

AIMS Mathematics, 7(6): 10180–10194.

DOI: 10.3934/math.2022566 Received: 20 December 2021 Revised: 26 February 2022 Accepted: 06 March 2022

Published: 22 March 2022

http://www.aimspress.com/journal/Math

Research article

The research of (G,w)-Chaos and G-Lipschitz shadowing property

Zhanjiang Ji^{1,2,3,*}

- School of Data Science and Software Engineering, Wuzhou University, Wuzhou, Guangxi 543002, China
- ² Guangxi Colleges and Universities Key Laboratory of Image Processing and Intelligent Information System, Wuzhou University, Wuzhou, Guangxi 543002, China
- ³ Guangxi Colleges and Universities Key Laboratory of Professional Software Technology, Wuzhou University, Wuzhou, Guangxi 543002, China
- * Correspondence: E-mail: jizhanjiang1985@126.com; Tel: +18277405331.

Abstract: In this paper, we introduce the concepts of (G,w) – Chaos and G – Lipschitz shadowing property. We study the dynamical properties of (G,w) – Chaos in the inverse limit space under group action. In addition, we study the dynamical properties of G – Lipschitz shadowing property respectively under topological G – conjugate and iterative systems. The following conclusions are obtained. (1) Let $(X_f, \bar{G}, \bar{d}, \sigma)$ be the inverse limit space of (X, G, d, f) under group action. If the self-map f is (G, w) – chaotic, the shift map σ is (G, w) – chaotic; (2) Let (X, d) be a metric G – space and f be topologically G – conjugate to g. Then the map f has G – Lipschitz shadowing property if and only if the map g has G – Lipschitz shadowing property. (3) Let (X, d) be a metric G – space and f be an equivariant Lipschitz map from f to f . Then for any positive integer f has the f – Lipschitz shadowing property if and only if the iterative map f has the f – Lipschitz shadowing property. These results enrich the theory of topological f – conjugate, iterative system and the inverse limit space under group action.

Keywords: inverse limit space; topological G-conjugate; iterative map; (G, w)-Chaos; G-Lipschitz shadowing property

Mathematics Subject Classification: 37B99

1. Introduction

Chaos and shadowing property are important concepts in dynamical systems. Many scholars have studied their dynamical properties. See [1–16] for relevant results. For example, Li [1] proved that if the self-map f is w-chaotic, then the shift map σ is w-chaotic; Shah, Das and Das [2] proved that if a uniformly continuous self-map of a uniform locally compact Hausdorff space has topological weak specification property, then it admits a topologically distributionally scrambled set of type 3; Kostic [3] introduced two different notions of disjoint distributional chaos for sequences of continuous linear operators in Frechet spaces; Wang and Liu [4] generalized the notion of the ergodic shadowing property to the iterated function systems and proved some related theorems; Wang and Zeng [5] studied the relationship between average shadowing property and q-average shadowing property; for any $k \neq 0$ and $f \in H(X)$, Li [6] proposed that f is chaotic if and only if f^k is chaotic; Li [7] proved that a chaotic semi-flow θ on a manifold M in the sense of Devaney with some assumptions is an expanding semi-flow; Li and Zhou [8] presented that if a continuous Lyapunov stable map f from a compact metric space X into itself is topologically transitive and has the asymptotic average shadowing property, then X is consisting of one point; Li [9] proved that if the set of all periodic points of $\theta \times \theta$ is dense in $X \times Y$, then $\theta \times \theta$ is chaotic.

According to the concept of w—Chaos [1], we introduced the definition of (G, w)—Chaos. Let (X,d) be a metric G—space and f be a continuous map from X to X. We say that S is an (G,w)—scrambled set if for any $x,y \in S$ with $x \neq y$, the following three conditions are satisfied: (1) $w_G(x,f)-w_G(y,f)$ is uncountable; (2) $w_G(x,f)\cap w_G(y,f)$ is nonempty; (3) $w_G(x,f) \not\subset P_G(f)$. The map f is said to be (G,w)—chaotic if there exists an uncountable (G,w)—scrambled set. Then we proved that if the self-map is (G,w)—chaotic, the shift map G is (G,w)—chaotic in the inverse limit space under action group which generalizes the conclusion of w—Chaos given by Li [1].

Let (X,d) be a metric G- space and f be a continuous map from X to X. The map f has G-Lipschitz shadowing property if there exists positive constant L>0 and $\delta_0>0$ such that for any $0<\delta<\delta_0$ and (G,δ) -pseudo orbit $\{x_i\}_{i\geq 0}$ of f there exists a point $x\in X$ such that the sequence $\{x_i\}_{i=0}^\infty$ is $(G,L\delta)$ -shadowed by the point x [17]. Finally, the dynamical properties of G-Lipschitz shadowing property are studied under topological G-conjugate and iterative systems. We derive that (1) If f is topologically G-conjugate to g, then the map f has G-Lipschitz shadowing property if and only if the map g has G-Lipschitz shadowing property. (2) For any positive integer $k\geq 2$, the map f has the G-Lipschitz shadowing property. These results enrich the theory of topological G-conjugate and iterative system.

Next, I will give the proof of above three conclusions in sections 2–4.

2. (G,w)-Chaos in the inverse limit space under group action

Definition 2.1. [18] Let (X,d) be a metric G-space, G be a topological group and φ be a continuous map from $G \times X$ to X. The (X,G,φ) or X is called to be a metric G-space if the following conditions are satisfied:

- (1) $\varphi(e,x) = x$ for all $x \in X$ where e is the identity of G;
- (2) $\varphi(g_1, \varphi(g_2, x)) = \varphi(g_1g_2, x)$ where for all $x \in X$ and all $g_1, g_2 \in G$.

If X is compact, then X is also said to be a compact metric G-space. For the convenience, $\varphi(g,x)$

is usually abbreviated as gx.

Definition 2.2. [19] Let (X,d) be a metric space and f be a continuous map from X to X. We say that X_f is the inverse limit spaces of X if we write

$$X_f = \{(x_0, x_1, x_2, \cdots) : f(x_{i+1}) = x_i, \forall i \ge 0\},$$

Where let $\underline{\lim}(X, f)$ denoted by the inverse limit spaces X_f .

