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Abstract: In this paper, we introduce the concepts of (G,w)— Chaos and G- Lipschitz shadowing
property. We study the dynamical properties of (G,w)— Chaos in the inverse limit space under group
action. In addition, we study the dynamical properties of G — Lipschitz shadowing property respectively
under topological G —conjugate and iterative systems. The following conclusions are obtained. (1) Let
(X,,G, d,o) be the inverse limit space of (X,G,d, f)under group action. If the self-map f is(G,w) -

chaotic, the shift map o is (G, w) - chaotic; (2) Let(X,d) be a metric G—space and f be topologically G-

conjugate to g . Then the map f has G- Lipschitz shadowing property if and only if the map g hasG -

Lipschitz shadowing property. (3) Let (X,d) be a metric G—space and f be an equivariant Lipschitz map
from X to X . Then for any positive integerk > 2, the map f has the G - Lipschitz shadowing property if
and only if the iterative map f “has the G — Lipschitz shadowing property. These results enrich the theory
of topological G —conjugate, iterative system and the inverse limit space under group action.
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1. Introduction

Chaos and shadowing property are important concepts in dynamical systems. Many scholars have
studied their dynamical properties. See [1-16] for relevant results. For example, Li [1] proved that if
the self-map f is w—chaotic, then the shift map o is w—chaotic; Shah, Das and Das [2] proved that if a

uniformly continuous self-map of a uniform locally compact Hausdorff space has topological weak
specification property, then it admits a topologically distributionally scrambled set of type 3;

Kostic [3] introduced two different notions of disjoint distributional chaos for sequences of continuous

linear operators in Frechet spaces; Wang and Liu [4] generalized the notion of the ergodic shadowing
property to the iterated function systems and proved some related theorems; Wang and Zeng [5] studied
the relationship between average shadowing property andg—average shadowing property; for any
k=0and f e H(X), Li [6] proposed that f is chaotic if and only if f*“is chaotic; Li [7] proved that a
chaotic semi-flow 8 on a manifold M in the sense of Devaney with some assumptions is an expanding
semi-flow; Li and Zhou [8] presented that if a continuous Lyapunov stable map f from a compact
metric space X into itself is topologically transitive and has the asymptotic average shadowing property,
then X is consisting of one point; Li [9] proved that if the set of all periodic points of¢x¢ is dense in
X xY ,thengxé 1is chaotic.

According to the concept of w—Chaos [1], we introduced the definition of (G,w)- Chaos. Let
(X,d) be a metric G-space and f be a continuous map from X to X . We say thatS is an (G,w)-
scrambled set if for any x,yeS with x#y , the following three conditions are satisfied: (1)
W, (X, f)—wg (y, f) is uncountable; (2) we(x, f)Nwg(y, f) 1s nonempty; (3) wy(x, f) « P,(f). The map f 1s said
to be (G, w) - chaotic if there exists an uncountable (G,w)— scrambled set. Then we proved that if the
self-map is (G, w) — chaotic, the shift map o 1s (G, w) - chaotic in the inverse limit space under action
group which generalizes the conclusion of w—Chaos given by Li [1].

Let (X,d) be a metric G-space and f be a continuous map from X to X . The map f has G-
Lipschitz shadowing property if there exists positive constant L >0 and 6, >0 such that for any
0<d<d,and (G,s)-pseudo orbit{x},, of f there exists a pointxe X such that the sequence {x}-,is
(G,Ls) - shadowed by the point x [17]. Finally, the dynamical properties of G- Lipschitz shadowing
property are studied under topological G—conjugate and iterative systems. We derive that (1) If f is
topologically G —conjugate to g , then the map f has G — Lipschitz shadowing property if and only if the
map g has G- Lipschitz shadowing property. (2) For any positive integerk > 2, the map f has the G-
Lipschitz shadowing property if and only if the iterative map f* has the G- Lipschitz shadowing
property. These results enrich the theory of topological G —conjugate and iterative system.

