω
∂t(ϕp × (u − k)ν+1

± )dx = (ν + 1)
∫
Ω
ϕp × (u − k)ν±utdxdt + p

∫
Ω
ϕp−1 × ∂tϕ × (u − k)ν+1

± dx. (19)

In
∫
Ω

uν|∇uν|p−2∇uν∇[ϕp × (u − k)ν±]dx, a differential transformation is applied to ∇[ϕp × (u − k)ν±],

resulting in ∫
Ω

uν|∇uν|p−2∇uν∇[ϕp × (u − k)ν±]dx
=

∫
Ω

uν × |∇(u − k)ν±|
p × ϕpdx +

∫
Ω
|∇uν|p−2∇uν × (u − k)ν± × uν × ∇ϕpdx.

(20)

Further utilizing the Hölder and Young inequalities, we can obtain the expression∣∣∣∫
Ω
|∇uν|p−2∇uν × (u − k)ν± × uν∇ϕpdx

∣∣∣
≤

p−1
p

∫
Ω

uν × |∇(u − k)±|p × ϕpdx + 1
p

∫
Ω

(u − k)pν
± × uν × |∇ϕ|pdx.

(21)

Consequently, by combining Eqs (18)–(21), we can obtain the equation

ess sup
t∈(t0−θ,t0)

∫
Ω

(ϕp × (u − k)ν+1
± )dx + 1

νp−1 p

∫ t0
t0−θ

∫
Ω

uν|∇(u − k)ν±|
p × ϕpdxdt

+
σ−γ

νp

∫ ∫
ΩT
|∇uν|p × ϕp × (u − k)ν±dxdt

≤ p
∫
Ω
ϕp−1 × |∂tϕ| × (u − k)ν+1

± dx +
∫
Ω

(ϕp(x, t0 − θ) × (u(x, t0 − θ) − k)ν+1
± )dx

+ 1
pνp−1

∫ t0
t0−θ

∫
Ω
|(u − k)pν

± × uν|∇ϕ|pdxdt.

(22)

Theorem 3.1 Let u be a weak solution of the inverse variational inequality (2) with p ≥ 2, then it
follows that

ess sup
t∈(t0−θ,t0)

∫
Ω

(ϕp × (u − k)ν+1
± )dx + 1

νp−1 p

∫ t0
t0−θ

∫
Ω

uν|∇(u − k)ν±|
p × ϕpdxdt

+
σ−γ

νp

∫ ∫
ΩT
|∇uν|p × ϕp × (u − k)ν±dxdt

≤ p
∫
Ω
ϕp−1 × |∂tϕ| × (u − k)ν+1

± dx + 1
pνp−1

∫ t0
t0−θ

∫
Ω
|(u − k)pν

± × uν|∇ϕ|pdxdt.

(23)

In (23), we utilize the condition ϕ(x, t0 − θ) = 0, which readily yields∫
Ω

(ϕp(x, t0 − θ) × (u(x, t0 − θ) − k)ν+1
± )dx = 0.

Additionally, it is worth noting that by selecting suitable ϕ and (u − k)± in (22), we can obtain local
estimates for the weak solution u, thereby establishing the Harnack inequality and Hölder continuity.
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4. Results towards local continuity

This section is devoted to analyzing the Hölder continuity of weak solutions of the inverse
variational inequality (2). We first examine the local lower bound estimate of weak solutions u of the
inverse variational inequality (2), and define a cut-off function ϕn(x, t) on Qn as described in

ϕn(x, t) =

 0, (x, t) ∈ ∂Qn,

1, (x, t) ∈ Qn+1.
(24)

Additionally, we assume that ϕn(x, t) satisfies the condition

|∇ϕn(x, t)| ≤
2n

Rn
, |∂tϕn(x, t)| ≤

2pn

Rp . (25)

In (23), (u − k)± is set as (u − k)−, while k is chosen as k−n , resulting in

ess sup
t∈(t0−dR/2,t0)

∫
Ω

(ϕp × (u − k−n )ν+1
− )dx + 1

pνp−1

∫ t0
t0−dR/2

∫
Ω

uν|∇(u − k−n )ν−|
p × ϕpdxdt

+
σ−γ

νp

∫ ∫
ΩT
|∇uν|p × ϕp × (u − k−n )ν−dxdt

≤ p
∫
Ω
ϕp−1 × |∂tϕ| × (u − k−n )ν+1

− dx + 1
pνp−1

∫ t0
t0−dR/2

∫
Ω
|(u − k−n )pν

− × uν|∇ϕ|pdxdt.