The metric \overline{d} in X_f is defined by

$$\overline{d}(\overline{x},\overline{y}) = \sum_{i=0}^{\infty} \frac{d(x_i,y_i)}{2^i},$$

where $\overline{x} = (x_0, x_1, x_2 \cdots) \in X_f$ and $\overline{y} = (y_0, y_1, y_2 \cdots) \in X_f$.

The shift map $\sigma: X_f \to X_f$ is defined by

$$\sigma(\overline{x}) = (f(x_0), x_0, x_1 \cdots).$$

For every $i \ge 0$ the projection map $\pi_i : X_f \to X$ is defined by

$$\pi_i(\overline{x}) = x_i.$$

Thus (X_i, \overline{d}) is compact metric space and the shift map σ is homeomorphism.

Definition 2.3. [19] Let (X,d) be a metric G-space and f be equivariant map from X to X. Write

$$\overline{G} = \{(g, g, g \cdots) : g \in G\} \text{ and } G_{\infty} = \prod_{i=0}^{\infty} G_i,$$

where $G_i = G, i \ge 0$.

The map $\varphi : \overline{G} \times X_f \to X_f$ is defined by

$$\varphi(\overline{g}, \overline{x}) = \overline{g} \cdot \overline{x} = (gx_0, gx_1, gx_2, \cdots),$$

where $\overline{g} = (g, g, g \cdots) \in \overline{G}$ and $\overline{x} = (x_0, x_1, x_2 \cdots) \in X_f$.

Then $(X_f, \overline{G}, \overline{d}, \sigma)$ is a metric G-space.

Let (X,G,d,f) and $(X_f,\bar{G},\bar{d},\sigma)$ are shown as above. The space $(X_f,\bar{G},\bar{d},\sigma)$ is called to be the inverse limit spaces of (X,G,d,f) under group action.

Definition 2.4. [20] Let (X,d) be a metric G – space and f be a continuous map from X to X. We say that the map f is an equivariant map if we have f(px) = pf(x) for all $x \in X$ and all $p \in G$.

Definition 2.5. [21] Let (X,d) be a metric G-space and f be a continuous map from X to X. The point x is called to be an G-periodic point if there exists positive integer m and $g \in G$ such that $gf^m(x) = x$. Denoted by $P_G(f)$ the G-periodic point set of f.

Definition 2.6. [4] Let (X,d) be a metric G – space and f be a continuous map from X to X. The point y is said to be an G – limit point of the point x if there exists $\{n_i\} \subset N_+$ and $\{g_i\} \subset G$ such that $\lim_{i \to \infty} g_i f^{n_i}(x) = y$.

Denoted by $w_G(x, f)$ the G-limit point set of the point x.

Definition 2.7. [21] Let (X,d) be a metric space and f be a continuous map from X to X. If $f(A) \subset A$ then we say that the set A is invariant to the map f.

Definition 2.8. [1] Let (X,d) be a metric space and f be a continuous map from X to X. We say that S is

an w – scrambled set if for any $x, y \in S$ with $x \neq y$ the following three conditions are satisfied:

- (1) w(x, f) w(y, f) is uncountable;
- (2) $w(x, f) \cap w(y, f)$ is not empty;
- (3) $w(x, f) \not\subset P(f)$.

We say that the map f is w-chaotic if there exists an uncountable w-scrambled set.

Remark 2.9. According to the definition of w-Chaos in metric space, we give the concept of (G, w)-Chaos in metric G-space.

Definition 2.1. [1] Let (X,d) be a metric G-space and f be a continuous map from X to X. We say that S is an (G,w)-scrambled set if for any $x,y \in S$ with $x \neq y$ the following three conditions are satisfied:

- (1) $w_G(x, f) w_G(y, f)$ is uncountable;
- (2) $w_G(x, f) \cap w_G(y, f)$ is not empty;
- (3) $w_G(x, f) \not\subset P_G(f)$.

We say that the map f is (G, w) – chaotic if there exists an uncountable (G, w) – scrambled set.

Definition 2.11. [22] Let (X,d) be a metric space and f be a continuous map from X to X. The set A is said to be a minimal set if for any $x \in A$ we have $\overline{orb(x,f)} = A$.

Lemma 2.12. [21] Let $(X_f, \overline{G}, \overline{d}, \sigma)$ be the inverse limit space of (X, G, d, f) under group action, f be an equivariant homeomorphism map from X to X and $\overline{X} = (X_0, X_1, X_2 \cdots) \in X_f$. Then we have

$$W_G(\overline{x}, \sigma) = \underline{\lim}(W_G(x_0, f), f)$$
.

Lemma 2.13. [21] Let (X,d) be a metric G-space, f be an equivariant homeomorphism map from X to X and $x \in X$. Then we have that $w_G(x, f)$ is closed and

$$f(w_G(x,f)) = w_G(x,f)$$
.

Lemma 2.14. [21] Let $(X_f, \overline{G}, \overline{d}, \sigma)$ be the inverse limit space of (X, G, d, f) under group action and f be an equivariant homeomorphism map from X to X. Then we have

$$P_G(\sigma) = \underline{\lim}(P_G(f), f)$$
.

Theorem 2.15. Let $(X_f, \overline{G}, \overline{d}, \sigma)$ be the inverse limit space of (X, G, d, f) under group action and f be an equivariant homeomorphism map from X to X. If the self-map f is (G, w) – chaotic, then the shift map σ is (G, w) – chaotic.

Proof. Suppose that the self-map f is (G, w) – chaotic. Then there exists an uncountable (G, w) – scrambled set S . Write

$$D' = \{ \overline{x} : \overline{x} \in \pi_0^{-1}(x), x \in S \}.$$

Thus D' is an uncountable set in X_f . Next, we will show that D' is an (G, w) – scrambled set in X_f . Let

$$\overline{x} = (x_0, x_1, x_2 \cdots) \in D'$$
 and $\overline{y} = (y_0, y_1, y_2 \cdots) \in D'$ with $\overline{x} \neq \overline{y}$.