Next, I will give the proof of above three conclusions in sections 2—4.

2. (G,w)-Chaos in the inverse limit space under group action

Definition 2.1. [18] Let (X, d) be a metric G —space, G be a topological group and ¢ be a continuous map
from Gx X to X . The (X,G,p)orX is called to be a metric G—space if the following conditions are

satisfied:
(1) (e, x)=xfor all xe X whereeis the identity of G ;

(2) ¢(9,,9(9,,%) = 9(9,9,,x) where for allxe X and allg,, g, €G.
If X is compact, then X is also said to be a compact metric G —space. For the convenience, ¢(g, X)
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is usually abbreviated as gx .
Definition 2.2. [19] Let(X,d) be a metric space and f be a continuous map from X to X . We say that
X, 1s the inverse limit spaces of X if we write

X =X %, %, ) 1 F(%i,4) =%, Vi= 0},

Where letlim(X, f) denoted by the inverse limit spaces X .
The metricd in X, is defined by

— o e d(x,y,
a(x,y)=y 2 Y),
0 2
where X = (X5, %, X, =) € X;and y = (Yo, ¥, ¥, =) € X .
The shift mapo: X, — X, is defined by

o (X) = (f (%), X %, ) .

For everyi > 0 the projection map =, : X, — X is defined by
T (X) =X .

Thus (X, ,d)is compact metric space and the shift map o is homeomorphism.
Definition 2.3. [19] Let(X,d) be a metric G—space and f be equivariant map from X to X . Write

G={(9.9.9-):g<G}andG, =[]G,,

i=0

whereG, =G,i>0.
The map¢:Gx X, — X, is defined by

©(3,X)=T-X = (9%, 9%, 9%, --),

whereg=(9,9,9--)eGand X = (X, %, %, -~) € X, .

Then(X,,G, d,o)is a metric G —space.

Let(X,G,d, f) and (X,,G, d,o)are shown as above. The space (X, ,G, d,o)is called to be the inverse
limit spaces of (X,G,d, f) under group action.
Definition 2.4. [20] Let (X,d) be a metric G—space and f be a continuous map from X to X .We say that
the map f is an equivariant map if we have f (px) = pf (x) forallxe X and all pe G .
Definition 2.5. [21] Let(X,d) be a metric G-space and f be a continuous map from X to X . The point
xis called to be anG—periodic point if there exists positive integer m and g G such that gf " (x) = x.
Denoted by P, (f) the G—periodic point set of f .
Definition 2.6. [4] Let(X,d) be a metric G—space and f be a continuous map from X to X . The point y
is said to be an G -limit point of the point x if there exists{n;} = N, and{g,} = G such that limg, f "(X)=y.
Denoted by W, (X, f)the G-limit point set of the point X .
Definition 2.7. [21] Let(X,d) be a metric space and f be a continuous map from X to X . If f(A)c A
then we say that the set A is invariant to the map f .
Definition 2.8. [1] Let(X,d) be a metric space and f be a continuous map from X to X . We say that$ is
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anw-scrambled set if for any x, y e S with x # y the following three conditions are satisfied:
(1) w(x, f)—w(y, f)is uncountable;
(2) w(x, f)Nw(y, f)is not empty;
(3) w(x, f)z P(f).
We say that the map f is w—chaotic if there exists an uncountable w— scrambled set.
Remark 2.9. According to the definition of w—Chaos in metric space, we give the concept of (G, w)—

Chaos in metric G - space.
Definition 2.1. [1] Let(X,d) be a metric G-space and f be a continuous map from X to X . We say that

S is an (G, w) - scrambled set if for any x, y e S with x # y the following three conditions are satisfied:
(1) wg(x, f)—w(y, f)is uncountable;

(2) ws(x, f)Nwg(y, f)is not empty;

(3) we(x, f) @ Pu(f).

