Citation: Ling Zhu, Zhengjie Sun. Refinements of Huygens- and Wilker- type inequalities[J]. AIMS Mathematics, 2020, 5(4): 2967-2978. doi: 10.3934/math.2020191
[1] | F. T. Campan, The Story of Number, Romania, 1977. |
[2] | C. Mortici, The natural approach of Wilker-Cusa-Huygens inequalities, Math. Inequal. Appl., 14 (2011), 535-541. |
[3] | J. B. Wilker, Problem E 3306, Amer. Math. Monthly, 96 (1989), 55. |
[4] | Z.-H. Yang and Y.-M. Chu, Sharp Wilker-type inequalities with applications, J. Inequal. Appl., 2014 (2014), 166. |
[5] | H.-H. Chu, Z.-H. Yang, Y.-M. Chu, et al. Generalized Wilker-type inequalities with two parameters, J. Inequal. Appl., 2016 (2016), 187. |
[6] | H. Sun, Z.-H. Yang and Y.-M. Chu, Necessary and sufficient conditions for the two parameter generalized Wilker-type inequalities, J. Inequal. Appl., 2016 (2016), 322. |
[7] | E. Neuman, On Wilker and Huygens type inequalities, Math. Inequal. Appl., 15 (2012), 271-279. |
[8] | J. S. Sumner, A. A. Jagers, M. Vowe, et al. Inequalities involving trigonometric functions, Amer. Math. Monthly, 98 (1991), 264-267. doi: 10.2307/2325035 |
[9] | W.-D. Jiang, Q.-M. Luo, F. Qi, Refinements and sharpening of some Huygens and Wilker type inequalities, Turkish J. Anal. Number Theory, 2 (2014), 134-139. doi: 10.12691/tjant-2-4-6 |
[10] | Ch.-P. Chen, W.-S. Cheung, Sharpness of Wilker and Huygens Type Inequalities, J. Inequal. Appl., 2012 (2012), 72. |
[11] | J.-L. Li, An identity related to Jordan's inequality, Int. J. Math. Math. Sci., 2006. |
[12] | M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U. S. National Bureau of Standards, Washington, DC, USA, 1964. |
[13] | A. Jeffrey, Handbook of Mathematical Formulas and Integrals, Elsevier Academic Press, San Diego, Calif, USA, 3rd edition, 2004. |
[14] | C. D'Aniello, On some inequalities for the Bernoulli numbers, Rendiconti del Circolo Matematico di Palermo. Serie II, 43 (1994), 329-332. doi: 10.1007/BF02844246 |
[15] | H. Alzer, Sharp bounds for the Bernoulli numbers, Archiv der Mathematik, 74 (2000), 207-211. doi: 10.1007/s000130050432 |
[16] | Z.-H. Yang and J.-F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math., 364 (2020), 112359. |
[17] | F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math., 351 (2019), 1-5. doi: 10.1016/j.cam.2018.10.049 |
[18] | L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, RACSAM, 114 (2020), 83. |