According to that f is an homeomorphism map, the point x_0 and y_0 are two different points in S. By the definition of (G, w) – scrambled set S, we have the following three conditions:

- (1) $w_G(x_0, f) w_G(y_0, f)$ is uncountable;
- (2) $w_G(x_0, f) \cap w_G(y_0, f)$ is not empty;

(3) $W_G(x_0, f) \not\subset P_G(f)$.

Firstly, we will show that $w_G(\bar{x}, \sigma) - w_G(\bar{y}, \sigma)$ is uncountable. Let

$$s_0 \in W_G(x_0, f) - W_G(y_0, f)$$
.

By Lemmas 2.12 and 2.13, we have that

$$W_G(\overline{x}, \sigma) = \underline{\lim}(W_G(x_0, f), f)$$
.

$$f(w_G(x,f)) = w_G(x,f).$$

Hence there exists $\overline{s} \in w_G(\overline{x}, \sigma)$ such that $\pi_0(\overline{s}) = s_0$. If $\overline{s} \in w_G(\overline{y}, \sigma)$ then there exists positive integer sequence $\{n_i\}_{i=0}^{\infty}$ and $\overline{g}_i = (g_i, g_i, g_i, \cdots) \in \overline{G}$ such that

$$\lim_{i\to\infty}\overline{g}_i\sigma^{n_i}(\overline{y})=\overline{s}.$$

Thus $\lim_{i\to\infty}g_if^{n_i}(y_0)=s_0$. So $s_0\in w_G(y_0,f)$ which is absurd. Hence $\overline{s}\notin w_G(\overline{y},\sigma)$. Thus, we have that

$$\overline{s} \in W_G(\overline{x}, \sigma) - W_G(\overline{y}, \sigma)$$
.

That is,

$$s_0 = \pi_0(\overline{s}) \in \pi_0(w_G(\overline{x}, \sigma) - w_G(\overline{y}, \sigma))$$

Then we can get that

$$w_G(x_0, f) - w_G(y_0, f) \subset \pi_0(w_G(\overline{x}, \sigma) - w_G(\overline{y}, \sigma))$$
.

According to that the set $w_G(x, f) - w_G(y, f)$ is uncountable, we can get that the set

$$\pi_0(w_G(\overline{x},\sigma)-w_G(\overline{y},\sigma))$$

is uncountable. Hence the set $w_G(\bar{x}, \sigma) - w_G(\bar{y}, \sigma)$ is uncountable.

Secondly, we will show that $w_G(\bar{x}, \sigma) \cap w_G(\bar{y}, \sigma)$ is not empty. By Lemma 2.12, we have that

$$w_{G}(\overline{x},\sigma) \cap w_{G}(\overline{y},\sigma) = \underline{\lim}(w_{G}(x_{0},f),f) \cap \underline{\lim}(w_{G}(x_{0},f),f)$$
$$= \underline{\lim}(w_{G}(x_{0},f) \cap w_{G}(x_{0},f),f).$$

Since $w_G(x_0, f) \cap w_G(x_0, f)$ is a nonempty closed invariant subset and X is compact metric space, there exists a minimal set M in $w_G(x_0, f) \cap w_G(x_0, f)$. Hence, we can get that

$$\emptyset \neq \underline{\lim}(M, f) \subset \underline{\lim}(w_G(x_0, f) \cap w_G(x_0, f), f)$$
.

So, we have that

$$w_G(\overline{x},\sigma) \cap w_G(\overline{y},\sigma) \neq \emptyset$$
.

Finally, we will show $w_G(\overline{x}, \sigma) \not\subset P_G(\sigma)$. Suppose $w_G(\overline{x}, \sigma) \subset P_G(\sigma)$. By Lemmas 2.12 and 2.14, we have that

$$W_G(\overline{x}, \sigma) = \underline{\lim}(W_G(x_0, f), f)$$
.

$$P_G(\sigma) = \underline{\lim}(P_G(f), f)$$
.

Hence, we can get that

$$\underline{\lim}(w_G(x_0, f), f) \subset \underline{\lim}(P_G(f), f)$$
.

So, we have that

$$\pi_0(\underline{\lim}(w_G(x_0,f),f)) \subset \pi_0(\underline{\lim}(P_G(f),f))$$
.

That is

$$W_G(x_0, f) \subset P_G(f)$$
.

Thus, the assumption is absurd. So $w_G(\overline{x}, \sigma) \not\subset P_G(\sigma)$. Hence the set D' is an uncountable (G, w) – scrambled set in X_f . So, the shift map σ is (G, w) – chaotic. Thus, we complete the proof. \square

3. G-Lipschitz shadowing property under topological G-conjugate

Definition 3.1. [16] Let (X,d) be a metric space and f be a continuous map from X to X. The map f is said to be a Lipschitz map if there exists a positive constant L such that for all $x, y \in X$ implies

$$d(f(x), f(y)) \le Ld(x, y)$$
.

Definition 3.2. [17] Let (X,d) be a metric G-space and f be a continuous map from X to X. The map f has G-Lipschitz shadowing property if there exists positive constant L and δ_0 such that for any $0 < \delta < \delta_0$ and (G,δ) -pseudo orbit $\{x_i\}_{i\geq 0}$ of f there exists a point $x \in X$ such that the sequence $\{x_i\}_{i=0}^{\infty}$ is $(G,L\delta)$ -shadowed by the point x.

Definition 3.3. [18] Let (X,d) and (Y,d) be a metric G-space, f be a continuous map from X to X and g be a continuous map from Y to Y. We say that f is topological G-conjugate to g about $h: X \to Y$ if $h \circ f = g \circ h$ and h is an equivariant homeomorphism map from X to Y.

Theorem 3.4. Let (X,d) be metric G- space, (Y,d) be metric G- space and f be topologically Gconjugate to g about the map $h: X \to Y$. If h is a Lipschitz map with Lipschitz constant L_1 from X to Y and h^{-1} is a Lipschitz map with Lipschitz constant L_2 from Y to X, then the map f has G- Lipschitz shadowing property if and only if the map f has G-Lipschitz shadowing property.