We say that the map f is (G, w) — chaotic if there exists an uncountable (G, w) — scrambled set.
Definition 2.11. [22] Let(X,d) be a metric space and f be a continuous map from X to X . The set Ais
said to be a minimal set if for any x e Awe haveorb(x, f) = A.

Lemma 2.12. [21] Let(X,,G, d,o) be the inverse limit space of (X,G,d, f) under group action, f be an

equivariant homeomorphism map from X to X and X =(X,, %, X, :+-) € X, . Then we have
W (X, 0) = lim(wg (X,, f), f).

Lemma 2.13. [21] Let(X,d) be a metric G—space, f be an equivariant homeomorphism map from X to
X and x € X . Then we have thatw, (X, f)is closed and

f(ws (X, F))=wg(x, f).

Lemma 2.14. [21] Let(X,,G, d,o) be the inverse limit space of (X,G,d, f) under group action and f be

an equivariant homeomorphism map from X to X.Then we have
Fe (o) = lim(P, (), f).

Theorem 2.15. Let (X, ,G, d,o) be the inverse limit space of (X,G,d, f) under group action and f be an
equivariant homeomorphism map from X to X . If the self-map f is (G, w) — chaotic, then the shift map
o 18 (G, w) - chaotic.

Proof. Suppose that the self-map f is (G,w)- chaotic. Then there exists an uncountable (G,w)-
scrambled setS . Write

D'={X:Xen,'(x),xeS}.
Thus D’ is an uncountable set in X, . Next, we will show that D’is an (G, w) — scrambled set in X, . Let
X =(Xg: X, X, -y e D'and ¥ = (Y,, ¥, Y, ) e D'withx # .

According to that f is an homeomorphism map, the point x, and y, are two different points inS . By the
definition of (G, w) — scrambled setS , we have the following three conditions:

(1) wg(Xy, f)—wg(Y,, f)is uncountable;

(2) Wg (%, F) W (¥, T) is not empty;
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(3) We(x, ) Py(F).
Firstly, we will show thatw; (X, o) —w; (Y, o) is uncountable. Let

S0 eWG(XOV f)_WG(yO’ f) .
By Lemmas 2.12 and 2.13, we have that
W (X, 0) = lim(wg (X,, f), f).
flwg (x, 1)) =wg (x, ).

Hence there exists S € W, (X, o) such thatz,(S) =s,. IfS € W, (V, o) then there exists positive integer

sequence{n.},andJ; =(9;,0;,9; ) € G such that
limg,o" (7) =5 .

Thus !Lrg 9, f"(y,) =5, - Sos, € W (Y,, f)which is absurd. HenceS ¢ w; (¥, o) . Thus, we have that

Sew,(X,0)-w;(Y,0).
That is,

So = 74 (5) € 7, (W (X, 0) =W (¥, 0))
Then we can get that
W, (%o, F)—=W5 (Y,, f) c 7, (W (X, 0) —wW (V,0)) .

According to that the set W, (X, f) —w; (Y, f) is uncountable, we can get that the set

7, (Wg (X, 0) =W (. 0))

is uncountable. Hence the setW; (X, o) —w; (Y, o) is uncountable.
Secondly, we will show thatw, (X, o) (1w, (Y, o) is not empty. By Lemma 2.12, we have that

W, (X,0) W (Y, 0) = lim(w, (X, ), F) N lim(wg (x,, ), )
= lim(wg (X, F)Nwg (%, T), T).

Since W, (X,, f)Nwg (X,, f)is a nonempty closed invariant subset and X is compact metric space, there

exists a minimal set M in W (X,, f) W (X,, f). Hence, we can get that
= lim(M, f) < lim(wg (%, F)Nwg (X, ), ).
So, we have that
w; (X, o) Nw, (YV,0) =D .