(26)

Due to the presence of σ − γ > 0 and ν = σ−1
p + 1 > 1,

σ − γ

νp

∫ ∫
ΩT

|∇uν|p × ϕp × (u − k−n )ν−dxdt ≥ 0.

After removing them, we have

ess sup
t∈(t0−dR/2,t0)

∫
Ω

(ϕp × (u − k−n )ν+1
− )dx + 1

pνp−1

∫ t0
t0−dR/2

∫
Ω

uν|∇(u − k−n )ν−|
p × ϕpdxdt

≤ p2pn

Rp

(∫ t0
t0−dR/2

∫
Bn
ϕp−1 × (u − k−n )ν+1

− dxdt + d
p2νp−1

∫ t0
t0−dR/2

∫
Bn
|(u − k−n )pν

− |dxdt
)
.

(27)

Further analysis of
∫ t0

t0−dR/2

∫
Bn
ϕp−1 × (u − k−n )ν+1

− dxdt + d
p2νp−1

∫ t0
t0−dR/2

∫
Bn
|(u − k−n )pν

− |dxdt is conducted

by applying Lemma 3.1,∫ t0
t0−dR/2

∫
Bn
ϕp−1 × (u − k−n )ν+1

− dxdt + d
p2νp−1

∫ t0
t0−dR/2

∫
Bn
|(u − k−n )pν

− |dxdt

≤
(
ω

2s∗

)ν+1
[
p2 + d

p2νp−1

(
ω

2s∗

)pν−ν−1
] ∫ t0

t0−dR/2

∫
Bn

(u − k−n )ν+1
− dxdt.

By substituting the aforementioned results into Eq (27), we can obtain

ess sup
t∈(t0−dR/2,t0)

∫
Ω

(ϕp × (u − k−n )ν+1
− )dx + 1

pνp−1

∫ t0
t0−dR/2

∫
Ω

uν|∇(u − k−n )ν−|
p × ϕpdxdt

≤ p2pn

Rp

(
ω

2s∗

)ν+1
[
p2 + 1

p2νp−1

(
ω

2s∗

)pν−ν−1
] ∫ t0

t0−dR/2

∫
Bn
χ(u−k−n )−>0dxdt.

(28)
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For the purpose of facilitating the discussion, let us define An = {x ∈ Bn|u ≤ k−n }. Consequently, it can
be derived from Eq (28) that

||(u − k−n )−ϕn||
p
Lp(Qn) ≤ p

2pn

Rp

(
ω

2s∗

)ν+1
[
p2 +

1
p2νp−1

(
ω

2s∗

)pν−ν−1
] ∫ t0

t0−dR/2
|An|dt. (29)

Applying Lemma 2.2 to ||(u − k−n )−ϕn||
p
Lp(Qn), we obtain

||(u − k−n )−||
p
Lp(Qn) ≤ ||(u − k−n )−ϕn||

p
Lp(Qn)

(∫ t0

t0−dR/2
|An|dt

) p
N+p

. (30)

Lemma 4.1. If u is a weak solution of the inverse variational inequality (2) with p > 2, then

||(u − k−n )−||
p
Lp(Qn+1) ≥

1
2p(n+2)

(
ω

2s∗

)p ∫ t0

t0−dR/2
|An+1|dt.

Proof. Due to
k−n = µ

− +
1

2s∗+1ω +
1

2s∗+n+1ω,

it follows that

||(u − k−n )−||
p
Lp(Qn+1) =

∫ ∫
Qn+1

(u − k−n )p
−dxdt ≥

∞∑
l=n+1

∫ ∫
Qn+1

(k−l − k−n )p
−dxdt ≥

∫
Qn+1

(k−n+1 − k−n )p
−dxdt,

thereby

||(u − k−n )−||
p
Lp(Qn+1) ≥ |k

−
n − k−n+1|

p
∫ t0

t0−dR/2
|An+1|dt. (31)

Furthermore, due to

|k−n − k−n+1|
p =

1
2s∗+n+1ω −

1
2s∗+n+2ω =

1
2s∗+n+2ω,

it follows that
|k−n − k−n+1|

p ≥
1

2p(n+2)

(
ω

2s∗

)p
,

thereby

|k−n − k−n+1|
p
∫ t0

t0−dR/2
|An+1|dt ≥

1
2p(n+2)

(
ω

2s∗

)p ∫ t0

t0−dR/2
|An+1|dt. (32)

By combining Eqs (31) and (32), Lemma 4.1 is proven.
Continuing the analysis of the lower bound for weak solutions by combining (30) and Lemma 4.1

and substituting the obtained result into (29), it can be easily deduced that

1
2p(n+2)