Proof. Suppose that the map f has the G-Lipschitz shadowing property. Then there exists positive constant $L_0 > 0$ and $\varepsilon_0 > 0$ such that for any $0 < \delta < \varepsilon_0$ and (G, δ) - pseudo orbit $\{x_i\}_{i \ge 0}$ of f there exists a point $x \in X$ such that the sequence $\{x_i\}_{i \ge 0}$ is $(G, L_0 \delta)$ - shadowed by the point x. Let

$$L_3 = L_0 L_1 L_2$$
 and $\varepsilon_1 = \frac{\varepsilon_0}{L_2}$.

For any $0 < \eta < \varepsilon_1$, let $\{y_i\}_{i=0}^{+\infty}$ be (G,η) – pseudo orbit of g. Then for any $i \ge 0$ there exists $t_i \in G$ satisfying

$$d(t_i g(y_i), y_{i+1}) < \eta$$
.

According to that h^{-1} is a Lipschitz map with Lipschitz constant L_2 , we can get that

$$d(h^{-1}(t_ig(y_i)), h^{-1}(y_{i+1})) \le L_2 d(t_ig(y_i), y_{i+1}) < L_2 \eta.$$

According to that h is an equivalent map and $h \circ f = g \circ h$, for any $i \ge 0$ we have that

$$d(t_i f(h^{-1}(y_i)), h^{-1}(y_{i+1})) < L_2 \eta < \varepsilon_0$$
.

Thus $h^{-1}(y_i)$ is $(G, L_2\eta)$ – pseudo orbit of f. According to that f has the G – Lipschitz shadowing property, there exists $x \in X$ such that for any nonnegative integer $i \ge 0$ there exists $p_i \in G$ satisfying

$$d(f^{i}(x), p_{i}h^{-1}(y_{i})) < L_{0}L_{2}\eta.$$

Since h is a Lipschitz map with Lipschitz constant L_1 , we can obtain that

$$d(h(f^{i}(x)), h(p_{i}h^{-1}(y_{i}))) \leq L_{1}d(f^{i}(x), p_{i}h^{-1}(y_{i})) < L_{0}L_{1}L_{2}\eta.$$

According to that h is an equivalent map and $h \circ f = g \circ h$, for any $i \ge 0$ we have that

$$d(g^{i}(h(z), p_{i}y_{i}) < L_{0}L_{1}L_{2}\eta = L_{3}\eta.$$

Hence the map g has G-Lipschitz shadowing property.

The method is the same as above and the proof is omitted here. Thus, we complete the proof.

□

4. G-Lipschitz shadowing property of iterative map

Definition 4.1. [23] Let (X,d) be a metric G – space. The metric d is said to be invariant to the topological group G provided that d(x, y) = d(gx, gy) for all $x, y \in X$ and $g \in G$.

Definition 4.2. [24] Let *G* be topological group. *G* is said to be commutative provided that $p \cdot g = g \cdot p$ for all $p, g \in G$.

Theorem 4.3. Let (X,d) be a compact metric G-space, $f: X \to X$ be an equivalent Lipschitz map with Lipschitz constant L and the metric d be invariant to the topological group G where G is commutative. Then the map f has the G-Lipschitz shadowing property if and only if for any positive integer $k \ge 2$ the iterative map f^k has the G-Lipschitz shadowing property.

Proof. Suppose that the map f has the G-Lipschitz shadowing property. Then there exists positive constant $L_0 > 0$ and $\varepsilon_0 > 0$ such that for any $0 < \varepsilon < \varepsilon_0$ and (G, ε) - pseudo orbit $\{x_i\}_{i \geq 0}$ of f there exists a point f such that the sequence $\{x_i\}_{i \geq 0}$ is $(G, L_0 \varepsilon)$ - shadowed by the point f . Let $\{y_i\}_{i = 0}^{+\infty}$ be (G, ε) - pseudo orbit of f and f are f and f and f are f are f are f are f and f are f are f are f are f and f are f are f and f are f are f are f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f are f are f are f are f and f are f and f are f are f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f are f and f are f are f are f are f and f are f are f and f are f and f are f are f are f and f are f and f are f a

$$d(f^{i}(x), g_{i}x_{i}) < L_{0}\varepsilon.$$

Hence for any $i \ge 0$ we have that

$$d(f^{ki}(x), g_{ki}x_{ki}) < L_0\varepsilon.$$

That is,

$$d((f^k)^i(x), g_{ki}y_i) < L_0\varepsilon$$
.

So, the iterative map f^k has the G-Lipschitz shadowing property.

Suppose that the iterative map f^k has the G-Lipschitz shadowing property. Then there exists $L_1 > 0$ and $\varepsilon_1 > 0$ such that for any $0 < \delta < \varepsilon_1$ and any (G, δ) - pseudo orbit $\{x_i\}_{i \ge 0}$ of f^k there exists a point $z \in X$ such that the sequence $\{x_i\}_{i \ge 0}$ is $(G, L_1\delta)$ - shadowed by the point z.

Case1. When $L \ge 1$. Write

$$L_2 = L^{k-1} + L^{k-2} + \dots + L + 1$$
.

For any $0 < \eta < \frac{\varepsilon_1}{L_2}$, let $\{x_i\}_{i=0}^{\infty}$ be (G,η) – pseudo orbit $\{x_i\}_{i\geq 0}$ of f. Then for any $i \geq 0$ there exists $t_i \in G$ satisfying

$$d(t_i f(x_i), x_{i+1}) < \eta. \tag{1}$$

Hence for any $i \ge 0$ we have that

$$d(t_{ki}f(x_{ki}), x_{ki+1}) < \eta.$$

$$d(t_{ki+1}f(x_{ki+1}), x_{ki+2}) < \eta.$$

$$d(t_{ki+2}f(x_{ki+2}), x_{ki+3}) < \eta.$$

$$.....$$

$$d(t_{ki+k-2}f(x_{ki+k-2}), x_{ki+k-1}) < \eta.$$

$$d(t_{ki+k-1}f(x_{ki+k-1}), x_{ki+k}) < \eta.$$

According to that f is an equivalent Lipschitz map with Lipschitz constant L, we can get that

$$\begin{split} d(t_{ki}f^k(x_{ki}),f^{k-1}(x_{ki+1})) &< L^{k-1}\eta \;. \\ d(t_{ki+1}f^{k-1}(x_{ki+1}),f^{k-2}(x_{ki+2})) &< L^{k-2}\eta \;. \\ d(t_{ki+2}f^{k-2}(x_{ki+2}),f^{k-3}(x_{ki+3})) &< L^{k-3}\eta \;. \\ & \qquad \cdots \\ d(t_{ki+k-2}f^2(x_{ki+k-2}),f(x_{ki+k-1})) &< L\eta \;. \\ d(t_{ki+k-1}f(x_{ki+k-1}),x_{ki+k}) &< \eta \;. \end{split}$$