Finally, we will show W, (X,0) & P; (o) . Suppose W; (X,0) = P; (o) . By Lemmas 2.12 and 2.14, we
have that

W (X, 0) = lim(wg (x,, f), f).
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R (o) =lim(R; (), f).
Hence, we can get that

lim(w (x,, 1), ) < lim(P, (), ).
So, we have that
7, (im(w, (%, ), 1)) <, (lim (P, (), 1)).
That 1s
W, (%, F) = Py (f).

Thus, the assumption is absurd. So w,(X,0)z P;(c) . Hence the set D’ is an uncountable (G,w)—
scrambled set in X, . So, the shift map & is (G, w) - chaotic. Thus, we complete the proof. [

3. G-Lipschitz shadowing property under topological G-conjugate

Definition 3.1. [16] Let(X,d) be a metric space and f be a continuous map from X to X . The map f is
said to be a Lipschitz map if there exists a positive constant L such that for all x, y e X implies

d(f(x), f(y))<Ld(x,y).

Definition 3.2. [17] Let (X, d) be a metric G—space and f be a continuous map from X to X . The map f
has G- Lipschitz shadowing property if there exists positive constant L and o, such that for any
0<s<d,and (G,5)-pseudo orbit{x}., of f there exists a pointx € X such that the sequence{x}, is
(G, LS) - shadowed by the point x .

Definition 3.3. [18] Let(X,d) and (Y,d) be a metric G—space, f be a continuous map from X to X and ¢
be a continuous map fromyY toy . We say that f is topological G- conjugate to g abouth: X —»Y if
ho f =gohandh is an equivariant homeomorphism map from X toy .

Theorem 3.4. Let (X,d) be metric G- space, (Y,d) be metric G- space and f be topologically G-
conjugate to g about the maph: X — Y . Ifhis a Lipschitz map with Lipschitz constant L, from X toY and
h™is a Lipschitz map with Lipschitz constant L, fromY to X , then the map f has G- Lipschitz
shadowing property if and only if the map g has G - Lipschitz shadowing property.

Proof. Suppose that the map f has the G- Lipschitz shadowing property. Then there exists positive
constant L, >0 and g, > 0 such that for any 0 < ¢ < g, and (G, ) - pseudo orbit{x }.., of f there exists a
point x € X such that the sequence{x.}.., is (G, L,5) — shadowed by the point x . Let

L3=LOL1L2andgl=%.

2

Forany0 <7 <g, let{y,}”, be(G,n) - pseudo orbit of g . Then for anyi > O there existst; € G satisfying

dta(y), Yi) <7.
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According to thath™is a Lipschitz map with Lipschitz constant L,, we can get that

d(h(ta(y,)), h ™ (¥i.0) < LA a(y), Vi) < L7

According to that h is an equivalent map andho f =goh, for anyi > 0 we have that

d(t f (hil(Yi ) hil(yi+1)) <Ln<ég,.

Thush™(y;) is (G, L,n) — pseudo orbit of f . According to that f has the G- Lipschitz shadowing property,
there exists X € X such that for any nonnegative integeri > 0 there exists p; € G satisfying

d(f' (0, ph () < LLy7

Since h is a Lipschitz map with Lipschitz constantL,, we can obtain that

d(h(f' (). h(ph™ (v)) < Ld(f'(x), ph™(y) < LoLL7.

According to thath is an equivalent map andhe f =goh, for anyi >0 we have that

d(g'(h(2), py:) < Lbby = L.

Hence the map g has G - Lipschitz shadowing property.
The method is the same as above and the proof is omitted here. Thus, we complete the proof. o

4. G-Lipschitz shadowing property of iterative map

Definition 4.1. [23] Let (X,d) be a metric G- space. The metric d is said to be invariant to the
topological group G provided thatd(x,y) =d(gx,gy) for allx,ye X andg €G.

Definition 4.2. [24] Let G be topological group. G is said to be commutative provided that p-g=g-p
forallp,geG.