(
ω

2s∗

)p ∫ t0

t0−θ
|An+1|dt ≤ p

2pn

Rp

(
ω

2s∗

)ν+1
[
p2 +

1
p2

(
ω

2s∗

)pν−ν−1
] ∫ t0

t0−dR/2
|An|dt. (33)

Consequently, simplifying (33) yields∫ t0

t0−θ
|An+1|dt ≤

p4p

Rp

(
ω

2s∗

)ν−p+1
[
p2 +

1
p2

(
ω

2s∗

)pν−ν−1
]

4pn
∫ t0

t0−dR/2
|An|dt.
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This from Lemma 2.2 implies that
∫ t0

t0−dR/2
|An|dt → 0 as → n, if

∫ t0

t0−θ
|{x ∈ B 1

2 R|u ≥ µ
− +

1
2s∗+1ω}|dt ≤

p
2p

N+p−
N+p

p

R−
p

N+p p

(
ω

2s∗

)−(1+ν) p2
N+p

4−
p3

(N+p)2
−

p2
N+p . (34)

It is worth noting that σ ≥ 1 when selecting a sufficiently large S ∗ such that (34) always holds, thus
leading to the following result.

Theorem 4.1. If σ ≥ 1, selecting a sufficiently large s∗ > 1, it holds that

u ≥ µ− +
ω

2s∗+1 a.e. (x, t) ∈ Q(
1
2

R, d(
1
2

R)p). (35)

Furthermore, if∫ t0

t0−θ
|{x ∈ B 1

2 R|u ≥ µ
− +

1
2s∗+1ω}|dt ≤

p
2p

N+p−
N+p

p

R−
p

N+p p

(
ω

2s∗

)−(1+ν) p2
N+p

4−
p3

(N+p)2
−

p2
N+p ,

then, (35) still holds.
Next, we analyze the upper bound of the weak solution. By applying Lemma 4.1, it is easy to obtain

(u − k+n )ν+1
+ ≥

(
2s∗

ω

)pν−ν−1

(u − k+n )pν
+ . (36)

Consequently, in Eq (23) we set (u − k)± as (u − k+n )+ and eliminate the nonpositive term
σ−γ

νp

∫ ∫
ΩT
|∇uν|p × ϕp × (u − k+n )ν+dxdt, resulting in

ess sup
t∈(t0−dR/2,t0)

∫
Ω

(ϕp × (u − k+n )ν+1
+ )dx + 1

pνp−1

∫ t0
t0−dR/2

∫
Ω

uν|∇(u − k+n )ν+|
p × ϕpdxdt

≤ p2pn

Rp

(∫ t0
t0−dR/2

∫
Bn
ϕp−1 × (u − k+n )ν+1

+ dxdt + d
p2νp−1

∫ t0
t0−dR/2

∫
Bn
|(u − k+n )pν

+ |dxdt
)
.

(37)

Note that
k+n = µ

+ −
1

2s∗+1ω −
1

2s∗+n+1ω.

By applying Lemma 3.1, we can obtain

(u − k+n )ν+1
+ ≥

(
2s∗

ω

)pν−ν−1

(u − k+n )pν
+ , (38)

which implies that

ess sup
t∈(t0−dR/2,t0)

∫
Ω

(ϕp × (u − k+n )ν+1
+ )dx + 1

pνp−1

∫ t0
t0−dR/2

∫
Ω

uν|∇(u − k+n )ν+|
p × ϕpdxdt

≤ p2pn

Rp

(
ω

2s∗

)ν+1
[
p2 + 1

p2νp−1

(
ω

2s∗

)pν−ν−1
] ∫ t0

t0−dR/2

∫
Bn
χ(u−k+n )+>0dxdt.

(39)

For the sake of convenience in the discussion, we will continue to use the symbol An = {x ∈ Bn|u ≤ k+n },
hence

||(u − k+n )+ϕn||
p
Lp(Qn) ≤ p

2pn

Rp

(
ω

2s∗

)ν+1
[
p2 +

1
p2νp−1

(
ω

2s∗

)pν−ν−1
] ∫ t0

t0−dR/2
|An|dt. (40)

AIMS Mathematics Volume 8, Issue 12, 28753–28765.