Since d is invariant to the topological group G and G is commutative, we can obtain that

$$\begin{split} &d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k}(x_{ki}),t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k-1}(x_{ki+1})) < L^{k-1}\eta \ . \\ \\ &d(t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k-1}(x_{ki+1}),t_{ki+2}\cdots t_{ki+k-1}f^{k-2}(x_{ki+2})) < L^{k-2}\eta \ . \\ \\ &d(t_{ki+2}t_{ki+3}\cdots t_{ki+k-1}f^{k-2}(x_{ki+2}),t_{ki+3}\cdots t_{ki+k-1}f^{k-3}(x_{ki+3})) < L^{k-3}\eta \ . \end{split}$$

.

$$d(t_{ki+k-2}t_{ki+k-1}f^{2}(x_{ki+k-2}),t_{ki+k-1}f(x_{ki+k-1})) < L\eta.$$

$$d(t_{ki+k-1}f(x_{ki+k-1}),x_{ki+k}) < \eta.$$

Let $y_i = x_{ki}, i \ge 0$. Thus, for any $i \ge 0$ we have that

$$d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k}(y_{i}), y_{i+1}) = d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k}(x_{ki}), x_{ki+k}) <$$

$$d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k}(x_{ki}), t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k-1}(x_{ki+1})) +$$

$$d(t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k-1}(x_{ki+1}), t_{ki+2}\cdots t_{ki+k-1}f^{k-2}(x_{ki+2})) +$$

$$d(t_{ki+2}t_{ki+3}\cdots t_{ki+k-1}f^{k-2}(x_{ki+2}), t_{ki+3}\cdots t_{ki+k-1}f^{k-3}(x_{ki+3})) +$$

$$\cdots$$

$$d(t_{ki+2}t_{ki+3}\cdots t_{ki+k-1}f^{2}(x_{ki+2}), t_{ki+3}\cdots t_{ki+k-1}f^{k-3}(x_{ki+3})) +$$

$$d(t_{ki+2}t_{ki+3}\cdots t_{ki+k-1}f^{2}(x_{ki+2}), t_{ki+3}\cdots t_{ki+k-1}f^{k-3}(x_{ki+3})) +$$

$$C$$

$$d(t_{ki+1}t_{ki+2}t_{ki+1}f^{2}(x_{ki+2}), t_{ki+1}t_{ki+1}f^{2}(x_{ki+1})) +$$

$$d(t_{ki+1}t_{ki+2}t_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1})) +$$

$$d(t_{ki+1}t_{ki+2}t_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1})) +$$

$$d(t_{ki+1}t_{ki+2}t_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1})) +$$

$$d(t_{ki+1}t_{ki+2}t_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1})) +$$

$$d(t_{ki+1}t_{ki+2}t_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}) +$$

$$d(t_{ki+1}t_{ki+2}t_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}) +$$

$$d(t_{ki+1}t_{ki+2}t_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}) +$$

$$d(t_{ki+1}t_{ki+1}t_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}), x_{ki+1}f^{2}(x_{ki+1}) +$$

$$d(t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{ki+1}t_{k$$

Hence $\{y_i\}_{i=0}^{\infty}$ is $(G, L_2\eta)$ – pseudo orbit $\{x_i\}_{i\geq 0}$ of f^k . According to that f^k has the G-Lipschitz shadowing property, there exists $z \in X$ such that for any nonnegative integer $i \geq 0$ there exists $p_i \in G$ satisfying

$$d((f^k)^i(z), p_i y_i) < L_1 L_2 \eta$$
.

That is, for any $i \ge 0$, we have that

$$d(f^{ki}(z), p_i x_{ki}) < L_1 L_2 \eta. (2)$$

By Eq (1) for any $0 \le j \le k - 1$ and $i \ge 0$ we can get that

$$d(t_{ki}f(x_{ki}), x_{ki+1}) < \eta.$$

$$d(t_{ki+1}f(x_{ki+1}), x_{ki+2}) < \eta.$$

$$d(t_{ki+2}f(x_{ki+2}), x_{ki+3}) < \eta.$$

$$.....$$

$$d(t_{ki+j-2}f(x_{ki+j-2}), x_{ki+j-1}) < \eta.$$

$$d(t_{ki+j-1}f(x_{ki+j-1}), x_{ki+j}) < \eta.$$

According to that f is an equivalent Lipschitz map with Lipschitz constant L, we can get that

$$d(t_{ki}f^{j}(x_{ki}), f^{j-1}(x_{ki+1})) < L^{j-1}\eta$$
.

$$\begin{split} d(t_{ki+1}f^{j-1}(x_{ki+1}),f^{j-2}(x_{ki+2})) &< L^{j-2}\eta \ . \\ d(t_{ki+2}f^{j-2}(x_{ki+2}),f^{j-3}(x_{ki+3})) &< L^{j-3}\eta \ . \\ & \cdots \\ d(t_{ki+j-2}f^{2}(x_{ki+j-2}),x_{ki+j-1}) &< L\eta \ . \\ d(t_{ki+j-1}f(x_{ki+j-1}),x_{ki+j}) &< \eta \ . \end{split}$$