Theorem 4.3. Let(X,d) be a compact metric G-space, f : X — X be an equivalent Lipschitz map with

Lipschitz constant L and the metric d be invariant to the topological group G where G is commutative.
Then the map f has the G- Lipschitz shadowing property if and only if for any positive integerk > 2

the iterative map f*has the G — Lipschitz shadowing property.

Proof. Suppose that the map f has the G- Lipschitz shadowing property. Then there exists positive
constant L, >0 and &, > 0 such that for any 0 < & < g, and (G,¢) - pseudo orbit{x},., of f there exists a
point X € X such that the sequence{X;}.., is (G, L,¢) - shadowed by the point x . Let{y,},7; be (G,¢)-

pseudo orbit of f*and x,;,; = f'(y;) wherei >0and 0 < j <k —1. Thus{x}", is (G,) - pseudo orbit of .
According to that f has the G- Lipschitz shadowing property, there exists X € X such that for any
nonnegative integeri > 0 there exists g, € G satisfying

d(f'(x),0,%) < Le.
Hence for anyi > 0 we have that

d(fY(x),9,%;) < Ly& .
That is,
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d((F)'(x), 9a¥) < Loé -

So, the iterative map f*“has the G — Lipschitz shadowing property.
Suppose that the iterative map f“has the G- Lipschitz shadowing property. Then there exists L, >0

and &, > 0 such that for any0< & < ¢ and any (G,5) - pseudo orbit{x}., of f“ there exists a pointze X
such that the sequence{x}.., is (G, L,5) — shadowed by the pointz .
Casel. When L >1. Write

L=+ L2+ +L+1.

For any 0<pn <% Jet {x}°, be (G,n7)— pseudo orbit {x}., of f .Then for any i>0 there existst G

2

satistying
dt.f(x) X,,)<n. (1)
Hence for anyi > 0 we have that
dt, (%) Xy) <77 .
d (s F (Xia)s Xii2) <77
(b f (%) %) <7

At T (r2)s Xigen) <77
A (tuen T garca) X <77
According to that f is an equivalent Lipschitz map with Lipschitz constant L , we can get that
dit, £ (x,), F“ (%, )) <L,
At F 7 Ry T (%.2)) < L7
At F 7 Kaa)s T (Xa)) <L

At 2R o)s F (X)) < L7z
d (orca F K %) <77
Sinced is invariant to the topological group G and G is commutative, we can obtain that
0ttt - tann T O biatine  tanes F 7 (Xgn)) <L777.
btz baoer T R bz tana T (X)) <L

d (tki+2tki+3 "'tki+k-1f 2 (in+2)’tki+3 "'tki+k-1f kis(xkns)) < Lk7377 .
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A (treotiorcs F 2 o) B f Kgin)) < L7
d (s F Kiirn)s X <77
Lety, =X,,1 =20. Thus, for anyi > 0 we have that
A tiatiorn b T O Via) = B et e T O Xu) <
d(ttaatin  tios T O bitine - tana T (X)) +

P2 (%)) +

d (tki+1tki+2 '“tki+k—1f k_l(ka)’tknz g
d (tki+2tki+3 L fr (in+2)’ [TEREE A f k_s(xki+3)) +
A (tusi-aties F* R b T iain)) +
d (tien T (rcn)s %) <
'+ L2+ L%+ g+ + L+ =
(L + L2+ L+ )y =Ly <sg.