28762

By utilizing Lemma 2.2, we can obtain the following estimation

||(u − k+n )+||
p
Lp(Qn) ≤ ||(u − k+n )+ϕn||

p
Lp(Qn)

(∫ t0

t0−dR/2
|An|dt

) p
N+p

. (41)

Following the same approach as in Lemma 4.1, we can deduce that

||(u − k+n )+||
p
Lp(Qn+1) ≥

1
2p(n+2)

(
ω

2s∗

)p ∫ t0

t0−dR/2
|An+1|dt. (42)

Combining (41) and (42) and substituting the result into (40), we can simplify and deduce that∫ t0

t0−dR/2
|An+1|dt ≤ C(p, ν)

4pn

Rp

(∫ t0

t0−dR/2
|An|dt

)1+ p
N+p

. (43)

Clearly, the equation above and Lemma 2.2 imply that
∫ t0

t0−dR/2
|An|dt → 0 as → n, if

∫ t0

t0−θ
|{x ∈ B 1

2 R|u ≤ µ
+ −

1
2s∗+1ω}|dt ≤

p
2p

N+p−
N+p

p

R−
p

N+p p

(
ω

2s∗

)−(1+ν) p2
N+p

4−
p3

(N+p)2
−

p2
N+p . (44)

Thus we have
u ≤ µ+ −

ω

2s∗+1 a.e. (x, t) ∈ Q(
1
2

R, d(
1
2

R)p). (45)

Due to the fact that
osc

Q( 1
2 R,d( 1

2 R)p
)
u = ess sup

Q( 1
2 R,d( 1

2 R)p
)

u − ess inf
Q( 1

2 R,d( 1
2 R)p

)
u,

combining Eqs (35) and (45), we obtain

osc
Q( 1

2 R,d( 1
2 R)

p
)
u ≤ (1 −

1
2s∗

)ω a.e. (x, t) ∈ Q(
1
2

R, d(
1
2

R)p). (46)

Theorem 4.2. (Hölder continuity) For any (x, t) ∈ Q(1
2R, d( 1

2R)p), if σ > 1, there exists a nonnegative
constant C such that

osc
Q( 1

2 R,d( 1
2 R)

p
)
u ≤ Cω.

Furthermore, if (34) and (44) hold, the above inequality still holds.
In fact, by choosing

C = (1 −
1

2s∗
)

in (46), the conclusion of Theorem 3.3 is evident. Furthermore, by selecting

C = (2s∗ + 1)/(2s∗ − 1) ≤ 2,

we have the following result.

Theorem 4.3. (Harnack’s inequality) Assuming σ ≥ 1, there exists a nonnegative constant C such that

ess sup
Q( 1

2 R,d( 1
2 R)p

)

u ≤ C ess inf
Q( 1

2 R,d( 1
2 R)p

)
u.
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The Harnack inequality implies the following Hölder modulus estimate, as indicated by the
literature in [17].

Theorem 4.4. (Hölder’s modulus estimate) Let u ∈ L∞(0,T ; W1,p
0 (Ω)) be a weak solution of the inverse

variation-inequality (2) and σ ≥ 1. Then, there exists a constant C and β ∈ (0, 1), for any Ω′ ⊂ Ω, such
that [u]β, 12β;Ω′T ≤ C .

5. Conclusions

This paper aimed to explore a specific type of inverse variation inequality problem
min{−Lu, u − u0} ≥ 0, (x, t) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ∂u
∂ν
= 0, (x, t) ∈ ∂Ω × (0,T ),

which was formulated using degenerate parabolic operators in non-divergence form

Lu = ∂tu − uσ∆pu − γuσ−1|∇u|p, p > 2, σ > γ > 0.

First, by incorporating (u − M0)+ into Lu ≤ 0 in ΩT , we obtained the following integral inequality:

1
2
∂t

∫
Ω

(u − M0)2
+dx +

∫
Ω

uσ|∇(u − M0)+|
p + (σ − γ)uσ−1|∇u|p(u − M0)+dx ≤ 0.

Subsequently, we derived the upper and lower bounds for the inverse variation inequality problem (2)
and utilized them to construct a weak solution for the inverse variation-inequality problem (2).

Next, in the weak solution, the test function w = ϕp × (u − k)ν± was chosen and an integral
inequality was obtained using the Hölder and Young inequalities, as shown in Theorem 3.1. Finally,
the incorporation of a cut-off factor in Theorem 3.1 yields the Hölder continuity of the weak solution
to problem (2), the Harnack inequality and the Hölder modulus estimate.

There are still some areas in this paper that can be improved. The current study only considered the
case where σ > γ, and the existence of weak solutions cannot be proven if σ < γ. Additionally, in the
proof process of the Hölder continuity in Section 4, the condition σ > γ was also used to ensure that
σ−γ

νp

∫ ∫
ΩT
|∇uν|p × ϕp × (u − k)ν+dxdt was nonnegative. In Lemma 2.2, the parameter p was restricted

to be greater than two. In future research, we will attempt to analyze the impact of these restrictive
conditions on the results.
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