Since d is invariant to the topological group G and G is commutative, we can obtain that

$$\begin{split} d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j}(x_{ki}), t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j-1}(x_{ki+1})) &< L^{j-1}\eta \;. \\ \\ d(t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j-1}(x_{ki+1}), t_{ki+2}\cdots t_{ki+j-1}f^{j-2}(x_{ki+2})) &< L^{j-2}\eta \;. \\ \\ d(t_{ki+2}t_{ki+3}\cdots t_{ki+j-1}f^{j-2}(x_{ki+2}), t_{ki+3}\cdots t_{ki+j-1}f^{j-3}(x_{ki+3})) &< L^{j-3}\eta \;. \\ \\ & \cdots \\ \\ d(t_{ki+j-2}t_{ki+j-1}f^{2}(x_{ki+j-2}), t_{ki+j-1}f(x_{ki+j-1})) &< L\eta \;. \\ \\ d(t_{ki+j-1}f(x_{ki+j-1}), x_{ki+j}) &< \eta \;. \end{split}$$

By Eq (2) and according to that f is an equivalent Lipschitz map with Lipschitz constant L and d is invariant to the topological group, we can obtain that

$$d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}p_i^{-1}f^{ki+j}(z),t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j}(x_{ki})) < L^{j}L_1L_2\eta.$$

Hence, we have that

$$d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}p_{i}^{-1}f^{ki+j}(z),x_{ki+j}) < d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}p_{i}^{-1}f^{ki+j}(z),t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j}(x_{ki})) + \\ d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j}(x_{ki}),t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j-1}(x_{ki+1})) + \\ d(t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j-1}(x_{ki+1}),t_{ki+2}\cdots t_{ki+j-1}f^{j-2}(x_{ki+2})) + \\ d(t_{ki+2}t_{ki+3}\cdots t_{ki+j-1}f^{j-2}(x_{ki+2}),t_{ki+3}\cdots t_{ki+j-1}f^{j-3}(x_{ki+3})) + \\ \cdots \\ d(t_{ki+j-2}t_{ki+j-1}f^{2}(x_{ki+j-2}),t_{ki+i-1}f(x_{ki+j-1})) + \\ d(t_{ki+j-1}f(x_{ki+j-1}),x_{ki+j}) < \\ L^{j}L_{1}L_{2}\eta + L^{j-1}\eta + L^{j-2}\eta + L^{j-3}\eta + \cdots + L\eta + \eta < \\ (L^{k}L_{1}L_{2} + KL^{K})\eta < (L_{1}L_{2} + K)L^{K}\eta.$$

That is,

$$d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+i-1}p_i^{-1}f^{ki+j}(z), x_{ki+j}) < (L_1L_2 + K)L^K\eta.$$
(3)

By Eqs (2) and (3) for any $i \ge 0$ there exists $s_i \in G$ satisfying

$$d(f^{i}(z), s_{i}x_{i}) < (L_{1}L_{2} + K)L^{K}\eta$$
.

So, when $L \ge 1$, the map f has the G-Lipschitz shadowing property.

Case2. When 0 < L < 1. For any $0 < \eta < \frac{\varepsilon_1}{k}$, let $\{x_i\}_{i=0}^{\infty}$ be (G, η) – pseudo orbit $\{x_i\}_{i\geq 0}$ of f. Then for any $i \geq 0$ there exists $t_i \in G$ satisfying

$$d(t_i f(x_i), x_{i+1}) < \eta. \tag{4}$$

Hence, for any $i \ge 0$ we have that

$$d(t_{ki}f(x_{ki}), x_{ki+1}) < \eta.$$

$$d(t_{ki+1}f(x_{ki+1}), x_{ki+2}) < \eta.$$

$$d(t_{ki+2}f(x_{ki+2}), x_{ki+3}) < \eta.$$

$$.....$$

$$d(t_{ki+k-2}f(x_{ki+2}), x_{ki+k-1}) < \eta.$$

$$d(t_{ki+k-1}f(x_{ki+k-1}), x_{ki+k-1}) < \eta.$$

According to that f is an equivalent Lipschitz map with Lipschitz constant L, we can get that

$$\begin{split} d(t_{ki}f^k(x_{ki}),f^{k-1}(x_{ki+1})) &< L^{k-1}\eta \ . \\ d(t_{ki+1}f^{k-1}(x_{ki+1}),f^{k-2}(x_{ki+2})) &< L^{k-2}\eta \ . \\ d(t_{ki+2}f^{k-2}(x_{ki+2}),f^{k-3}(x_{ki+3})) &< L^{k-3}\eta \ . \\ & \qquad . \\ \\ d(t_{ki+k-2}f^2(x_{ki+k-2}),t_{ki+k-1}f(x_{ki+k-1})) &< L\eta \ . \\ \\ d(t_{ki+k-1}f(x_{ki+k-1}),x_{ki+k}) &< \eta \ . \end{split}$$

Since d is invariant to the topological group G and G is commutative, we can obtain that

$$\begin{split} d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k}(x_{ki}),t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k-1}(x_{ki+1})) < L^{k-1}\eta \,. \\ d(t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k-1}(x_{ki+1}),t_{ki+2}\cdots t_{ki+k-1}f^{k-2}(x_{ki+2})) < L^{k-2}\eta \,. \\ d(t_{ki+2}t_{ki+3}\cdots t_{ki+k-1}f^{k-2}(x_{ki+2}),t_{ki+3}\cdots t_{ki+k-1}f^{k-3}(x_{ki+3})) < L^{k-3}\eta \,. \\ & \qquad \qquad \cdots \\ d(t_{ki+k-2}t_{ki+k-1}f^{2}(x_{ki+k-2}),t_{ki+k-1}f(x_{ki+k-1})) < L\eta \,. \end{split}$$

$$d(t_{ki+k-1}f(x_{ki+k-1}),x_{ki+k}) < \eta$$
.