Hence{y,}~,is (G, L,n7) - pseudo orbit{x}., of f*. According to that f “has the G- Lipschitz shadowing
property, there exists z € X such that for any nonnegative integeri >0 there exists p; € G satisfying

d((f")' (@), py) <Ll
That is, for anyi > 0, we have that
d((2), pxq) < L7 2)
By Eq (1) for any0 < j<k —1andi > 0 we can get that
dt F(Xe) X1) <77
(s F OGgun) Xer2) <7
At T (Xr2): X) <77

d(te,; o f (K jo) X ja) <7
d (s 0 F o) X)) <77
According to that f is an equivalent Lipschitz map with Lipschitz constant L , we can get that

d(tki f j(in)’ f J._1()(ki+1)) < I—j_177 .
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d(t.,f j_l(in+1)1 f j_z(xknz)) <.

d(tki+2f 2 (in+2)1 f J.73()(ki+3)) < Ljis’] .

d(t.; . f ’ (X j-2) X jor) < L7
d (tkH—j f(x ki+j—1)’ in+j) <7n.

Sinced is invariant to the topological group G and G is commutative, we can obtain that

d (bt -t ja T () btz -t F 7 (X)) < Uy
(P PIPEER FIPIPY R GO N AP WY i GO RS K
S (I PIEER FIIPY I COTPY L FIPREE S B GO RS R
d (tki+j—2tki+j71f z(xki+j—2)’tki+j—1f (in+j71)) <ln.

d (tki+j—1 f (in+j—1)’ in+j) <7n.

By Eq (2) and according to that f is an equivalent Lipschitz map with Lipschitz constant L and d is
invariant to the topological group, we can obtain that

d (et ot ol pflf k”j (2), tityiatii o '“tki+j—lf : (X)) < L LL,7.
Hence, we have that
A itz taeja P T (2)0 %) <
d ettt P E (@) bt - tay o F PG D) +
d (ttirtine s o TP ) btz -t ja F 7 (X)) +
d (tki+ltki+2 . 'tki+j71 f H(ka)a tki+2 ’ “tki+j—l fi (in+2)) +
S (P FPEERL FPIPY Il CPY N HIPEER SIS Rl G99 K

d (tki+j—2tki+j—l f? (in+j—2)’ tiiaf (in+j—1)) +
d(t. ;o (X)X ) <
ULLy+ U n+U 2+ U+ +Lyp+n<
(LkL1L2 +KL )7 < (LL, +K)Ly

That is,
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d (bt - tania P T “(2), in+j) <(LL, +K)L"7y. (3)
By Eqs (2) and (3) for anyi > O there exists S, € G satisfying

d(f'(2),5%) < (LL, +K)L“7.
So, when L >1, the map f has the G- Lipschitz shadowing property.
Case2. WhenO<L<1. For any0<7< % , let{x.}., be (G,77) - pseudo orbit{x}., of f . Then for anyi >0

there existst; € G satisfying
d(t F (%), %) <7 (4)
Hence, for anyi > 0 we have that
dt f(Xg) X)) <77
d (G (Xa) Xai2) <77
0 (t  (X.2): X) <77

d (a2 F (K2 Xgana) <77
d (e T arca) X <77
According to that f is an equivalent Lipschitz map with Lipschitz constant L , we can get that
d(tg (), T (%)) < L.
A (e P Ry T (%22)) < L7

d (tki+2 f - (in+2)’ f kis(xki+3)) < Lk*377 .

A iz T ¥ (o) barn T i) < L7
At F Keia) X)) <77
Sinced is invariant to the topological group G and G is commutative, we can obtain that
d(ttiatin i T O bt tia T (X)) < L.
Attty 7 K)o s - tina T2 (X)) < L7207

d (tki+2tki+3 "'tki+k—1]c - (in+2)’tki+3 "'tki+|<-1f k_3(xki+3)) < Lk_377 .

d (tki+k—2tki+k—1 f ? (in+k—2)’ tki+k—1f (in+k—1)) < L77 .
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d (s F Kuisn)s X <77
Write y, = X,; wherei > 0. We have that
A (ttiiatine - tis £ Vi) = At -t £ (0D Xa) <
d (bt tiaes T ) tantins - tioca T (Kan)) +
Atz i T Koo bz G T 7 (X)) +
A (rotis  tinea T Ko biss = taes F 7 (Xa)) +
A Caroliern T2 Oia)s i F (i) +
d (G en F Kian)s X <
L+ L%+ L+ L+ + Ln+n <kn.