Write $y_i = x_{ki}$ where $i \ge 0$. We have that

$$\begin{split} d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+i-1}f^{k}(y_{i}),y_{i+1}) &= d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k}(x_{ki}),x_{ki+k}) < \\ d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k}(x_{ki}),t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k-1}(x_{ki+1})) + \\ d(t_{ki+1}t_{ki+2}\cdots t_{ki+k-1}f^{k-1}(x_{ki+1}),t_{ki+2}\cdots t_{ki+k-1}f^{k-2}(x_{ki+2})) + \\ d(t_{ki+2}t_{ki+3}\cdots t_{ki+k-1}f^{k-2}(x_{ki+2}),t_{ki+3}\cdots t_{ki+k-1}f^{k-3}(x_{ki+3})) + \\ & \cdots \\ d(t_{ki+k-2}t_{ki+k-1}f^{2}(x_{ki+2}),t_{ki+k-1}f(x_{ki+k-1})) + \\ d(t_{ki+k-1}f(x_{ki+k-1}),x_{ki+k}) < \\ L^{k-1}\eta + L^{k-2}\eta + L^{k-3}\eta + L^{k-4}\eta + \cdots + L\eta + \eta < k\eta \; . \end{split}$$

Hence $\{y_i\}_{i=0}^{\infty}$ is $(G, k\eta)$ – pseudo orbit $\{x_i\}_{i\geq 0}$ of f^k . According to that f^k has the G-Lipschitz shadowing property, there exists $z \in X$ such that for any nonnegative integer $i \geq 0$ there exists $p_i \in G$ satisfying

$$d((f^k)^i(z), p_i y_i) < L_1 k \eta.$$

That is, for any $i \ge 0$, we have that

$$d(f^{ki}(z), p_i x_{ki}) < L_i k \eta. \tag{5}$$

By Eq (4), for any $0 \le j \le k - 1$ and $i \ge 0$ we can get that

$$d(t_{ki}f(x_{ki}), x_{ki+1}) < \eta.$$

$$d(t_{ki+1}f(x_{ki+1}), x_{ki+2}) < \eta.$$

$$d(t_{ki+2}f(x_{ki+2}), x_{ki+3}) < \eta.$$

$$.....$$

$$d(t_{ki+j-2}f(x_{ki+j-2}), x_{ki+j-1}) < \eta.$$

$$d(t_{ki+j-1}f(x_{ki+j-1}), x_{ki+j}) < \eta.$$

According to that f is an equivalent Lipschitz map with Lipschitz constant L, we can get that

$$d(t_{ki}f^{j}(x_{ki}), f^{j-1}(x_{ki+1})) < L^{j-1}\eta.$$

$$d(t_{ki+1}f^{j-1}(x_{ki+1}), f^{j-2}(x_{ki+2})) < L^{j-2}\eta.$$

$$d(t_{ki+2}f^{j-2}(x_{ki+2}), f^{j-3}(x_{ki+3})) < L^{j-3}\eta.$$

$$d(t_{ki+j-2}f^{2}(x_{ki+j-2}),t_{ki+j-1}f(x_{ki+j-1})) < L\eta.$$

$$d(t_{ki+j-1}f(x_{ki+j-1}),x_{ki+j}) < \eta.$$

Since d is invariant to the topological group G and G is commutative, we can obtain that

$$\begin{split} d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j}(x_{ki}), t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j-1}(x_{ki+1})) &< L^{j-1}\eta \;. \\ d(t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j-1}(x_{ki+1}), t_{ki+2}\cdots t_{ki+j-1}f^{j-2}(x_{ki+2})) &< L^{j-2}\eta \;. \\ d(t_{ki+2}t_{ki+3}\cdots t_{ki+j-1}f^{j-2}(x_{ki+2}), t_{ki+3}\cdots t_{ki+j-1}f^{j-3}(x_{ki+3})) &< L^{j-3}\eta \;. \\ & \cdots \\ d(t_{ki+j-2}t_{ki+j-1}f^{2}(x_{ki+j-2}), t_{ki+j-1}f(x_{ki+j-1})) &< L\eta \;. \\ d(t_{ki+j-1}f(x_{ki+j-1}), x_{ki+j}) &< \eta \;. \end{split}$$

By Eq (5) and according to that f is an equivalent Lipschitz map with Lipschitz constant L and d is invariant to the topological group, we can obtain that

$$d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}p_i^{-1}f^{ki+j}(z),t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j}(x_{ki}))< L^jL_1k\eta\;.$$

Thus, we have that

$$d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}p_{i}^{-1}f^{ki+j}(z),x_{ki+j}) < d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}p_{i}^{-1}f^{ki+j}(z),t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j}(x_{ki})) + \\ d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j}(x_{ki}),t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j-1}(x_{ki+1})) + \\ d(t_{ki+1}t_{ki+2}\cdots t_{ki+j-1}f^{j-1}(x_{ki+1}),t_{ki+2}\cdots t_{ki+j-1}f^{j-2}(x_{ki+2})) + \\ d(t_{ki+2}t_{ki+3}\cdots t_{ki+j-1}f^{j-2}(x_{ki+2}),t_{ki+3}\cdots t_{ki+j-1}f^{j-3}(x_{ki+3})) + \\ \cdots \\ d(t_{ki+j-2}t_{ki+j-1}f^{2}(x_{ki+j-2}),t_{ki+j-1}f(x_{ki+j-1})) + \\ d(t_{ki+j-1}f(x_{ki+j-1}),x_{ki+j}) < \\ L^{j}L_{1}k\eta + L^{j-1}\eta + L^{j-2}\eta + L^{j-3}\eta + \cdots + L\eta + \eta < L_{1}k\eta + k\eta = k(L_{1}+1)\eta.$$

That is,

$$d(t_{ki}t_{ki+1}t_{ki+2}\cdots t_{ki+i-1}p_i^{-1}f^{ki+j}(z), x_{ki+j}) < k(L_1+1)\eta.$$
(6)

By Eqs (5) and (6) for any $i \ge 0$ there exists $s_i \in G$ satisfying

$$d(f^{i}(z), s_{i}x_{i}) < k(L_{i} + 1)\eta$$
.

Hence, when 0 < L < 1, the map f has the G-Lipschitz shadowing property. Thus, we complete the proof. \Box

5. Conclusions

Firstly, we study the dynamical properties of (G, w) – Chaos in the inverse limit space under group action in the paper. We obtained that the self-map f is (G, w) – chaotic, the shift map σ is (G, w) – chaotic. The conclusion generalizes the corresponding results of w – Chaos given in Li [1]. Secondly, the dynamical properties of G – Lipschitz shadowing property are studied under topological G – conjugate and iterative systems. The following conclusions are obtained. (1) If f is topologically G – conjugate to g, then the map f has G – Lipschitz shadowing property if and only if the map g has G – Lipschitz shadowing property if and only if the iterative map f has the G – Lipschitz shadowing property if and only if the iterative map f has the G – Lipschitz shadowing property. These results enrich the theory of topological G – conjugate and iterative system. It provided the theoretical basis and scientific foundation for the application of various shadowing property in computational mathematics and biological mathematics.

Acknowledgments

Research was partially supported by the NSF of Guangxi Province (2020JJA110021) and construction project of Wuzhou University of China (2020B007).

Conflict of interest

The author declares that there are no conflicts of interest regarding the publication of this article.

References

- 1. S. H. Li, Dynamical properties of the shift maps on the inverse limit spaces, *Ergod. Theor. Dyn. Syst.*, **12** (1992), 95–108. https://doi.org/10.1017/S0143385700006611
- 2. S. Shah, T. Das, R. Das, Distributional chaos on uniform spaces, *Qual. Theory Dyn. Syst.*, **19** (2020), 4. https://doi.org/10.1007/s12346-020-00344-x
- 3. M. Kostic, Disjoint distributional chaos in Frechet spaces, *Results Math.*, **75** (2020), 83. https://doi.org/10.1007/s00025-020-01210-7
- 4. H. Y. Wang, Q. Liu, Ergodic shadowing properties of iterated function systems, *Bull. Malays. Math. Sci. Soc.*, **44** (2021), 767–783. https://doi.org/10.1007/s40840-020-00976-x
- 5. H. Y. Wang, P. Zeng, Partial shadowing of average-pseudo-orbits, *Sci. Sin. Math.*, **46** (2016), 781–792. https://doi.org/10.1360/N012014-00256
- 6. R. S. Li, A note on chaos and the shadowing property, *Int. J. Gen. Syst.*, **45** (2016), 675–688. https://doi.org/10.1080/03081079.2015.1076404
- 7. R. S. Li, A note on decay of correlation implies chaos in the sense of Devaney, *Appl. Math. Model.*, **39** (2015), 6705–6710. https://doi.org/10.1016/j.apm.2015.02.019
- 8. R. S. Li, X. L. Zhou, A Note on ergodicity of systems with the asymptotic average shadowing property, *Discrete Dyn. Nat. Soc.*, **2011** (2011), 1–6. https://doi.org/10.1155/2011/360583

- 9. R. S. Li, X. L. Zhou, A note on chaos in product maps, *Turk. J. Math.*, **37** (2013), 665–675. https://doi.org/10.3906/mat-1101-71
- 10. S. H. Li, *w* chaos and topological entropy, *T. Am. Math. Soc.*, **339** (1993), 243–249. https://doi.org/10.2307/2154217
- 11. H. Shao, G. R. Chen, Y. M. Shi, Some criteria of chaos in non-autonomous discrete dynamical systems, *J. Differ. Equ. Appl.*, **26** (2020), 295–308. https://doi.org/10.1080/10236198.2020.1725496
- 12. G. F. Liao, L. D. Wang, X. D. Duan, A chaotic function with a distributively scrambled set of full Lebesgue measure, *Nonlinear Anal.-Theor.*, **66** (2007), 2274–2280. https://doi.org/10.1016/j.na.2006.03.018
- 13. E. D'Aniello, U. B. Darji, M. Maiuriello, Generalized hyperbolicity and shadowing in L^p spaces, J. Differ. Equ., **298** (2021), 68–94. https://doi.org/10.1016/j.jde.2021.06.038
- 14. L. Wang, J. L. Zhang, Lipschitz shadowing property for 1-dimensional subsystems of Zk-actions, *J. Math. Res. Appl.*, **41** (2021), 615–628. https://doi.org/10.3770/j.issn:2095-2651.2021.06.006
- 15. P. A. Guihéneuf, T. Lefeuvre, On the genericity of the shadowing property for conservative homeomorphisms, *Proc. Amer. Math. Soc.*, **146** (2018), 4225–4237. https://doi.org/10.1090/proc/13526
- 16. K. Sakai, Various shadowing properties for positively expansive maps, *Topol. Appl.*, **131** (2003), 15–31. https://doi.org/10.1016/s0166-8641(02)00260-2
- 17. Z. J. Ji, G. R. Zhang, J. X. Tu, Asymptotic average and Lipschitz shadowing property of the product map under group action, *J. Hebei Normal Univ. (Nat. Sci.)*, **43** (2019), 471–478. https://doi.org/10.13763/j.cnki.jhebnu.nse.2019.06.004.
- 18. S. A. Ahmadi, Invariants of topological G-conjugacy on G-Spaces, *Math. Morav.*, **18-1** (2014), 67–75.
- 19. Z. J. Ji, Dynamical property of product space and the inverse limit space of a topological group action, Master' thesis, Guangxi University, 2014.
- 20. S. Ekta, D. Tas, Consequences of shadowing property of G-spaces, *Int. J. Math. Anal.*, **7** (2013), 579–588. https://doi.org/10.12988/ijma.2013.13056
- 21. Z. J. Ji, G. J. Qin, G. R. Zhang, Dynamical properties of the shift map in the inverse limit space of a topological group action, *J. Anhui Univ. (Nat. Sci.)*, **44** (2020), 41–45. https://doi.org/10.3969/j.issn.1000-2162.2020.05.005
- 22. L. S. Block, W. A. Coppel, *Dynamics in one dimension*, Berlin: Springer-Verlag, 1992. https://doi.org/10.1007/BFb0084762
- 23. T. Choi, J. Kim, Decomposition theorem on G-spaces, Osaka J. Math., 46 (2009), 87–104.
- 24. Z. Balogh, V. Laver, Unitary subgroups of commutative group algebras of the characteristic two, *Ukr. Math. J.*, **72** (2020), 871–879. https://doi.org/10.1007/s11253-020-01829-3

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)