Hence{y,}",is (G,kn) - pseudo orbit{x}., of f*. According to that f“has the G- Lipschitz shadowing

property, there exists Z € X such that for any nonnegative integeri > 0 there exists p, € G satisfying

d((F*) (@), py,) < Likn.
That is, for anyi > 0, we have that

d(F9(2), pX,) < Lkn . (5)
By Eq (4), for any0 < j <k —-1andi >0 we can get that
dt f(Xg) X)) <77
d (G F (Xa) Xai2) <77
Atz f (Kis2) %) <77

At oo T (s 2) Xy o) <77
Aty f ) X)) <77
According to that f is an equivalent Lipschitz map with Lipschitz constant L , we can get that
dit, f1(x.), f ™ (x.))<U™n.
A 7 )y T2 (%,0)) < U7

d (tki+2f j_Z(in+2)7 f j_s(xki+3)) < Lj_377 .
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At o T2 O o) i ja F (X ja)) < L7
d(t, ;o f (R ja) X ) <7
Sinced is invariant to the topological group G and G is commutative, we can obtain that
d (it '“tki+j—lf j(xki)’tki+1tki+2 '“tki+j—lf H(ka)) <U™p.
d (tki+1tki+2 “'tki+j—1f j_l(ka)vtknz “'tki+j—1f 72 (in+2)) < Lj_277-

d (tki+2tki+3 "'tki+j—1f o (in+2)’tki+3 "'tki+j—1f j_3(xki+3)) < Lj_377 .

d (tki+j—2tki+j—1f Z(in+j—2)’tki+j—1f (in+j—1)) <lLn.
At i F Xy ja) X)) <7

By Eq (5) and according to that f is an equivalent Lipschitz map with Lipschitz constant L andd is
invariant to the topological group, we can obtain that

d (bbb = ton o P E O (@) ttatins -ty F 1 (X)) < ULk
Thus, we have that
A tatgatien b ja P T (2D X0, 5) <
d (bt - tan o P F (@D ettty o T (6D +
d (ttyi .t “'tki+j—1f : (%) tatiis “'tki+j—1f jil(xki+1)) +
A Catiis i jon T O bz B T 777 (X)) +

d (tki+2tki+3 a 'tki+j—1 f I (in+2)7 tki+3 . 'tki+j—l f 7 (in+3)) +

At oot oo T2 o Dot a F (R o)) +
d (o F (K ja)s Xy ) <
ULkn+U ™+ U+ U ++Lnp+n<Lkn+kp=k(L +17.
That is,

Attt - tania P T “(2), in+j) <k(L +1)7n. (6)

By Eqgs (5) and (6) for anyi > 0 there exists S; € G satisfying

d(f'(z),s:%) <k(L +1)7 .
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Hence, when0<L <1, the map f has the G- Lipschitz shadowing property. Thus, we complete the
proof. o

5. Conclusions

Firstly, we study the dynamical properties of (G, w) — Chaos in the inverse limit space under group
action in the paper. We obtained that the self-map f is (G, w) — chaotic, the shift map o is (G, w) — chaotic.
The conclusion generalizes the corresponding results of w—Chaos given in Li [1]. Secondly, the

dynamical properties of G- Lipschitz shadowing property are studied under topological G —conjugate
and iterative systems. The following conclusions are obtained. (1) If f is topologically G —conjugate to

g, then the map f has G- Lipschitz shadowing property if and only if the map g has G- Lipschitz
shadowing property. (2) For any positive integer k >2, the map f has the G- Lipschitz shadowing
property if and only if the iterative map f*has the G- Lipschitz shadowing property. These results
enrich the theory of topological G — conjugate and iterative system. It provided the theoretical basis and
scientific foundation for the application of various shadowing property in computational mathematics
and biological mathematics.
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